首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human vitamin D receptor (hVDR), which is a substrate for several protein kinases, mediates the actions of its 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) ligand to regulate gene expression. To determine the site, and functional impact, of cAMP-dependent protein kinase (PKA)-catalyzed phosphorylation of hVDR, we generated a series of C-terminally truncated and point mutant receptors. Incubation of mutant hVDRs with PKA and [gamma-32P]ATP, in vitro, or overexpressing them in COS-7 kidney cells labeled with [32P]orthophosphate, revealed that serine-182 is the predominant residue in hVDR phosphorylated by PKA. An aspartate substituted mutant (S182D), incorporating a negative charge to mimic phosphorylation, displayed only 50% of the transactivation capacity in response to 1,25(OH)2D3 of either wild-type or an S182A-altered hVDR. When the catalytic subunit of PKA was overexpressed, a similar reduction in wild-type but not S182D hVDR transactivity was observed. In a mammalian two-hybrid system, S182D bound less avidly than wild-type or S182A hVDR to the retinoid X receptor (RXR) heterodimeric partner that co-mediates vitamin D responsive element recognition and transactivation. These data suggest that hVDR serine-182 is a primary site for PKA phosphorylation, an event that leads to an attenuation of both RXR heterodimerization and resultant transactivation of 1,25(OH)2D3 target genes.  相似文献   

2.
The human 1,25-dihydroxyvitamin D3 receptor (hVDR) has been recently shown to be phosphorylated in vitro by casein kinase-II. Most of the residues phosphorylated by this enzyme were shown to reside between Asn160 and Asp232, a region near the N-terminal boundary of the hormone-binding domain. We report here that the hVDR is also phosphorylated in vivo after transfection into ROS 17/2.8 cells. In addition to testing full-length hVDR, we analyzed several internally deleted hVDR mutants. The expression and phosphorylation of full-length and mutated hVDRs were monitored in transfected cells by metabolic labeling with either [35S]methionine or [32P]orthophosphate, followed by immunopurification using monoclonal anti-VDR antibody linked to agarose beads. Transfected hVDR is distinguishable from the endogenous rat VDR when the immunoprecipitated proteins are resolved on sodium dodecyl sulfate-polyacrylamide gels. Significant phosphorylation of transfected full-length hVDR was observed in ROS 17/2.8 cells, and it was less dependent on the presence of 1,25-dihydroxyvitamin D3 than that of the endogenous rat receptor. Most importantly, the region of in vivo phosphorylation, as defined by internal deletion mutants, resides between Met197 and Val234. Therefore, we have localized the major site of phosphorylation of hVDR to residues in the N-terminal region of the hormone-binding domain. The boundaries of this region fall within the amino acid segment defined for phosphorylation of hVDR by casein kinase-II in vitro, suggesting that VDR is an in vivo substrate for casein kinase-II or a related protein kinase.  相似文献   

3.
The ligand-binding domain of the rat vitamin D receptor (amino acids 115-423) was expressed as an amino-terminal His-tagged protein in a bacterial expression system and purified over Ni-nitrilotriacetic acid resin and a Mono S column. The purified protein bound its ligand, 1,25-dihydroxyvitamin D3, with high affinity, similar to that of the full-length protein. Saturation of the protein with ligand quenched 90% of the tryptophan fluorescence, consistent with the purified protein being uniformly able to bind ligand. Addition of ligand produced no change in the tryptophan fluorescence lifetime, suggesting static quenching as the mechanism of fluorescence decrease. The near-UV circular dichroism spectrum showed a large increase in signal following the addition of ligand, consistent with a change in the environment of aromatic amino acid side chains. The far-UV circular dichroism spectrum was consistent with a protein of high alpha-helical content. Sedimentation equilibrium experiments demonstrated that the protein formed higher-order complexes, and the distribution of the protein among these complexes was significantly shifted by addition of ligand.  相似文献   

4.
5.
Human vitamin D receptor (hVDR) fused to glutathione S-transferase was utilized to detect a VDR-interacting protein (VIP) of approximately 170 kDa. VIP(170) is expressed in osteoblast-like ROS 17/2.8 cells and, to a lesser extent, in COS-7 and HeLa cells. VIP(170) may be a coactivator because it interacts only with 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) ligand-bound hVDR and because a mutation (E420A) in the activation function-2 (AF-2) of hVDR abolishes both receptor-mediated transactivation and VIP(170) binding. Unlike L254G hVDR, a heterodimerization mutant with an intact AF-2, the E420A mutant is only partially attenuated in its association with the retinoid X receptor (RXR) DNA-binding partner. Finally, the ability of overexpressed hVDR to squelch glucocorticoid receptor-mediated transactivation is lost in both the L254G and E420A mutants. These results suggest that several protein-protein interactions, including VDR association with RXR and VIP(170), are required for stabilization of a multimeric complex that transduces the signal for 1,25(OH)(2)D(3)-elicited transactivation.  相似文献   

6.
7.
8.
9.
10.
We synthesized a novel vitamin D analog, 22-hydroxyvitamin D3 9 and tested its biologic activity (and antivitamin properties) in vivo in vitamin D-deficient rats, and in vitro in the chick embryonic duodenum. We examined its ability to bind to the sterol carrier protein, vitamin D binding protein and the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. The new vitamin 9 was synthesized from 3 beta-hydroxy-22,23-dinorcholenic acid 1 in 12 steps. The vitamin 9 displayed no vitamin D agonist activity in the intestine or in bone in vivo and did not block the activity of vitamin D3 or 25-hydroxyvitamin D3. It was a weak vitamin D3 agonist in the chick embryonal duodenum in vitro. It did not antagonize the activity of 1,25-dihydroxyvitamin D3. Vitamin 9 bound to the chick intestinal cytosol receptor with low affinity. 22-Hydroxyvitamin D3 and various vitamin D sterols were bound to vitamin D binding protein in the following order: 25-hydroxyvitamin D3. (24R)-24,25-dihydroxyvitamin D3, and (25S)-25,26-dihydroxyvitamin D3 greater than 22-hydroxyvitamin D3 greater than 11 alpha-hydroxyvitamin D3 greater than 1,25-dihydroxyvitamin D3 greater than vitamin D3. We conclude that the introduction of a hydroxyl group at C-22 in the side chain of the vitamin D3 molecule decreases its biological activity.  相似文献   

11.
J A Finlay  H F DeLuca 《Biochemistry》1988,27(9):3381-3387
An 18,000-dalton protein (pI = 5.1) shown previously to be modulated by 1,25-dihydroxyvitamin D3 was purified to allow its further characterization. This protein from embryonic chick intestine was shown to comigrate during two-dimensional electrophoresis with an abundant protein from the intestine of 4-week-old chickens. The protein was purified from 4-week chick intestine and analyzed for amino acid composition, and 28 amino acids of its N-terminal sequence were determined. The N-terminal amino acid sequence had significant homology to cellular retinol binding protein II, an intestinal protein that has been recently sequenced. The purified 18-kilodalton protein was shown to bind retinol by fluorescence spectrophotometry. This 18-kilodalton protein is dramatically changed by 1,25-dihydroxyvitamin D3 in the chick embryonic organ culture system. Therefore, further study of it may lead to a better understanding of vitamin A and D interaction and how 1,25-dihydroxyvitamin D3 acts through proteins to stimulate intestinal calcium and phosphate transport.  相似文献   

12.
Mitochondrial cytochrome P450(24) expression in the vitamin D-degradation pathway is induced by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. The molecular basis of this enzyme regulation was investigated by isolating the rat P450(24) gene and examining the 5'-flanking region for possible cis-acting regulatory elements involved in the induction process. Constructs containing different lengths of 5'-flanking region of the gene were linked to a luciferase reporter gene and transiently co-transfected with a human vitamin D receptor (hVDR) expression vector (pRSV-hVDR) into COS-1 cells. These experiments showed that the flanking region from -298 to -122 directed a 24-fold increase in luciferase activity in response to 1,25-(OH)2D3 provided that the cells were co-transfected with pRSV-hVDR. Within this region, the sequence from position -171 to -123 conferred 1,25-(OH)2D3 responsiveness to both the native P450(24) promoter and the heterologous thymidine kinase promoter. Mutagenesis revealed that the sequence from position -150 to -136 is required for induction by 1,25-(OH)2D3 and that this sequence shares similarity to other vitamin D responsive elements (VDREs) reported for other genes. Gel shift mobility assays showed this region specifically bound a nuclear protein complex from 1,25-(OH)2D3 treated COS-1 cells that had been co-transfected with pRSV-hVDR. The retarded band was specifically competed with the well characterized VDRE from the mouse osteopontin gene. A VDRE at position -150 to -136 in the promoter of the rat P450(24) gene is identified in this study and found to be important in mediating the enhanced expression of the gene by 1,25-(OH)2D3.  相似文献   

13.
We synthesized 3 beta-thiovitamin D3 from 7-dehydrocholesterol and tested its biological activity and protein binding properties. The thiovitamin was found to be a weak vitamin D agonist at high doses in vivo. It was poorly bound by both vitamin D-binding protein as well as by the intestinal cytosol receptor for 1,25-dihydroxyvitamin D. It did not increase the synthesis of calcium binding protein in the chick embryonic duodenum and did not block the activity of 1,25-dihydroxyvitamin D3 in this system. We conclude that 3 beta-thiovitamin D3 is a weak vitamin D agonist in vivo with no agonist activity or antagonist activity to 1,25-dihydroxyvitamin D3 in the chick embryonic duodenum.  相似文献   

14.
The human vitamin D receptor (hVDR) is a member of the nuclear receptor superfamily, involved in calcium and phosphate homeostasis; hence implicated in a number of diseases, such as Rickets and Osteoporosis. This receptor binds 1α,25-dihydroxyvitamin D(3) (also referred to as 1,25(OH)(2)D(3)) and other known ligands, such as lithocholic acid. Specific interactions between the receptor and ligand are crucial for the function and activation of this receptor, as implied by the single point mutation, H305Q, causing symptoms of Type II Rickets. In this work, further understanding of the significant and essential interactions between the ligand and the receptor was deciphered, through a combination of rational and random mutagenesis. A hVDR mutant, H305F, was engineered with increased sensitivity towards lithocholic acid, with an EC(50) value of 10 μM and 40±14 fold activation in mammalian cell assays, while maintaining wild-type activity with 1,25(OH)(2)D(3). Furthermore, via random mutagenesis, a hVDR mutant, H305F/H397Y, was discovered to bind a novel small molecule, cholecalciferol, a precursor in the 1α,25-dihydroxyvitamin D(3) biosynthetic pathway, which does not activate wild-type hVDR. This variant, H305F/H397Y, binds and activates in response to cholecalciferol concentrations as low as 100 nM, with an EC(50) value of 300 nM and 70±11 fold activation in mammalian cell assays. In silico docking analysis of the variant displays a dramatic conformational shift of cholecalciferol in the ligand binding pocket in comparison to the docked analysis of cholecalciferol with wild-type hVDR. This shift is hypothesized to be due to the introduction of two bulkier residues, suggesting that the addition of these bulkier residues introduces molecular interactions between the ligand and receptor, leading to activation with cholecalciferol.  相似文献   

15.
The nature of the DNA binding interactions of the human vitamin D receptor (hVDR) with the murine osteopontin vitamin D response element (mOP VDRE) was examined. Both recombinant hVDR and human retinoid X receptor β (hRXRβ) proteins were obtained from baculovirus-infected Sf9 insect cells. Mixing extracts of the two recombinant proteins resulted in the strong, specific formation of a slower migrating complex in the electrophoretic mobility shift assay. Crude extracts of the expressed hVDR alone were also capable of binding with high affinity to the mOP sequence, and this binding was enhanced in the presence of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Competition experiments confirmed the specificity of this interaction and revealed that the human osteocalcin VDRE was a poor competitor for this binding. Ethylation interference footprint analyses of hVDR/hRXRβ and hVDR complexes revealed only subtle differences in how these two different VDR-containing complexes interacted with the mOP VDRE. The footprints displayed contact points in both halves of the direct repeat format, confirming the dimeric and major groove interactions of both types of complexes. DNA affinity chromatography of labelled hVDR extracts revealed a peak eluting at ca. 290 mM KCl that was capable of rebinding to the mOP sequence in gel shift experiments. Ultraviolet (UV) light-crosslinking experiments of hVDR extracts alone to radiolabelled DNA were consistent with the existence of a homodimeric hVDR interaction. Additionally, these experiments confirmed the direct interaction of a hVDR/hRXRβ heterodimer when mixed extracts were utilized. From these results we infer that homodimers of the hVDR which respond with enhanced DNA binding to particular vitamin D response elements when exposed to 1,25-(OH)2D3 are possible. This may be of functional significance when RXR proteins are limiting or RXR ligand is present within a cell.  相似文献   

16.
17.
The aim of the present study was to determine the respective role of 1,25-dihydroxyvitamin D3 on vaginal epithelium and 1,25-dihydroxyvitamin D3 receptor expression in ovariectomized rats and vitamin D3 treated rats. Bilateral ovariectomies were performed in 20 mature, non-pregnant Wistar female rats. All the animals were divided into 2 groups consisting of 10 rats each. Group I served as control. In group II, animals were injected intramuscularly with vitamin D3 (50, 00 IU/kg). Two weeks after the injections, vaginas of animals in group I and group II were removed removed and processed for immunohistochemistry. Epithelial differentiation, 1,25-dihydroxyvitamin D3 receptor and cornifin beta expression were investigated in vaginal epithelium of control group (ovariectomized) and vitamin D3 treated rats. Vaginal epithelial cells from vitamin D3 treated animals changed into highly- stratified keratinizing layers. 1,25-dihydroxyvitamin D3 receptor and cornifin beta as a marker of squamous differentiation were present in ovariectomized rats treated with 1,25-dihydroxyvitamin D3. In contrast, cornifin beta and 1,25-dihydroxyvitamin D3 receptor were absent in all layers of vaginal epithelium in control group. We demonstrated for the first time that 1,25-dihydroxyvitamin D3 induced proliferation of vaginal epithelium consistent with the cornifin beta expression and 1,25-dihydroxyvitamin D3 up-regulated 1,25-dihydroxyvitamin D3 receptor expression in vaginal epithelium.  相似文献   

18.
Nephrin plays a key role in maintaining the structure of the slit diaphragm in the glomerular filtration barrier. Our previous studies have demonstrated potent renoprotective activity for 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)). Here we showed that in podocytes 1,25(OH)(2)D(3) markedly stimulated nephrin mRNA and protein expression. ChIP scan of the 6-kb 5' upstream region of the mouse nephrin gene identified several putative vitamin D response elements (VDREs), and EMSA confirmed that the VDRE at -312 (a DR4-type VDRE) could be bound by vitamin D receptor (VDR)/retinoid X receptor. Luciferase reporter assays of the proximal nephrin promoter fragment (-427 to +173) showed strong induction of luciferase activity upon 1,25(OH)(2)D(3) treatment, and the induction was abolished by mutations within -312VDRE. ChIP assays showed that, upon 1,25(OH)(2)D(3) activation, VDR bound to this VDRE leading to recruitment of DRIP205 and RNA polymerase II and histone 4 acetylation. Treatment of mice with a vitamin D analog induced nephrin mRNA and protein in the kidney, accompanied by increased VDR binding to the -312VDRE and histone 4 acetylation. 1,25(OH)(2)D(3) reversed high glucose-induced nephrin reduction in podocytes, and vitamin D analogs prevented nephrin decline in both type 1 and 2 diabetic mice. Together these data demonstrate that 1,25(OH)(2)D(3) stimulates nephrin expression in podocytes by acting on a VDRE in the proximal nephrin promoter. Nephrin up-regulation likely accounts for part of the renoprotective activity of vitamin D.  相似文献   

19.
20.
24-Keto-1,25-dihydroxyvitamin D3 has been identified as an intestinal metabolite of 1,25-dihydroxyvitamin D3 by ultraviolet absorbance, mass spectroscopy, and chemical reactivity. The metabolite was produced from 1,25-dihydroxyvitamin D3 and 1,24R,25-trihydroxyvitamin D3 in rat intestinal mucosa homogenates. 24-Keto-1,25-dihydroxyvitamin D3 is present in vivo in the plasma and small intestinal mucosa of rats fed a stock diet, receiving no exogenous 1,25-dihydroxyvitamin D3, and in the plasma and small intestinal mucosa of rats dosed chronically with 1,25-dihydroxyvitamin D3. 24-Keto-1,25-dihydroxyvitamin D3 has affinity equivalent to 1,24R,25-trihydroxyvitamin D3 for the 3.7 S cytosolic receptor specific for 1,25-dihydroxyvitamin D3 in the intestine and thymus. In cytosolic preparations contaminated with the 5 S vitamin D-binding protein, both metabolites are about 7-fold less potent than 1,25-dihydroxyvitamin D3. In contrast, in cytosolic preparations largely free of the 5 S binding protein, both metabolites are equipotent with the parent compound. No evidence was obtained supporting a substantial presence of 23-keto-1,25-dihydroxyvitamin D3 in vivo; nor was the latter compound generated in detectable amounts from 1,25-dihydroxyvitamin D3 by intestinal homogenates. Thus, C-24 oxidation is a significant pathway of intestinal 1,25-dihydroxyvitamin D3 metabolism that produces metabolites with high affinity for the cytosolic receptor which mediates vitamin D action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号