首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several species of the Erica genus are broadly represented in northwest Spain, being among the shrubs that form the substitution stage following forest degradation as a result of human activity, caused mainly by fire or other antrophic causes. Therefore airborne pollen from Erica is frequent. From 1995 to 2002,an aerobiological study of Ericaceae family pollen was undertaken in the atmosphere of the city of Vigo (Northwest Spain) using a Lanzoni VPPS 2000 (Lanzoni srl, Bologna, Italy) sampler placed in the left margin of the Vigo fiord (42°14′15″ N, 8°43′30" W). Despite being a taxon of eminently entomophillous pollination,the pollen of Ericaceae was well represented in the atmosphere above the study zone. Erica arborea L. is the main species represented in the annual pollen curve. This taxon shows a long main pollen season and higher pollen concentrations were recorded during the months of April and May, which is why beekeepers place their beehives at specific locations in April to ensure a considerable contribution from this pollen to the composition of the honey. The maximum daily average concentration was detected in 1997, with a concentration of 156 grains/m3. Throughout the day, maximum values occur at 5/6 h and between 17:00 and 18:00 h. Finally, correlation statistical analyses were developed in order to determine the degree of association between the daily average of meteorological parameters and daily mean airborne pollen concentrations.Rainfall exerts a clear influence on Ericaceae pollen season characteristics, with precipitation registered in March being responsible for the decrease in total annual pollen values.  相似文献   

2.
Abstract: Several species of the Erica genus are broadly represented in northwest Spain, being among the shrubs that form the substitution stage following forest degradation as a result of human activity, caused mainly by fire or other antrophic causes. Therefore airborne pollen from Erica is frequent. From 1995 to 2002, an aerobiological study of Ericaceae family pollen was undertaken in the atmosphere of the city of Vigo (Northwest Spain) using a Lanzoni VPPS 2000 (Lanzoni srl, Bologna, Italy) sampler placed in the left margin of the Vigo fiord (42°14'15 "N, 8°43'30" W). Despite being a taxon of eminently entomophillous pollination, the pollen of Ericaceae was well represented in the atmosphere above the study zone. Erica arborea L. is the main species represented in the annual pollen curve. This taxon shows a long main pollen season and higher pollen concentrations were recorded during the months of April and May, which is why beekeepers place their beehives at specific locations in April to ensure a considerable contribution from this pollen to the composition of the honey. The maximum daily average concentration was detected in 1997, with a concentration of 156 grains/m3. Throughout the day, maximum values occur at 5/6 h and between 17:00 and 18:00 h. Finally, correlation statistical analyses were developed in order to determine the degree of association between the daily average of meteorological parameters and daily mean airborne pollen concentrations. Rainfall exerts a clear influence on Ericaceae pollen season characteristics, with precipitation registered in March being responsible for the decrease in total annual pollen values.
(Managing editor: Ya-Qin HAN)  相似文献   

3.
Pollen data from the atmosphere of Vigo, NW Spain was collected using a Hirst type pollen trap over a seven-year period (1995–2001). A total of 56 different pollen types were identified, among which Urticaceae, Poaceae, Betula and Quercus represent the greatest risk for people suffering from allergic rhinitis (hay fever) or other allergic diseases. Although in the atmosphere of Vigo the presence of allergenic pollen is constant throughout the year, the months of March and April account for 40% of the annual total pollen count. Two main risk periods have been identified for asthma and allergies: (1) March – April, and (2) June – July, the latter is of greater importance due to high concentrations of Poaceae pollen. Correlation analysis with meteorological parameters demonstrates that rainfall, relative humidity, maximum temperature, sun hours and north-easterly winds are the main factors influencing the average daily pollen concentrations in the atmosphere.  相似文献   

4.
This is the first data from a pollen survey in Vigo, an Atlantic city in northwest Spain. The pollen calendar for Vigo is presented, as well as the pollination period for the nine most important allergenic plants. Through 1995, 30 083 pollen grains belonging to 52 taxa, were recorded using the Lanzoni VPPS 2000 volumetric spore-trap. The most relevant taxa found were: Urticaceae,Pinus, Poaceae andQuercus (75% of the total pollen),Betula, Castanea, Cupressaceae, Chenopodiaceae, Ericaceae, Myrtaceae,Olea, Plantago, Platanus andRumex (21%), and the final 4% was distributed mainly among pollen types, such as:Corylus, Alnus, Fabaceae, Compositae,Artemisia andCedrus. Of the total annual pollen count, 56% was found in March and April. Another, secondary peak was recorded in June corresponding to the flowering period of herbaceous species. The high pollen total of Urticaceae (7625 grains, 25% of the total) should be highlighted. The percentages ofOlea europaea (565 grains) should be noted as well, taking into account its geographical distribution.  相似文献   

5.
An aeropalynological study during the years 2014–2015 was performed in Hatay, which is a unique sociocultural and phytogeographical area located on the border of Turkey and Syria on the eastern coast of the Mediterranean. The sampling was performed by a Hirst-type volumetric sampler (Lanzoni VPPS 2000), and pollen grains of 54 taxa were identified, of which 83.21% of the annual sum belonged to woody taxa. The highest pollen concentration was recorded in February, of which a large amount came from the Cupressaceae/Taxaceae families. The diversity of the pollen reflected the vegetation of the area and plantations of the city center, but pollen grains from Euro-Siberian elements specific to Mount Amanos could not be recorded. Pollen types found at more than 3% of the annual pollen index and considered dominant pollen types were as follows: Cupressaceae/Taxaceae (50.86%), Olea europaea (12.67%), Moraceae (7.20%), Poaceae (5.99%), Quercus (5.35%), Urticaceae (3.79%) and Pinus (3.70%); almost all dominant pollen types in the city atmosphere were previously stated to be allergic. The main pollen season starting dates of common pollen types found were one or two weeks earlier than those of the surroundings. Many statistically significant correlations were found between daily pollen concentrations and daily meteorological parameters, e.g., Cupressaceae/Taxaceae Poaceae and Urticaceae pollen correlated negatively with mean temperature in both years, and in the hindermost two families daily pollen amounts significantly correlated with wind speed in the second year. Daily Olea europaea pollen concentration showed a significant negative correlation with the amount of total daily rainfall in the second year.  相似文献   

6.
The Pinus genus has an elevated pollen production and an anemophilous nature. Although considered to be hypoallergenic, numerous cases of allergies caused by Pinus pollen have been cited and different authors believe that its allergenicity should be studied in more depth. In the city of Vigo several patients have tested positive for Pinus pollen extracts in skin tests, some of them being mono-sensitive to such pollens. In order to ascertain the behaviour of Pinus pollen and its correlation to the main meteorological factors, we carried out an aerobiological study in the city of Vigo from 1995 to 1998 by using a Hirst active-impact volumetric sporetrap, model Lanzoni VPPS 2000, placed on the left bank of the Vigo estuary (42°14’15’’N, 8°43’30’’W). Pinus has high quantitative importance in the airborne pollen spectrum of the city. It is one of the best represented taxa constituting 13%–20% of the total annual pollen levels. The quantity of Pinus pollen present in the atmosphere of the city of Vigo throughout a year is 5751 grains (as the average for the sampled years), with a very long pollination period, from the middle of January until May. The maximum concentration was recorded in 1998 with 1105 grains/m3 on 3 March, a much greater value than those for the previous years. At the end of its pollination period there is usually a final increase in Pinus pollen concentrations coinciding with the pollination of Pinus silvestris, which are more abundant in mountainous areas far from the city. Received: 17 March 1999 / Revised: 20 December 1999 / Accepted: 20 December 1999  相似文献   

7.
Temperature is one of the main factors affecting the start of flowering in tree species that flower at the beginning of spring. Knowledge of the chilling and heat needs required by plants to overcome the period of dormancy enables us to determine the onset of pollination, which is of great importance to allergy sufferers. This study attempted to obtain behaviour models with a view to determining both the onset of the olive pollen season and daily pollen concentrations during the pollination period in Vigo. Monitoring was carried out using a Lanzoni VPPS 2000 pollen trap, from 1995 to 2002 inclusive.

Olea pollen is mainly detected during the spring, principally in May. Given the geographical location, the very limited presence of this tree in the study area and the low Olea pollen concentrations detected in northern Spain as a whole, the values recorded here in the atmosphere of Vigo are particularly striking. A strong correlation was observed between total quantity olive pollen collected over the season and rainfall recorded during the second fortnight in February. According to the proposed model, an average of 680 Chilling Hours (CH) are necessary to overcome the chill period and break the state of bud dormancy, and 481 Growth Degree Days (GDD) °C are needed to induce flowering. Models for predicting daily mean pollen concentrations combine temperature and the previous days' pollen concentrations as predictor variables to provide a high level of prediction.  相似文献   

8.
Woody plants in temperate regions, in order to prevent the water in their cells from freezing, interrupt their growth entering into a physiological state called "dormancy". Trees also have a heat requirement that must be fullfilled before actual growth is resumed and pollination occurs. The objective of this study is to ascertain the influence that a climatic parameter such as temperature exerts on Alnus, in order to identify the start of the dormancy period, its duration and the consequent heat requirement that triggers flowering in three European regions located at the same latitude. In this regard, we chose two areas in Spain (Vigo and Santiago de Compostela) and one in Italy (Perugia), since they have different temperature patterns, ranging from mild in the case of Vigo to cold in that of Perugia, including an intermediate temperature pattern (Santiago). Monitoring in the three stations was carried out by means of a 7-day Lanzoni VPPS 2000 pollen trap. Alnus began its pollen season between the second and third week of January in Spain, while in Italy it began during the first week of February. During the four years under study, in order to overcome the dormancy period, Perugia needed an average of 962 chilling hours (CH), Santiago 622 CH, and Vigo had the smallest chilling accumulation with only 460 CH. In the case of heat accumulation, we found that Perugia had the smallest requirement and Vigo the largest, thus Perugia needed an average of 42 (growth degree days) GDD, Santiago around 50 GDD and Vigo 62 GDD.  相似文献   

9.
The main aim of this work is to study the aerobiological behaviour of Poaceae pollen in three areas of central Spain (Aranjuez, Madrid and Toledo), all of which are similar from a geographical, climatic and biogeographical point of view, and they are located nearby one another. The samplings were carried out over a period of 4 years (2005–2008) using Hirst-type spore traps. Grass pollen is responsible for most spring allergic reactions in the pollen-sensitive population in central Spain, and they are very abundant in the atmosphere of this part of Iberian Peninsula. The average amount of this pollen type, as a percentage of the annual total pollen amount, is 7.4% in Aranjuez, 9.2% in Madrid and 11.3% in Toledo. Poaceae pollen is present in the atmosphere over a long period of time (February–October), and its maximum concentrations are detected during May and June (weeks 16–25). The city of Toledo has the highest annual concentrations of grass pollen (average 5,797 grains) with a great number of days exceeding the allergy thresholds proposed by the Spanish Aerobiology Network (REA). Madrid and Aranjuez present similar annual concentrations of grass pollen with values of 2,961 grains and 2,751 grains, respectively. The correlation analysis between the daily levels of grass pollen and meteorological variables of temperature and rainfall show a significant correlation, positive with temperature (maximum, mean and minimum) and negative with rainfall.  相似文献   

10.
In some areas, forests are being affected in diverse aspects such as structure, composition and biodiversity showing an increase or a decrease in the growth rates. Pinus is one of the most dominant genera in the forests of the Northern Hemisphere. This study analyzes the pine pollination patterns in 30 locations of Spain with an average of 21-year dataset. The aim is to evaluate possible changes in flowering intensity as well as in annual pollen production trends, according to the airborne pollen patterns. Annual Pollen Indices show three threshold values: (1) over 4000 grains per year in Catalonia, the Central System Mountains and Ourense (Galicia), (2) between 4000 and 1000 grains in central-south Spain and in the Balearic Islands, and (3) under 1000 in eastern Spain, Cartagena and the Canary Islands. Airborne pollen patterns were also influenced by Pinus species: The species located in the littoral and low land areas pollinated in the first pollination phase, from February to April, and the mountain pine species did in the second one, from April to June. The statistical analyses reveal increasing significant trends in 12 sites and significant decreasing trends in two. The Pinus flowering intensity is showing an earlier start and a delay in the end of the pollination period, thus a longer period of pollen in the air. This study suggests that the aerobiological monitoring is an interesting bio-indicator of changes happening in Pinus landscapes, and therefore explains the vulnerability of this genus in Spain.  相似文献   

11.
With a view to obtaining fuller information on airborne pollen content in the city of Havana, pollen sampling was carried out using a volumetric capture method, for the first time in Cuba. The study was conducted during 2 years (2011 and 2015). An annual pollen integral of 3414 grains was registered during the first year of study, whereas 5120 grains were observed along the 2015. Monthly maximum concentrations were recorded during April, June and July with total values close to 800 pollen grains. Of the 45 pollen types identified, Cecropia (38% of the total pollen identified in both years), Poaceae (18%), Urera type (9%) and Casuarina (6%) were particularly abundant. Although the main pollen types differed in terms of intradiurnal distribution, the highest concentrations were in all cases recorded between 0900 and 1300 hours. Maximum temperature was the variable most influencing airborne pollen counts in the air, with the exception of Casuarina. This paper sought to establish a methodological basis for the further development of aerobiological research in Cuba, thus helping to enhance the prevention and diagnosis of pollen allergies in the affected island population.  相似文献   

12.
The worldwide human population suffering from allergies continues to increase. Pollen grains are a major source of airborne allergens and significant cause of these diseases. Therefore, continuous monitoring of pollen grains released and transported in the air locally or regionally is required to determine the prevalence of various pollen types and identify intra-day and intra-annual seasonal variations over time. In this study, we developed the first pollen calendar for Mexico City, which includes a large variety of taxa, many of which show a long Main Pollen Season which may last throughout the year. The analysis and comparison of daily, monthly and annual values showed that the occurrence and abundance of the main types of aero-allergenic pollen in the atmosphere were species of Fraxinus, Cupressaceae and Alnus, which occur during the periods from December through March, whereas airborne pollens of several species of Poaceae and Urticaceae occurred throughout the year. The variation in pollen concentration showed that the greatest intra-diurnal variations occurred during the second half of the day. Regarding the relationship of pollen with bioclimatic factors, the increase in temperature favoured the presence of pollen in the air, whereas the increase in pluvial precipitation and relative humidity was associated with a decrease in airborne pollen. Large tracts of the Valley of Mexico have atmospheric conditions that are conducive to the accumulation of airborne particles, including pollen. Anomalous winds from the southeast dominated the surface wind variability during the first months of 2010. These patterns induced extreme values in wind convergence at the lower levels of the atmosphere, which resulted in high concentrations of pollen at our sampling site. We suggest that these conditions are related to the warm phase of the El Niño Southern Oscillation phenomenon (2009–2010).  相似文献   

13.
The aim of this study was to investigate aerobiological dynamics of pollen in the Mediterranean part of Croatia in the air of the city of Split. Pollen monitoring during the period from 2005 to 2013 was performed using a Hirst volumetric trap. Among the identified pollen of 50 taxa, 21 were allergenic. The average annual pollen index was 33,513. Three pollination seasons were established: early winter season dominated by tree pollen, spring–summer season dominated by herbaceous plants and summer–autumn season with lower amounts of Parietaria and Cupressaceae pollen. According to the abundance, the main taxa were: Cupressaceae, Parietaria/Urtica, Pinus, Quercus, Olea, Carpinus/Ostrya, Poaceae, Platanus and Ambrosia. The annual pollen index together with the daily maximum concentrations showed an upward trend for selected taxa during the study period. The highest monthly pollen index and the highest biodiversity were recorded in April and the lowest during the late autumn and winter months. The pollen calendar created for the city of Split confirmed Mediterranean features of the pollen spectrum. The longest pollen seasons were recorded for Cupressaceae, Parietaria/Urtica and Poaceae pollen types. The correlations between pollen concentrations and meteorological parameters were analyzed. The correlations between pollen concentrations and temperature were positive, while the humidity and the precipitation mostly showed negative influence.  相似文献   

14.
Aerobiological study of Fagaceae pollen in the middle-west of Spain   总被引:1,自引:0,他引:1  
The concentration of airborne Fagaceae pollen in Salamanca and the correlations with some meteorological parameters have been examined. Castanea and Quercus pollen grains were collected from 1998 to 2004 using a Burkard spore trap. No pollen grains of Fagus were found. The main pollen season took place in April and May for Quercus and in June and July for Castanea. Yearly variations on these dates could be related to the influence of meteorological factors such as rainfall, temperature, or dominant winds. The highest values appeared in the year 2004 for both taxa. The Fagaceae airborne content was mainly due to Quercus pollen, Castanea having a scarce pollen content in the city of Salamanca. The highest counts of Fagaceae pollen grains were found from mid May to early June due to the pollen behavior of oaks. The cumulative counts varied over the years, with a mean value of 2,384 pollen grains, a highest total of 6,036 in 2004 and a lowest total of 954 in 2001. No cyclic variations were observed. Daily pollen concentrations presented positive correlation with temperature, negative with relative humidity and slightly negative with rainfall using Spearman's correlation coefficients, only in the case of Castanea, because the particular hourly distribution of rainfall during the spring might affect Quercus airborne pollen.  相似文献   

15.
Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994–May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December–April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m–3 were recorded on 244 days and coincided with maximum temperatures of 28.1 ± 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearmans correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.  相似文献   

16.
Summary Trisomies of primary trisomic line B220 of Nicotiana sylvestris, which contain an extra chromosome shown to be a satellite chromosome, can be readily identified by their larger flower and leaf sizes. In seed-propagated species, the low transmission of the extra chromosome has prevented such plants from becoming agriculturally useful cultivars. In line B220, the transfer of the extra chromosome in 2n×2n+1 crosses was very low (13.5%), although n and n + 1 pollen grains were produced in equal quantities, as was confirmed by anther culture. This was due to the delayed development of n + 1 pollen grains, which are not at full maturity at the time of an thesis. The transfer of the extra chromosome in 2n×2n+1 crosses was increased by a 1 day delay in pollination and also by pollination of small pollen grains selected through nylon meshes. The delayed pollination increased the frequency of trisomics by 9%, whereas pollen selected by using 30 and 25 n nylon meshes induced an extremely high transfer of the extra chromosome, namely 51.9% and 70.4%, respectively. The observed frequencies of trisomics and tetrasomics in artificial selfing of 2n+1 plants with selected small pollen grains were lower than those expected from the data of reciprocal crosses between 2n and 2n+1 plants. This discrepancy seems to indicate a disadvantage of the n+1 pollen in fertilization due to the longer style of the trisomics relative to that of the diploids.  相似文献   

17.
Summary Whorls of sterile hairs inA. mediterranea show, at the moment of first appearance of hair initials, a spacing independent of number of hairs in the whorl but dependent on temperature. By changing the temperature at various times before appearance of hair initials, the pattern-forming event can be located at about 3–4 hours before initials become visible.The temperature dependence of spacing is like that of a chemical rate parameter: In (spacing)versus 1/T is linear. This suggests that the spacing is controlled by kinetic rather than structural factors, and correlates well with reaction-diffusion theory.Mathematical analysis and computer simulation have been used to show that the observed sequence of tip-flattening followed by whorl initiation can be interpreted in terms of published models for generation of dissipative structures by reaction and diffusion, and that at least two sequential processes must occur, the first of which shifts growth activity from extremity to circumference of the growing tip, permitting the second to operate around the circumference.Submitted to workshop on Morphogenesis inAcetabularia, Berlin (West), September 1980.  相似文献   

18.
A comparative study is presented of the pollen emissions of Urticaceae, Plantaginaceae and Poaceae, collected during 1995 with Hirst samplers (Burkard or Lanzoni) at five sites in western Spain: two Mediterranean sites located in the south (Huelva and Seville) and three Atlantic sites in the north (Orense, Vigo and Santiago). The annual pollen of Poaceae and Plantaginaceae collected in the Atlantic cities was found to be twice that in the Mediterranean sites, and the total amount of Urticaceae was higher at sites with an urban environment and subject to sea influence (Vigo, Huelva and Seville). At all the sites, the start of the main pollination periods (MPP) took place in the following order: Urticaceae, Plantaginaceae and Poaceae. It was also observed that the MPP of these three pollen types began earlier in Huelva and Seville, where the mean temperatures necessary for the beginning of pollen emissions are recorded very early. Regarding the variation in pollen concentrations throughout the year, Urticaceae presented peaks of maximum concentration in March (Huelva, Seville, Vigo and Orense) and June (Santiago); Plantaginaceae in March (south) and June (north); and Poaceae in May (south) and June–July (north). At northern sites, pollen emissions of Urticaceae and Plantaginaceae continued throughout the summer, while in the south they decreased considerably from May onwards. From the allergenic point of view, the indices of reactivity described for Urticaceae and Poaceae were exceeded more often at northern sites, in particular at Vigo. The meteorological conditions associated with periods of highest pollen emission of these three herbaceous types are a rise in mean temperature, light or absent rainfall, and abundant sunshine. The statistical correlations between pollen emissions and meteorological factors were not well-defined, either for the stations or for all the taxa, although they were clearer for the Atlantic cities and for Urticaceae.  相似文献   

19.
A preliminary study to compare Poaceae pollen data and to determine possible differences in pollen productivity and/or seasonality was performed at six locations in Catalonia (Spain): Barcelona, Bellaterra, Girona, Lleida, Manresa and Tarragona over a 6-year period (1996–2001). In the study area, Poaceae pollen grains are an important cause of respiratory allergies. Being present in the atmosphere all year round, the grass pollen concentrations are especially significant between May and August. The absolute peak occurs in June, except in Lleida where the peak comes earlier, possibly due to the early flowering of particular steppe species. Even if there are differences between different years, Girona and Lleida (inland locations) usually present the highest annual grass pollen index with, on average, 2177 pollen grains per year. Barcelona and Tarragona (the coastal sites) show the lowest levels, with around 1140 grass pollen grains per year. The respective local climates are very different, and pollen grains may originate in different grass species. A decreasing trend in the Poaceae annual pollen index was found over the period of the present study.  相似文献   

20.
Studies on Ambrosia pollen concentrations were carried out in Lublin in the period 1995–2004. The effects of a number of meteorological factors were analysed. In the first period of the study, the gravimetric method was used (1995–1999), while in the second period, the volumetric method was applied. The results show an increasing trend in the amount of airborne pollen. The Ambrosia pollen season in Lublin lasts from August to October. Over a period of 5 years, the highest number of pollen grains was recorded in September (53%), followed by August (44%) and October (3%). There were wide variations in annual totals. The annual total pollen counts was 167–1180 grains, with the peak value in 2002. Maximum daily pollen concentrations (56–312 pollen grains m−3) were recorded in the first half of August and in the first half of September. On the days when high Ambrosia pollen concentrations occurred, the temperature was above 21°C and the winds were mainly from the southeast, south and east. Maximum intradiurnal concentrations of pollen grains occurred in the afternoon hours. These results indicate, to some degree, that Ambrosia pollen is transported for long distances before descent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号