首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transferrin and iron uptake by rat reticulocytes   总被引:1,自引:0,他引:1  
The uptake of transferrin labeled with 3H and 59Fe by rat reticulocytes was studied to clarify the characteristics of the uptake process and intracellular transport. Rat reticulocytes took up transferrin in a saturable, time- and temperature-dependent manner. Scatchard analysis of the binding parameters indicated that transferrin molecules were bound to cell-surface receptors with high affinity. Monodansyl- cadaverine, a potent inhibitor of transglutaminase, reduced the amount of internalized transferrin but has no effect on the total amount of cell-associated transferrin, suggesting that transferrin is taken up by rat reticulocytes via receptor-mediated endocytosis. About 50% of the internalized 3H label was released from the cells after reincubation for 1 h in fresh medium. In contrast, no release of 59Fe label was observed. By immunoprecipitation and subsequent SDS-PAGE the released 3H-labeled product was identified as apotransferrin. Lysosomotropic reagents and a proton ionophore reduced the uptake of 59Fe. These results indicated that iron was removed from transferrin at an intracellular site in an acidic environment. The released iron was found not to associate with any intermediate ligands before it was utilized for heme synthesis in mitochondria.  相似文献   

2.
Rat liver ferritin is an effective donor of iron to rat hepatocytes. Uptake of iron from ferritin by the cells is partially inhibited by including apotransferrin in the culture medium, but not by inclusion of diferric transferrin. This inhibition is dependent on the concentration of apotransferrin, with a 30% depression in iron incorporation in the cells detected at apotransferrin concentrations above 40 micrograms/ml. However, apotransferrin does not interfere with uptake of 125I-labeled ferritin, suggesting that apotransferrin decreases retention of iron taken up from ferritin by hepatocytes by sequestering a portion of released iron before it has entered the metabolic pathway of the cells. The iron chelators desferrioxamine (100 microM), citrate (10 mM) and diethylenetriaminepentaacetate (100 microM) reduce iron uptake by the cells by 35, 25 and 8%, respectively. In contrast, 1 mM ascorbate increases iron accumulation by 20%. At a subtoxic concentration of 100 microM, chloroquine depresses ferritin and iron uptake by hepatocytes by more than 50% after 3 h incubation. Chloroquine presumably acts by retarding lysosomal degradation of ferritin and recycling of ferritin receptors.  相似文献   

3.
Freshly isolated rat heptocytes display about 36 700 high-affinity sites to which deferric transferrin may bind with an apparent association constant of 1.62·107 1·mol?1.Uptake of iron from diferric transferrin by hepatocytes is linear with time and is accelerated at increased differric transferrin concentrations.Apotransferrin is able to decrease net iron uptake by hepatocytes from diferric transferrin by a process not dependent on the apotransferrin concentrations used or on the rate at which the cells take up iron. Immunoprecipitation of the apotransferrin during these incubations indicates that iron is being released from the cells to apotransferrin at the same time as iron is being taken up from diferric transferrin. The simultaneous uptake and release of iron, and the insensitivity to apotransferrin concentration, suggest that the processes of iron uptake and release occur via separate mechanisms. The effect of apotransferrin on net retention of iron may be one way in which the in vivo distribution of iron between sites of storage and utilization is controlled.  相似文献   

4.
Of the different growth supplements used in chemically defined media, only transferrin is required for differentiation of tubules in the embryonic mouse metanephros. Since transferrin is an iron-carrying protein, we asked whether iron is crucial for tubulogenesis. Differentiation of metanephric tubules both in whole embryonic kidneys and in a transfilter system was studied. The tissues were grown in chemically defined media containing transferrin, apotransferrin, the metal-chelator complex ferric pyridoxal isonicotinoyl hydrazone (FePIH), and excesses of ferric ion. Although we found that apotransferrin was not as effective as iron-loaded transferrin in promoting proliferation in the differentiating kidneys, excess ferric ion at up to 100 microM, five times the normal serum concentration, could not promote differentiation or proliferation. However, iron coupled to the nonphysiological, lipophilic iron chelator, pyridoxal isonicotinoyl hydrazone, to form FePIH, could sustain levels of cell proliferation and tubulogenesis similar to those attained by transferrin. Thus, the role of transferrin in cell proliferation during tubulogenesis is solely to provide iron. Since FePIH apparently bypasses the receptor-mediated route of iron intake, the use of FePIH as a tool for investigating cell proliferation and its regulation is suggested.  相似文献   

5.
Turid Nilsen  Inge Romslo 《BBA》1984,766(1):233-239
Rat liver mitochondria accumulate iron mobilized from transferrin by pyrophosphate. The capacity of the mitochondria to accumulate iron is higher than the capacity of pyrophosphate to mobilize iron from transferrin: with ferric-iron-pyrophosphate as iron donor, iron uptake and heme synthesis are about 10-times that at corresponding concentrations of iron-transferrin plus pyrophosphate. Uptake of iron from ferric-iron-pyrophosphate depends on a functionary respiratory chain and involves reductive cleavage of the ferric-iron-pyrophosphate complex. Apotransferrin inhibits uptake of iron from ferric-iron-pyrophosphate by competing with the mitochondria for iron. The results focus on pyrophosphate as a possible candidate for intracellular iron transport.  相似文献   

6.
The relation of the growth-stimulating capacity of transferrin to its iron-transporting function was investigated in mouse hybridoma PLV-01 cells cultivated in a chemically defined medium. The cells were precultivated in protein-free medium supplemented either with ferric citrate (cells with a high intracellular iron level) or with iron-saturated transferrin (cells with a low intracellular iron level). Iron uptake was monitored after the application of 59Fe-labeled ferric citrate or pig transferrin. Cultivation of the cells at the optimum growth-stimulating concentration (500 microM) of ferric citrate resulted in an intracellular iron level about 100-fold higher than that of cells cultivated at the optimum transferrin concentration (5 micrograms/ml). Replacement of pig transferrin with bovine transferrin resulted in similar intracellular iron levels, but the growth-stimulating effect of bovine transferrin was more than one order of magnitude lower. Cells with a high intracellular iron level grew equally well when cultivated with iron-saturated transferrin or with apotransferrin + deferoxamine (2 micrograms/ml). On the other hand, cells with a low intracellular iron level required iron-saturated transferrin for further growth and apotransferrin + deferoxamine was ineffective. The results suggest that transferrin can act as a cell growth factor only in the iron-saturated form. However, several findings of this work indicate that supplying cells with iron cannot be accepted as the full explanation of the transferrin growth-stimulating effect.  相似文献   

7.
T T Loh 《Life sciences》1983,32(8):915-920
Measurement of the distribution of the four species of transferrin, viz, apotransferrin, diferric transferrin and the two monoferric transferrin, before and after incubation of iron-rich rabbit transferrin with rabbit reticulocytes showed that not all transferrin released from the cells were in the form of apotransferrin. Instead, a mixture of all four species of the protein was released with apotransferrin and C-terminal monoferric transferrin being the major fractions. The buffer solution containing 125I-labelled transferrin showed a continuous gain in percentages in apotransferrin and C-terminal monoferric transferrin after each incubation with reticulocytes. The N-terminal monoferric transferrin, however, remained unchanged suggesting that in the process of transferrin uptake by cells, the diferric transferrin releases its iron from the acid-labile site at N-domain first before the other iron from the acid-stable site.  相似文献   

8.
These studies assessed the fate and localization of incoming iron in 6-8-day rat reticulocytes during inhibition of heme synthesis by succinylacetone. Succinylacetone inhibition of heme synthesis increased iron uptake by increasing the rate of receptor recycling without affecting receptor KD for transferrin, transferrin uptake, or total receptor number. Its net effect was to amplify the number of surface transferrin receptors by recruitment of receptors from an intracellular pool. Despite increased iron influx in inhibited cells, only 2-4% of total incoming iron was diverted into ferritin. The majority of incoming iron (65-80%) in succinylacetone-inhibited cells was recovered in the stroma, where ultrastructural and enzymic analyses revealed it to be accumulated mainly in mitochondria. Intramitochondrial iron (70-75%) was localized mainly in the inner membrane fraction. Removal of succinylacetone restored heme synthesis, utilizing iron accumulated within mitochondria for its support. Thus, inhibition of heme synthesis in rat reticulocytes results in accumulation of incoming iron in a functional mobile intramitochondrial precursor iron pool used directly for heme synthesis. Under normal conditions, there is no significant intracellular or intramitochondrial iron pool in reticulocytes, which are therefore dependent upon continuous delivery of transferrin-bound iron to maintain heme synthesis. Ferritin plays an insignificant role in iron metabolism of reticulocytes.  相似文献   

9.
The effect of pH on the binding of apotransferrin and diferric transferrin to reticulocyte membrane receptors was investigated using rabbit transferrin and rabbit reticulocyte ghosts, intact cells and a detergent-solubilized extract of reticulocyte membranes. The studies were performed within the pH range 4.5–8.0. The binding of apotransferrin to ghosts and membrane extracts and its uptake by intact reticulocytes was high at pH levels below 6.5 but decreased to very low values as the pH was raised above 6.5. By contrast, diferric transferrin showed a high level of binding and uptake between pH 7.0 and 8.0 in addition to binding only slightly less than did apotransferrin at pH values below 6.5. It is proposed that the high affinity of apotransferrin for its receptor at lower pH values and low affinity at pH 7.0 or above allow transferrin to remain bound to the receptor when it is within acidic intracellular vesicles, even after loss of its iron, but also allow ready release from the cell membrane when it is exteriorized by exocytosis after iron uptake. The binding of transferrin to the receptor throughout the endocytosis-exocytosis cycle may protect it from proteolytic breakdown and aid in its recycling to the outer cell membrane  相似文献   

10.
A Bomford  S P Young  R Williams 《Biochemistry》1985,24(14):3472-3478
We have investigated the effect of increasing concentrations of methylamine (5, 10, and 25 mM) on the removal of iron from the two iron-binding sites of transferrin during endocytosis by human erythroleukemia (K562) cells. The molecular forms of transferrin released from the cells were analyzed by polyacrylamide gel electrophoresis in 6 M urea. Endocytosis of diferric transferrin was efficient since greater than 10% of surface-bound protein escaped endocytosis and was released in the diferric form. Although transferrin exocytosed from control cells had been depleted of 80% of its iron and contained 65-70% apotransferrin, iron-bearing species were also released (15% C-terminal monoferric; 10% N-terminal; 10% diferric). The ratio of the two monoferric species (C/N) was 1.32 +/- 0.12 (mean +/- SD; n = 4), suggesting that iron in the N-terminal site was more accessible to cells. In the presence of methylamine there was a concentration-dependent increase in the proportion of diferric transferrin release (less than 80% at 25 mM) and a concomitant decrease in apotransferrin. Small amounts of the iron-depleted species, especially apotransferrin, appeared before diferric transferrin, suggesting that these were preferentially released from the cells. The discrepancy between the proportions of the monoferric transferrin species noted with control cells was enhanced at all concentrations of methylamine, most markedly at 10 mM when the C/N ratio was 2.4. The N-terminal site of transferrin loses its iron at a higher pH than the C-terminal site, and so by progressively perturbing the pH of the endocytic vesicle we have increased the difference between the two sites observed with control cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The role of the two iron-binding sites of rat transferrin in the exchange of iron with cells has been assessed using urea polyacrylamide gel electrophoresis to separate and quantitate the four possible molecular species of transferrin generated during the incubation of 125I-labelled transferrin with rat reticulocytes and hepatocytes. Addition of diferric transferrin to reticulocytes led directly to the appearance of apotransferrin together with small and comparable amounts of the two monoferric transferrins. After 2 h 44.8% of the iron had been removed by the cells, and of the iron-depleted transferrin 71.8% was apotransferrin, the remainder being monoferric transferrin, 16.1% with N-terminal iron and 12.1% with C-terminal iron. A similar pattern emerged with hepatocytes, but the rate of iron removal was slower and the proportion of apotransferrin generated was lower. After 4 h 10.9% of the iron had been removed from the transferrin and the distribution of the iron-depleted protein was: apotransferrin 26.9% and monoferric (N-terminal) 39.2%, (C-terminal) 33.9%. The appearance of apotransferrin during each incubation and the generation of both monoferric transferrins suggest that both cell types are able to remove iron from differic transferrin in pairwise fashion and that they do not appreciably distinguish between the two iron-binding sites of the protein. Release of iron from hepatocytes to apotransferrin lead to the appearance of both monferric species and then to increasing amounts of diferric transferrin. The process of iron release did not seem to distinguish between the vacant iron-binding sites of transferrin.  相似文献   

12.
Effect of iron chelators on the transferrin receptor in K562 cells   总被引:16,自引:0,他引:16  
Delivery of iron to K562 cells by diferric transferrin involves a cycle of binding to surface receptors, internalization into an acidic compartment, transfer of iron to ferritin, and release of apotransferrin from the cell. To evaluate potential feedback effects of iron on this system, we exposed cells to iron chelators and monitored the activity of the transferrin receptor. In the present study, we found that chelation of extracellular iron by the hydrophilic chelators desferrioxamine B, diethylenetriaminepentaacetic acid, or apolactoferrin enhanced the release from the cells of previously internalized 125I-transferrin. Presaturation of these compounds with iron blocked this effect. These chelators did not affect the uptake of iron from transferrin. In contrast, the hydrophobic chelator 2,2-bipyridine, which partitions into cell membranes, completely blocked iron uptake by chelating the iron during its transfer across the membrane. The 2,2-bipyridine did not, however, enhance the release of 125I-transferrin from the cells, indicating that extracellular iron chelation is the key to this effect. Desferrioxamine, unlike the other hydrophilic chelators, can enter the cell and chelate an intracellular pool of iron. This produced a parallel increase in surface and intracellular transferrin receptors, reaching 2-fold at 24 h and 3-fold at 48 h. This increase in receptor number required ongoing protein synthesis and could be blocked by cycloheximide. Diethylenetriaminepentaacetic acid or desferrioxamine presaturated with iron did not induce new transferrin receptors. The new receptors were functionally active and produced an increase in 59Fe uptake from 59Fe-transferrin. We conclude that the transferrin receptor in the K562 cell is regulated in part by chelatable iron: chelation of extracellular iron enhances the release of apotransferrin from the cell, while chelation of an intracellular iron pool results in the biosynthesis of new receptors.  相似文献   

13.
In many types of cells the synthesis of delta-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from our laboratory with reticulocytes suggest that the rate of iron uptake from transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels of Fe-Tf (20 microM). Furthermore, in induced Friend cells 100 microM Fe-SIH stimulated 2-14C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. In contrast, Fe-SIH, even when added in high concentrations, did not stimulate heme synthesis in uninduced Friend cells but was able to do so as early as 24 to 48 h following induction. In addition, contrary to previous results with rabbit reticulocytes, Fe-SIH also stimulated globin synthesis in induced Friend cells above the level seen with saturating concentrations of transferrin. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells.  相似文献   

14.
Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular "free" heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation. Hence in man the regulatory process affects generation of the first committed precursor of porphyrin biosynthesis by delta-aminolevulinate synthetase, whereas in the rabbit separate regulatory mechanisms exist which control the incorporation of iron into protoporphyrin IX.  相似文献   

15.
Free iron is capable of stimulating the production of free radicals which cause oxidative damage such as lipid peroxidation. One of the most important mechanisms of antioxidant defense is thus the sequestration of iron in a redox-inactive form by transferrin. In diabetes mellitus, increased oxidative stress and lipid peroxidation contribute to chronic complications but it is not known if this is related to abnormalities in transferrin function. In this study we investigated the role of transferrin concentration and glycation. The antioxidant capacity of apotransferrin to inhibit lipid peroxidation by iron-binding decreased in a concentration-dependent manner from 89% at > or = 2 mg/ml to 42% at 0.5 mg/ml. Pre-incubation of apotransferrin with glucose for 14 days resulted in a concentration-dependent increase of glycation: 1, 5 and 13 micromol fructosamine/g transferrin at 0, 5.6 and 33.3 mmol/l glucose respectively, p < 0.001. This was accompanied by a decrease in the iron-binding antioxidant capacity of apotransferrin. In contrast, transferrin glycation by up to 33.3 mmol/l glucose did not affect chemiluminescence-quenching antioxidant capacity, which is iron-independent. Colorimetric evaluation of total iron binding capacity in the presence of an excess of iron (iron/transferrin molar ratio = 2.4) also decreased from 0.726 to 0.696 and 0.585mg/g transferrin after 0, 5.6 and 33.3 mmol/l glucose, respectively, p < 0.01. In conclusion, these results suggest that lower transferrin concentration and its glycation can, by enhancing the pro-oxidant effects of iron, contribute to the increased lipid peroxidation observed in diabetes.  相似文献   

16.
Growing human choriocarcinoma BeWo b24 cells contain 1.5 X 10(6) functional cell surface transferrin binding sites and 2.0 X 10(6) intracellular binding sites. These cells rapidly accumulate iron at a rate of 360,000 iron atoms/min/cell. During iron uptake the transferrin and its receptor recycle at least each 19 min. The accumulated iron is released from the BeWo cells at a considerable rate. The time required to release 50% of previously accumulated iron into the extracellular medium is 30 h. This release process is cell line-specific as HeLa cells release very little if any iron. The release of iron by BeWo cells is stimulated by exogenous chelators such as apotransferrin, diethylenetriaminepenta-acetic acid, desferral, and apolactoferrin. The time required to release 50% of the previously accumulated iron into medium supplemented with chelator is 15 h. In the absence of added chelators iron is released as a low molecular weight complex, whereas in the presence of chelator the iron is found complexed to the chelator. Uptake of iron is inhibited by 250 microM primaquine or 2.5 microM monensin. However, the release of iron is not inhibited by these drugs. Intracellular iron is stored bound to ferritin. A model for the release of iron by BeWo cells and its implication for transplacental iron transport is discussed.  相似文献   

17.
Nonheme iron accumulates in CNS tissue after ischemic and hemorrhagic insults and may contribute to cell loss. The source of this iron has not been precisely defined. After blood-brain barrier disruption, CNS cells may be exposed to plasma concentrations of transferrin-bound iron (TBI), which exceed that in the CSF by over 50-fold. In this study, the hypothesis that these concentrations of TBI produce cell iron accumulation and neurotoxicity was tested in primary cortical cultures. Treatment with 0.5-3 mg/ml holotransferrin for 24 h resulted in the loss of 20-40% of neurons, associated with increases in malondialdehyde, ferritin, heme oxygenase-1, and iron; transferrin receptor-1 expression was reduced by about 50%. Deferoxamine, 2,2′-bipyridyl, Trolox, and ascorbate prevented all injury, but apotransferrin was ineffective. Cell TBI accumulation was significantly reduced by deferoxamine, 2,2′-bipyridyl, and apotransferrin, but not by ascorbate or Trolox. After treatment with 55Fe-transferrin, approximately 40% of cell iron was exported within 16 h. Net export was increased by deferoxamine and 2,2′-bipyridyl, but not by apotransferrin. These results suggest that downregulation of transferrin receptor-1 expression is insufficient to prevent iron-mediated death when neurons are exposed to plasma concentrations of TBI. Chelator therapy may be beneficial for acute CNS injuries associated with loss of blood-brain barrier integrity.  相似文献   

18.
Growing HepG2 cells contain 50,000 functional surface transferrin-binding sites (Ciechanover, A., Schwartz, A.L., and Lodish, H.F. (1983) Cell 32,267-275) and 100,000 intracellular sites. At saturating concentrations of [59Fe]transferrin, and under conditions in which protein synthesis is blocked, iron uptake is linear for several hours at a rate of 9,500 transferrin molecules/cell/min. Thus, each receptor must recycle a ligand, on the average, each 15.8 min. Surface-bound transferrin is rapidly endocytosed (t1/2 = 3.5 min). All of the iron remains within the cell, while the apotransferrin is rapidly (t1/2 = 5.0 min) secreted into the medium. Previously, we showed (Dautry-Varsat, A., Ciechanover, A., and Lodish, H.F. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2258-2262) that exposure of a ferrotransferrin-receptor complex to medium of pH less than 5.0 results in dissociation of iron, but that apotransferrin remains bound to its receptor. If the pH is raised to 7.0, such as would occur when an acidic intracellular vesicle fuses with the plasma membrane, apotransferrin is very rapidly dissociated (t1/2 = 17 s at 37 degrees C) from its receptor. Taken together, these results indicate that transferrin remains bound to its receptor throughout the endocytic cycle. In the present study, we have directly measured all the kinetic parameters involved in the transferrin receptor cycle. They are similar to those of the asialoglycoprotein receptor in the same cell line, and can be described by a simple kinetic model. In the presence of lysosomotropic agents, ferrotransferrin binds to its surface receptor and is internalized normally. However, iron is not dissociated from transferrin, and ferrotransferrin recycles back to the cell surface and is secreted into the medium. We conclude that the low pH in endocytic vesicles is essential for the dissociation of iron from transferrin and its delivery to the cell, but is not required for recycling of transferrin, and presumably of its receptor.  相似文献   

19.
Free iron is capable of stimulating the production of free radicals which cause oxidative damage such as lipid peroxidation. One of the most important mechanisms of antioxidant defense is thus the sequestration of iron in a redox-inactive form by transferrin. In diabetes mellitus, increased oxidative stress and lipid peroxidation contribute to chronic complications but it is not known if this is related to abnormalities in transferrin function. In this study we investigated the role of transferrin concentration and glycation. The antioxidant capacity of apotransferrin to inhibit lipid peroxidation by iron-binding decreased in a concentration-dependent manner from 89% at &lt;formula&gt;≥2 mg/ml&lt;/formula&gt; to 42% at 0.5 mg/ml. Pre-incubation of apotransferrin with glucose for 14 days resulted in a concentration-dependent increase of glycation: 1, 5 and 13 μmol fructosamine/g transferrin at 0, 5.6 and 33.3 mmol/l glucose respectively, p&lt;0.001. This was accompanied by a decrease in the iron-binding antioxidant capacity of apotransferrin. In contrast, transferrin glycation by up to 33.3 mmol/l glucose did not affect chemiluminescence-quenching antioxidant capacity, which is iron-independent. Colorimetric evaluation of total iron binding capacity in the presence of an excess of iron (iron/transferrin molar ratio=2.4) also decreased from 0.726 to 0.696 and 0.585 mg/g transferrin after 0, 5.6 and 33.3 mmol/l glucose, respectively, p&lt;0.01. In conclusion, these results suggest that lower transferrin concentration and its glycation can, by enhancing the pro-oxidant effects of iron, contribute to the increased lipid peroxidation observed in diabetes.  相似文献   

20.
The ability of a large number of cellular metabolites to release iron from transferrin was investigated by measuring the rate at which they could mediate iron exchange between two types of transferrin. Rabbit transferrin labelled with 59Fe was incubated with human apotransferrin in the presence of the metabolites. After varying periods of incubation the human transferrin was separated from the rabbit transferrin by immunoprecipitation. GTP, 2,3-diphosphoglycerate, ATP, ADP and citrate produced the most rapid exchange of iron between the two types of transferrin, but many other compounds showed some degree of activity. Iron exchange mediated by the organic phosphates had the characteristics of a single first-order reaction and was sensitive to changes of incubation temperature and pH. The activation energy for the exchange reaction was approx. 13 kcal/mol. The rate of iron exchange from the oxalate - iron - transferrin complex was much lower than from bicarbonate - iron - transferrin. It is concluded that several organic phosphates have the capacity of releasing iron from transferrin. These compounds may represent the means by which the iron is released during the process of cellular uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号