首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The transport of the orally absorbed cephalosporin, cephalexin, was examined in the human epithelial cell line, Caco-2 that possesses intestinal enterocyte-like properties when cultured. In sodium-free buffer, the cells accumulated 1 mM D-[9-14C]cephalexin against a concentration gradient and obtained a distribution ratio of 3.5 within 180 min. Drug uptake was maximal when the extracellular pH was 6.0. Uptake was reduced by metabolic inhibitors and by protonophores indicating that uptake was energy- and proton-dependent. Kinetic analysis of the concentration dependence of the rate of cephalexin uptake showed that a non-saturable component (Kd of 0.18 +/- 0.01 nmol/min per mg protein per mM) and a transport system with a Km of 7.5 +/- 2.8 mM and a Vmax of 6.5 +/- 0.9 nmol/min per mg protein were responsible for drug uptake. Uptake was competitively inhibited by dipeptides. The transport carrier exhibited stereospecificity for the L-isomer of cephalexin. Drug uptake was not affected by the presence of amino acids, organic anions, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid or 4,4'-diisothiocyano-2,2'-disulfonic stilbene. Therefore, Caco-2 cells take up cephalexin by a proton-dependent dipeptide transport carrier that closely resembles the transporter present in the intestine. Caco-2 cells represent a cellular model for future studies of the dipeptide transporter.  相似文献   

2.
The human Caco-2 cell line spontaneously differentiates in culture to epithelial cells possessing intestinal enterocytic-like properties. These cells possess a proton-dependent dipeptide transport carrier that mediates the uptake of the cephalosporin antibiotic cephalexin (Dantzig, A.H. and Bergin, L. (1990) Biochim. Biophys. Acta 1027, 211-217). In the present study, the uptake of cefaclor was examined and found to be sodium-independent, proton-dependent, and energy-dependent. The initial rate of D-[3-phenyl-3H]cefaclor uptake was measured over a wide concentration range; uptake was mediated by a single saturable transport carrier with a Km of 7.6 mM and a Vmax of 7.6 nmol/min per mg protein and by a non-saturable component. Uptake was inhibited by dipeptides but not amino acids. The carrier showed a preference for the L-isomer. The effect of the presence of a 5-fold excess of other beta-lactam antibiotics was examined on the initial rates of 1 mM cefaclor and 1 mM cephalexin uptake. Uptake rates were inhibited by the orally absorbed antibiotics, cefadroxil, cefaclor, loracarbef, and cephradine and less so by the parenteral agents tested. The initial uptake rates of both D-[9-14C]cephalexin and D-[3-phenyl-3H]cefaclor were competitively inhibited by cephalexin, cefaclor, and loracarbef with Ki values of 9.2-13.2, 10.7-6.2, and 7.7-6.4 mM, respectively. Taken together, these data suggest that a single proton-dependent dipeptide transport carrier mediates the uptake of these orally absorbed antibiotics into Caco-2 cells, and provide further support for the use of Caco-2 cells as a cellular model for the study of the intestinal proton-dependent dipeptide transporter.  相似文献   

3.
Transport of carnosine by mouse intestinal brush-border membrane vesicles   总被引:1,自引:0,他引:1  
The characteristics of carnosine (beta-alanyl-L-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular greater than intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 +/- 1.4 mM and a Vmax of 2.9 +/- 0.2 nmol/mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-L-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

4.
Peptide Uptake by Astroglia-Rich Brain Cultures   总被引:2,自引:0,他引:2  
Uptake of carnosine has been investigated in astroglia-rich primary cultures derived from brains of newborn mice. It could be demonstrated that carnosine is not degraded by these cells but rapidly taken up in an energy- and sodium-dependent process. Uptake and release of carnosine by these cells were found to be mediated by a saturable, high-affinity transport system with apparent kinetic constants of Km = 50 microM and Vmax = 22.7 nmol X h-1 X mg protein-1. Uptake of carnosine is strongly inhibited by other dipeptides as well as by various oligopeptides, e.g., Leu-enkephalin. However, uptake of the radiolabeled tripeptide D-Ala-L-Ala-L-Ala was not observed. Radiolabeled Leu-enkephalin also did not accumulate intracellularly, even if degradation of the peptide was prevented by use of peptidase inhibitors. These results suggest that uptake of carnosine is catalyzed by a dipeptide-specific transport system with broad substrate specificity. With neuronal cells in primary culture, uptake of carnosine or other peptides was not observed.  相似文献   

5.
The characteristics of carnosine (β-alanyl-l-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular > intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 ± 1.4 mM and a Vmax of 2.9 ± 0.2 nmol / mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-l-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

6.
The characteristics of the uptake of L-cystine by the continuous opossum kidney cell line, OK, were examined. Uptake of cystine is rapid and, in contrast to other continuous cultured cell lines, these cells retain the cystine/dibasic amino acid transport system which is found in vivo and in freshly isolated kidney tissue. Confluent monolayers of cells also fail to show the presence of the cystine/glutamate transport system present in LLC-PK1 cells, fibroblasts, and cultured hepatocytes. Uptake of cystine occurs via a high-affinity saturable process which is independent of medium sodium concentration. The predominant site of cystine transport is across the apical cell membrane. The intracellular concentration of GSH far exceeds that of cystine with a ratio greater than 100:1 for GSH:cysteine. Incubation of cells for 5 minutes with a physiological level of labelled cystine resulted in the labelling of 66% and 5% of the total intracellular cysteine and glutathione, respectively. The ability of these cells to reflect the shared cystine/dibasic amino acid transport system makes them a suitable model for investigation of the cystine carrier which is altered in human cystinuria.  相似文献   

7.
LLC-PK1 and MDCK cells take up cationic amino acids (lysine and arginine) by a specific sodium independent transport system. Uptake is inhibited by ornithine in LLC-PK1 and MDCK cells either in the presence or absence of sodium and by glutamine or homoserine in MDCK cells in the presence of sodium. Trans-stimulation of uptake occurs in the presence of intracellular cationic amino acids. Experiments with valinomycin or with different extracellular potassium concentrations suggest that uptake is dependent on the membrane potential of these cells. These transport features are similar to those previously ascribed to a transport system denominated y+ in other cells. Further experiments suggested that this carrier system is localised to the basolateral membrane in each cell type.  相似文献   

8.
Uptake of l-valine by germinated spores of Arthrobotrys conoides has all the characteristics of a system of transport that requires an expenditure of energy by the cells. It is dependent on temperature and has an energy of activation of 16,000 cal/mole. Uptake is optimal at pH 5 to 6. l-Valine accumulated against a concentration gradient and is not lost from the cells by leakage or exchange. The process requires energy supplied by the metabolic reactions that are inhibited by catalytic amounts of 2,4-dinitrophenol and azide. The kinetics of the system are consistent with a mechanism of transport that depends on a limited number of sites on the cell surface, and the Michaelis constant for the system is 1.5 x 10(-5) to 7.5 x 10(-5)m. Modification of the amino or carboxyl group abolishes l-valine uptake. The process is competitively inhibited by d-valine, glycine, and other neutral amino acids (K(i) = 1.5 x 10(-5) to 4.0 x 10(-5)m), indicating a lack of stereospecificity, and also indicating that aliphatic side chain is not required for binding with the carrier. The transport system has less affinity for acidic amino acids (glutamic and aspartic acids) than neutral amino acids, and a greater affinity for basic amino acids (histidine, lysine, and arginine). The range of affinity is in the order of 100, as measured in terms of K(i) values for various compounds. The data presented provide suggestive evidence that the uptake by A. conoides of all amino acids except proline is mediated by a single carrier system that possesses an overall negative charge.  相似文献   

9.
Carnosine (beta-Ala-L-His) is known to have the physiological functions of an antioxidant. Although dietary carnosine is thought to be absorbed across intestinal epithelial cells, the mechanism for this absorption is not yet well understood and its function in the intestinal tract is also obscure. The intestinal transport of carnosine was characterized in the present study by using human intestinal Caco-2 cells, and its physiological function in these cells was further examined. The carnosine uptake was proton-dependent, being activated by lowering the apical pH value. Its uptake was significantly inhibited by other dipeptides, whereas it was not inhibited by other amino acids. These characteristics of the carnosine uptake strongly suggest its transport into the cells via peptide transporter 1 (PepT1). Since carnosine has antioxidative activity, we studied its effect on the H2O2-induced secretion of inflammatory cytokines in Caco-2 cells. The H2O2 induced increase in IL-8 secretion was inhibited by a pretreatment with carnosine for 3 h, this inhibition being presented in a dose-dependent manner. These results suggest that carnosine had a protective effect against oxidative stress in intestinal epithelial cells.  相似文献   

10.
Bauer K 《Neurochemical research》2005,30(10):1339-1345
Carnosine (beta-alanyl-histidine) and homocarnosine (gamma-aminobutyryl-histidine) are major constituents of excitable tissues, brain and skeletal muscles, but their physiological functions are yet unknown. Using primary cell culture systems, synthesis and uptake of carnosine exclusively by glial cells could be demonstrated. Uptake of carnosine was found to be mediated by a high affinity, energy-dependent dipeptide transport system, subsequently identified as the peptide transporter PepT2. With the synthesis of beta-Ala-Lys-Nepsilon-AMCA as a fluorescent reporter molecule, accumulation of this dipeptide derivative could be monitored under viable conditions not only in astroglia cells but also in folliculostellate cells of the anterior pituitary and in gonadal resident macrophages. This reporter dipeptide provided a most valuable tool to identify an intrapituitary communication system by tracing folliculostellate cells in acute slice preparation. Moreover, this substance could also be used to prepare pituitary cell cultures enriched with or depleted of folliculostellate cells that are needed for further studies.  相似文献   

11.
Carrier-mediated transport of aminocephalosporin antibiotics by renal brush-border membrane vesicles has been studied in relation to the transport systems for dipeptides and amino acids. Dipeptides such as L-carnosine (beta-alanyl-L-histidine) and L-phenylalanylglycine competitively inhibited the uptake of cephalexin, but amino acids did not. Cephalexin uptake was stimulated by the countertransport effect of L-carnosine in the normal and papain-treated vesicles, and by the effect of L-phenylalanylglycine only in the papain-treated vesicles. In the papain-treated vesicles, the hydrolysis of dipeptides was markedly decreased, and the specific activity for cephalexin transport was increased approx. 2-fold because of the partial removal of membrane proteins. These results suggest that carrier-mediated transport of cephalexin can be transported by the system for dipeptides in renal brush-border membranes.  相似文献   

12.
Uptake and inhibitory kinetics of [3H]L-threonine were evaluated in preparations of pig jejunal brush border membrane vesicles. Uptake of [3H]L-threonine under O-trans, Na+ gradient, and O-trans, Na(+)-free conditions was best described by high affinity transport (Km < 0.01 mM) plus a nonsaturable component. The maximal velocity of transport was 3-fold greater under Na+ gradient conditions. 100 mM concentrations of all of the dipolar amino acids and 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid caused complete inhibition of [3H]L-threonine transport under Na+ gradient and Na(+)-free conditions. Imino acids, anionic amino acids, cationic amino acids, and methylamino-isobutyric acid caused significant partial inhibition of L-threonine uptake. Inhibitor concentration profiles for proline and lysine were consistent with low affinity competitive inhibition. The Ki values of alanine and phenylalanine approximated 0.2 and 0.5 mM, respectively, under both Na+ gradient and Na(+)-free conditions. These data indicate that the transport system available for L-threonine in the intestinal brush border membrane (system B) is functionally distinct from other amino acid transport systems. Comparison of kinetics parameters in the presence and absence of a Na+ gradient suggests that both partially and fully loaded forms of the carrier can function to translocate substrate and that Na+ serves to accelerate L-threonine transport by a mechanism that does not involve enhanced substrate binding.  相似文献   

13.
In order to improve culture media and to discover potential drug targets, uptake of an acidic, a basic, and an aromatic amino acid were investigated. Current culture systems, axenic or co-cultivation with mammalian cells, do not provide either the quantity or quality of cells needed for biochemical studies of this organism. Insight into nutrient acquisition can be expected to lead to improved culture media and improved culture growth. Aspartic acid uptake was directly related to substrate concentration, Q(10) was 1.10 at pH 7.4. Hence the organism acquired this acidic amino acid by simple diffusion. Uptake of the basic amino acid arginine and the aromatic amino acid tyrosine exhibited saturation kinetics consistent with carrier-mediated mechanisms. Kinetic parameters indicated two carriers (K(m)=22.8+/-2.5 microM and K(m)=3.6+/-0.3 mM) for arginine and a single carrier for tyrosine (K(m)=284+/-23 microM). The effects of other L-amino acids showed that the tyrosine carrier was distinct from the arginine carriers. Tyrosine and arginine transport were independent of sodium and potassium ions, and did not appear to require energy from ATP or a proton motive force. Thus facilitated diffusion was identified as the mechanism of uptake. After 30 min of incubation, these amino acids were incorporated into total lipids and the sedimentable material following lipid extraction; more than 90% was in the cellular soluble fraction.  相似文献   

14.
The uptake of cephalosporin antibiotics, cephalexin, was studied with brush-border microvillous plasma membrane vesicles prepared and purified from human full-term placental syncytiotrophoblasts. The uptake of cephalexin by the membrane vesicles was not stimulated in the presence of an Na+ gradient from the outside to the inside of the vesicles, whereas alpha-(methylamino)isobutyrate uptake into the vesicles of the same preparation was stimulated by an Na+ gradient. The equilibrium level of cephalexin uptake decreased with increasing osmolarity of the medium, which indicates that cephalexin is transported into the membrane vesicles. When cephalexin concentrations were varied, the initial rate of uptake obeyed Michaelis-Menten kinetics with Km and Vmax values of 2.29 mM and 2.98 nmol/mg of protein per 60 s, respectively. The uptake of cephalexin was inhibited by structural analogues and sulfhydryl modifying reagents. These results indicate the existence of a carrier-mediated transport system for cephalexin in the human placental brush-border membranes.  相似文献   

15.
Experiments to elucidate the mechanism by which Pneumocystis carinii transports glutamine, leucine, and serine were performed in this study. Uptake of all three radiolabeled amino acids exhibited first-order, saturation kinetics as extracellular substrate concentrations were increased, thus ruling out simple diffusion and indicating carrier-mediated transport. Kinetic analyses of amino acid uptake and the results of competitive inhibition experiments suggested that leucine, serine, and glutamine were taken up via a common transporter system. The uptake of serine was examined in greater detail to characterize the nature of the carrier. Serine uptake was not affected by N, N'-dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl hydrazone, ouabain, gramicidin, valinomycin, sodium azide, salicylhydroxamine acid (SHAM), iodoacetate, iodoacetate plus SHAM, KCN, and azide. Thus serine uptake did not require sodium or energy from ATP, an electrochemical proton gradient or a membrane potential across the cell surface (i.e., proton-motive force). Serine uptake was dependent on glucose in the extracellular compartment. In the presence of glucose, serine uptake was inhibited by chloramphenicol but not cycloheximide. The results from these experiments are most consistent with facilitated diffusion as the mechanism. After 30 min of incubation, most of the radioactivity was in the cellular soluble fraction. In most cases, incorporation into the extractable total lipids and the remaining particulate cellular components were detectable after this incubation period.  相似文献   

16.
Taurine uptake into rat brain synaptosomal fractions appears to occur by two saturable transport processes and by bulk diffusion. The transport requires the presence of sodium ions. The dependence of the transport on temperature and cellular respiration implies that the uptake is an active process. The active process is specific for taurine and closely related amino acids. Brain regions differ in their ability to transport taurine. Uptake is not due to mitochondrial contamination of the synaptosomal fractions. However, glial contamination might partly contribute to the uptake. Kainic acid lesions of rat corpus striatum and cerebellum reduce taurine uptake implying that the uptake is, at least partly, into neurons.  相似文献   

17.
Uptake of L-[14C]Gln and phosphate-activated glutaminase (PAG) activity were measured in nonsynaptic mitochondria isolated from rat cerebral hemispheres, in the presence of protein and nonprotein amino acids and their synthetic structural analogues and derivatives. The uptake was inhibited by > 50% in the presence of a 10-fold excess of His, homocysteine (Hcy), Trp, Leu, Tyr, Ile, Thr, Ala, Phe, Met, Ser, by > 20% in the presence of a 10-fold excess of Val, Arg, Glu, and was not affected by a 10-fold excess of Orn, alpha-ketoglutarate, Tau and Pro. Uptake of L-[14C] Leu differed from Gln uptake by its resistance to Arg, Glu, and a relatively high sensitivity to the reference inhibitor of the plasma membrane transport of large neutral amino acids (L-system)--BCH (2-aminobicyclo[2.2.1]heptane-2-carboxylic acid), and a number of natural L-system substrates. A newly synthesized alanine analogue, 2'-cyano-(biphenyl) alanine, referred to as MRC01, was the only compound tested that inhibited Gln uptake more strongly than Leu uptake. The strongest Gln uptake inhibitors: MRC01, His, Hcy and Leu, inhibited PAG activity by > 50% when added at the inhibitor/Gln concentration ratio of 1:2. PAG activity was not affected by Tau, Lys or Pro, compounds which did affect Gln uptake. The results suggest that a number of natural amino acids function as common endogenous modulators of cerebral mitochondrial Gln uptake and its degradation. MRC01, because of its inhibitory potency towards both mitochondrial Gln uptake and PAG activity, may become a convenient tool in studying the role of Gln transport in its mitochondrial metabolism in intact CNS cell and tissues.  相似文献   

18.
The energetics of amino acid uptake by the developing small intestine was investigated in vitro. L-valine, L-leucine, L-phenylalanine, L-methionine, L-lysine and L-arginine were all actively transported by the newborn rat jejunum. Metabolic inhibitors (e.g. 2,4-dinitrophenol) significantly reduced uptake of all amino acids but uptake against a concentration gradient was not totally abolished. Uptake of all amino acids was reduced at low[Na+]. Inhibition of transport of neutral amino acids by reduced luminal [Na+] was greater than that of basic amino acids, and the tissue was barely able to concentrate the neutral amino acids. [Na+] affected the Michaelis constant (Km) of neutral transport systems for their substrates; for the basic amino acids Km values were unaffected by the presence or absence of Na+. Ouabain significantly inhibited neutral amino acid uptake but had no effect on L-lysine or L-arginine uptake. These results are discussed in terms of the Na+ gradient hypothesis for amino acid transport, and the site of energy input to active transport. The role of glycolysis in providing energy for intestinal transport in the neonatal rat and the efficiency of Na+ dependent and independent transport mechanisms are considered. It is concluded that the energetics of amino acid transport systems in neonatal and adult rats are essentially similar.  相似文献   

19.
The uptake of the basic amino acids arginine, ornithine, and lysine was studied in membrane vesicles derived from cells of Lactococcus lactis which were fused with liposomes in which beef heart mitochondrial cytochrome c oxidase was incorporated as a proton motive force (PMF)-generating system. In the presence of ascorbate N,N,N'N'-tetramethylphenylenediamine-cytochrome c as the electron donor, these fused membranes accumulated lysine but not ornithine or arginine under aerobic conditions. The mechanism of energy coupling to lysine transport was examined in membrane vesicles of L. lactis subsp. cremoris upon imposition of an artificial electrical potential (delta psi) or pH gradient or both and in fused membranes of these vesicles with cytochrome c oxidase liposomes in which the delta psi and delta pH were manipulated with ionophores. Lysine uptake was shown to be coupled to the PMF and especially to the delta psi, suggesting a proton symport mechanism. The lysine carrier appeared to be specific for L and D isomers of amino acids with a guanidine or NH2 group at the C6 position of the side chain. Uptake of lysine was blocked by p-chloromercuribenzene sulfonic acid but not by maleimides. Counterflow of lysine could not be detected in L. lactis subsp. cremoris, but in the arginine-ornithine antiporter-containing L. lactis subsp. lactis, rapid counterflow occurred. Homologous exchange of lysine and heterologous exchange of arginine and lysine were mediated by this antiporter. PMF-driven lysine transport in these membranes was noncompetitively inhibited by arginine, whereas the uptake of arginine was enhanced by lysine. These observations are compatible with a model in which circulation of lysine via the lysine carrier and the arginine-ornithine antiporter leads to accumulation of arginine.  相似文献   

20.
Uptake of amino acids is a complex process but in cells growing with ammonia as sole nitrogen source the initial uptake rate of amino acids is a measure of the transport capacity of the uptake system (permease). In synchronous cultures of Saccharomyces cerevisiae amino acids were transported at all stages of the cell cycle. However, for any one amino acid the initial uptake rate was constant for most of the cycle and doubled during a discrete part of the cycle. Thus, for a variety of amino acids the functioning amino acid transport capacity of the membrane doubles once per cycle at a characteristic stage of the cycle. Arginine, valine, and phenylalanine exhibit periodic doubling of uptake rate at different stages of the cell cycle indicating that the transport of these amino acids is mediated by three different systems. Serine, phenylalanine, and leucine exhibit periodic doubling of the uptake rate at the same stage of the cycle. However, it is unlikely that serine and phenylalanine share the same transport system since the uptake of one is not inhibited by the other amino acid. This phenomenon is analogous to the periodic synthesis of soluble enzymes observed in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号