首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies indicate the presence of hydroxyl radical (OH·) as well as its involvement in the myocardial reperfusion injury. A transition metal-like iron is necessary for the conversion of superoxide anion (O2 ) to a highly reactive and cytotoxic hydroxyl radical (OH·). In the present study, we have examined the generation of OH· and free iron in reperfused hearts following either normothermic (37°C) or hypothermic ischemia (5°C). Employing the Langendorff technique, isolated rat hearts were subjected to global ischemia for 30 min at 37°C or 5°C and were then reperfused for 15 min at 37°C. The results of the study suggest that both the OH· generation in myocardium and free iron release into perfusate were significantly lower in hearts made ischemic at 5°C as compared to 37°C. Release of myoglobin and lactic acid dehydrogenase into perfusate also followed a similar pattern. Furthermore, in in vitro studies, chemically generated O2 at 5°C caused a significantly lower rate of oxidation of oxymyoglobin as well as generation of OH° and free iron as compared to 37°C. These results suggest that (1) reperfusion of hypothermic ischemic heart is associated with a reduction in the generation of OH· and cellular damage compared to that of normothermic ischemic heart, and (2) myoglobin, an intracellular protein, is a source of free iron and plays a role in the reperfusion injury mediated by free radicals.Abbreviations OH· hydroxyl radical - O2 superoxide anion - ODFR oxygen-derived free radicals - KHB Krebs-Henseleit buffer - LDH lactate hydrogenase - SOD superoxide dismutase  相似文献   

2.
The aromatic amine N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) reacted directly with oxyhemoglobin in a catalytic reaction resulting in formation of ferrihemoglobin. The second order rate constant of the reaction was found to be 5.5 M-1.s-1. The stable Wurster's blue radical cation produced ferrihemoglobin at rates greater 10(3) M-1.s-1, i.e. more than two orders of magnitude faster than the parent amine. In contrast to the reactions of aminophenols with hemoglobin, free hydrogen peroxide was formed which additionally contributed to ferrihemoglobin formation. Since ferrihemoglobin formation proceeded by two orders of magnitude faster than autoxidation of TMPD, oxyhemoglobin itself acted as an oxidase/peroxidase resulting in electron abstraction from the amino alone pair electrons.  相似文献   

3.
Human fetal hemoglobin assayed in a peroxidizing system shows an increased prooxidative effect when compared to human adult hemoglobin. This effect is related only to the oxyhemoglobin form since both fetal and adult methemoglobins did not show any prooxidative effect. The prooxidative effect of the oxyhemoglobin form is ascribed to its increased sensitivity to form superoxide free radicals when transformed to the methemoglobin form. It is proposed that the structure of the heme pocket of fetal oxyhemoglobin enhances free radical release when compared to adult oxyhemoglobin. This difference may be important in some hematological disorders presented by the newborn.  相似文献   

4.
Free radicals and myocardial ischemia: overview and outlook   总被引:5,自引:0,他引:5  
Much evidence suggests that free radicals and active oxygen species derived from molecular oxygen (superoxide, hydrogen peroxide, and hydroxyl radical) contribute to the tissue injury which accompanies myocardial ischemia and reperfusion. Three possible sources have been identified for the production of active oxygen species: the enzyme xanthine oxidase; the activated polymorphonuclear leukocyte; the disrupted mitochondrial electron transport system. These sources may be mutually interactive. Once triggered, they may lead to the loss of antioxidant enzymes and to the release of iron, both of which are exacerbatory events.  相似文献   

5.
Trace elements play an important role in oxygen metabolism and therefore in the formation of free radicals. Whereas iron and copper are usually the main enhancers of free radical formation, other trace elements, such as zinc and selenium, protect against the harmful effects of these radicals. To investigate the different protective mechanisms of zinc on radical formation, we examined the effects of added zinc and copper on superoxide dismutase activity. We also studied the effects of copper and iron on xanthine oxidase activity and on the Haber-Weiss cycle (iron, superoxide, and hydrogen peroxide), which generates hydroxyl radicals in vitro. The hypoxanthine/xanthine oxidase radical generating system contained a variety of different physiological ligands for binding the iron. This study confirmed the inhibitory effect of copper on xanthine oxidase activity. Moreover, it demonstrated that zinc inhibited hydroxyl radical formation when this formation was catalyzed by a citrate-iron complex in the hypoxanthine/xanthine oxidase reaction. Finally, human blood plasma inhibited citrate-iron-dependent hydroxyl radical formation under the same conditions. Although trace elements seemed responsible for this antioxidant activity of plasma, it is likely that zinc played no role as a plasma antioxidant. Indeed, calcium appeared to be responsible for most of this effect under our experimental conditions.  相似文献   

6.
S R Ribarov  L C Benov  V I Marcova 《Blut》1983,46(4):217-225
The mechanism of iron toxicity in iron overloaded patients is not well established. A hypothesis was put forward that free radical processes are involved. Our earlier study indicates that iron-induced hemolysis is preceded by peroxidation of the membrane lipids. In the present work the simultaneous effect of iron and hemoglobin on lipid peroxidation was studied. It was found that in hemoglobin-containing liposome suspensions Fe2+ in concentrations above 10(-5) M inhibits the peroxidation, while Fe3+ drastically potentiates it, with concomitant transformation of oxyhemoglobin to methemoglobin. The experiments with scavengers of activated oxygen indicate superoxide anion radical (O-.2), hydroxyl radical (OH.) and singlet oxygen (1O2) participation. The possible mechanism of the phenomenon is discussed. A conclusion is drawn that the toxic effect of Fe3+ may be associated not only with iron--membrane interaction, but also with increased methemoglobin formation and O-.2 release.  相似文献   

7.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

8.
Oxygen free radicals generated by xanthine oxidase are able to depolymerize hyaluronic acid in the presence of ferritin-bound iron. This suggests that ferritin can catalyse the Haber-Weiss reaction, leading to the formation of highly damaging hydroxyl radicals.  相似文献   

9.
《Free radical research》2013,47(5):291-298
An excess of copper is the cause of hemolysis in a number of clinical conditions. Incubation of human erythrocyte (RBC) suspensions with copper (II) causes the formation of methemoglobin, lipid peroxidation and hemolysis.

A new variant of the thiobarbituric acid (TBA) method, which minimizes the formation of interfering chromophores, was used to detect lipid peroxidation. Lipid peroxidation precedes hemolysis and the antioxidant vitamins C and E, which inhibit lipid peroxidation, also inhibit hemolysis. Consequently lipid peroxidation appears to be the cause of RBC destruction. Lipid peroxidation arises mostly from the oxidation of oxyhemoglobin by copper as it is inhibited in RBCs with carbon monoxyhemoglobin or methemoglobin. A direct interaction of copper with the red cell membrane seems to play only a minor role. Copper effects depend on the presence of free SH groups. Lipid peroxidation is probably initiated by activated forms of oxygen as it is increased by an inhibitor of catalase and reduced by hydroxyl radical scavengers. With higher copper concentrations hemolysis is greater: its mechanism appears different as lipid peroxidation is smaller but hemoglobin alterations, namely precipitation, are more pronounced.  相似文献   

10.
Excessive release of hemoglobin from red blood cells markedly disturbs the health status of patients due to cytotoxic effects of free hemoglobin and heme. The latter component is able to initiate novel hemolytic events in unperturbed red blood cells. We modeled this process by incubation of ferric protoporphyrin IX with freshly isolated red blood cells from healthy volunteers. The heme-induced hemolysis was inhibited in a concentration-dependent manner by the chlorite-based drug WF10, whereby the hemolysis degree was totally abolished at a molar ratio of 1:2 between chlorite and heme. Upon incubation of heme with WF10, the ultraviolet-visible spectrum changed, whereas the release of iron from heme and the appearance of fluorescent breakdown products of the porphyrin ring were negligible at this ratio, but increased with increasing excess of chlorite over heme. Thus, inhibition of hemolysis by WF10 takes already place at those chlorite concentrations, where no degradation of the porphyrin ring occurs. As WF10 is applied in form of an intravenous infusion to patients with severe inflammatory states, these data support the hypothesis that the beneficial WF10 effects are closely associated with inactivation of free heme.  相似文献   

11.
An excess of copper is the cause of hemolysis in a number of clinical conditions. Incubation of human erythrocyte (RBC) suspensions with copper (II) causes the formation of methemoglobin, lipid peroxidation and hemolysis.

A new variant of the thiobarbituric acid (TBA) method, which minimizes the formation of interfering chromophores, was used to detect lipid peroxidation. Lipid peroxidation precedes hemolysis and the antioxidant vitamins C and E, which inhibit lipid peroxidation, also inhibit hemolysis. Consequently lipid peroxidation appears to be the cause of RBC destruction. Lipid peroxidation arises mostly from the oxidation of oxyhemoglobin by copper as it is inhibited in RBCs with carbon monoxyhemoglobin or methemoglobin. A direct interaction of copper with the red cell membrane seems to play only a minor role. Copper effects depend on the presence of free SH groups. Lipid peroxidation is probably initiated by activated forms of oxygen as it is increased by an inhibitor of catalase and reduced by hydroxyl radical scavengers. With higher copper concentrations hemolysis is greater: its mechanism appears different as lipid peroxidation is smaller but hemoglobin alterations, namely precipitation, are more pronounced.  相似文献   

12.
Ascorbate reacts with methemoglobin to produce reactive oxygen species, most probably hydroxyl radicals. The main features of this system are: a) disappearance of ascorbate; b) consumption of oxygen with an ascorbate/O2 stoichiometry of 2:1; c) requirement of unliganded heme iron; d) formation of H2O2. The proposed mechanism involves an ascorbate-mediated interconversion of methemoglobin and oxy-hemoglobin, resulting in the production of H2O2. This product is decomposed by hemoglobin to produce hydroxyl radicals according to a Fenton-like reaction in which ascorbate recycles methemoglobin to hemoglobin. Alternative pathways of formation and of decomposition of H2O2 in this system appear to play a minor role.  相似文献   

13.
1. A mixture of NADPH and ferrodoxin reductase is a convenient way of reducing adriamycin in vitro. Under aerobic conditions the adriamycin semiquinone reacts rapidly with O2 and superoxide radical is produced. 2. Superoxide generated either by adriamycin:ferredoxin reductase or by hypoxanthine: xanthine oxidase can promote the formation of hydroxyl radicals in the presence of soluble iron chelates. 3. Hydroxyl radicals produced by a hypoxanthine:xanthine oxidase system in the presence of an iron chelate cause extensive fragmentation in double-stranded DNA. Protection is offered by catalase, superoxide dismutase or desferrioxamine. 4. Addition of double-stranded DNA to a mixture of adriamycin, ferredoxin reductase, NADPH and iron chelate inhibits formation of both superoxide and hydroxyl radicals. This is not due to direct inhibition of ferredoxin reductase and single-stranded DNA has a much weaker inhibitory effect. It is concluded that adriamycin intercalated into DNA cannot be reduced.  相似文献   

14.
Kinetics of blood deoxygenation was studied during acute hypoxia induced by subcutaneous administration of sodium nitrite using polarographic method. Plasma oxygen tension remained unaltered as the dose of sodium nitrite increased, while the dynamics of oxygen release was dose-dependent. The constant of oxyhemoglobin deoxygenation rate proved to vary with blood deoxygenation. The nitrite-induced deceleration of oxyhemoglobin deoxygenation was due to the inactivation of a fraction of hemoglobin as well as to the increased hemoglobin oxygen affinity and possible changes in the oxygen permeability of erythrocyte membranes during acute methemoglobinemia.  相似文献   

15.
A mixture of NADPH and ferredoxin reductase is a convenient way of reducing adriamycin in vitro. Under aerobic conditions the adriamycin semiquinone reacts rapidly with O2 and superoxide radical is produced. Superoxide generated either by adriamycin:ferredoxin reductase or by hypoxanthine:xanthine oxidase can promote the formation of hydroxyl radicals in the presence of soluble iron chelates. Hydroxyl radicals produced by a hypoxanthine:xanthine oxidase system in the presence of an iron chelate cause extensive fragmentation in double-stranded DNA. Protection is offered by catalase, superoxide dismutase or desferrioxamine. Addition of double-stranded DNA to a mixture of adriamycin, ferredoxin reductase, NADPH and iron chelate inhibits formation of both superoxide and hydroxyl radicals. This is not due to direct inhibition of ferredoxin reductase and single-stranded DNA has a much weaker inhibitory effect. It is concluded that adriamycin intercalated into DNA cannot be reduced.  相似文献   

16.
Release of hemoglobin into plasma is a physiological phenomenon associated with intravascular hemolysis. In plasma, stable haptoglobin-hemoglobin complexes are formed and these are subsequently delivered to the reticulo-endothelial system by CD163 receptor-mediated endocytosis. Heme arising from the degradation of hemoglobin, myoglobin, and of enzymes with heme prosthetic groups could be delivered in plasma. Albumin, haptoglobin, hemopexin, and high and low density lipoproteins cooperate to trap the plasma heme, thereby ensuring its complete clearance. Then hemopexin releases the heme into hepatic parenchymal cells only after internalization of the hemopexin-heme complex by CD91 receptor-mediated endocytosis. Moreover, alpha1-microglobulin contributes to heme degradation by a still unknown mechanism, with the concomitant formation of heterogeneous yellow-brown kynurenine-derived chromophores which are very tightly bound to amino acid residues close to the rim of the lipocalin pocket. During hemoglobin synthesis, the erythroid alpha-chain hemoglobin-stabilizing protein specifically binds free alpha-hemoglobin subunits limiting the free protein toxicity. Although highly toxic because capable of catalyzing free radical formation, heme is also a major and readily available source of iron for pathogenic organisms. Gram-negative bacteria pick up the heme-bound iron through the secretion of a hemophore that takes up either free heme or heme bound to heme-proteins and transports it to a specific receptor, which, in turn, releases the heme and hence iron into the bacterium. Here, hemoglobin and heme trapping mechanisms are summarized.  相似文献   

17.
NADPH-cytochrome P-450 reductase-catalyzed reduction of paraquat promoted the release of iron from ferritin. Aerobically, iron release was inhibited approximately 60% by superoxide dismutase, whereas xanthine oxidase-dependent iron release was inhibited nearly 100%. This suggests that both superoxide and the paraquat cation radical can catalyze the release of iron from ferritin. Accordingly, under anaerobic conditions, the paraquat radical mediated a very rapid, complete release of iron from ferritin. Similarly, the cation free radicals of the closely related chemicals, diquat and benzyl viologen, also promoted iron release. ESR studies demonstrated that electron transfer from the paraquat cation radical to ferritin accounts for the reductive release of iron. The ferritin structure was not altered by exposure to the paraquat radical and also retained its ability to re-incorporate iron. These studies indicate that release of iron from ferritin may be a common feature contributing to free radical-mediated toxicities.  相似文献   

18.
The release of D-[3H]aspartate, [3H]noradrenaline, and of endogenous glutamate and aspartate from rat hippocampal slices was significantly increased when the slices were incubated with xanthine oxidase plus xanthine to produce superoxide and hydroxyl free radicals locally. Allopurinol, a specific xanthine oxidase inhibitor, the hydroxyl-radical scavenger D-mannitol, or the superoxide-radical scavenger system formed by superoxide dismutase plus catalase prevented this release. These results suggest that endogenous excitatory amino acids are released consequent to the formation of free radicals. The excess of glutamate and aspartate released by this mechanism could be one of the factors contributing to the death of neurons after anoxic or ischemic injuries.  相似文献   

19.
The reactions between 4-dimethylaminophenol and hemoglobin were studied with 4-dimethylaminophenol 14C-labelled either in the methyl groups or in C1 of the ring.In the absence of oxygen 4-dimethylaminophenol was stable in red cell suspensions or hemoglobin solutions. In the presence of oxygen oxyhemoglobin rapidly oxidized 4-dimethylaminophenol. The following reaction products were found in incubates of 4-dimethylaminophenol with red cells or hemoglobin: ferrihemoglobin, formaldehyde, dimethylamine, and hemoglobin with derivatives of 4-dimethylaminophenol covalently bound to its protein moiety.4-Dimethylaminophenol catalytically transferred electrons from ferrohemoglobin to oxygen. It was oxidized by oxyhemoglobin, and oxidized 4-dimethylaminophenol was reduced to 4-dimethylaminophenol by ferrohemoglobin with formation of ferrihemoglobin. Hydrolysis of oxidized 4-dimethylaminophenol, N,N-dimethylquinonimine, and its covalent binding to globin limited the catalytic ferrihemoglobin formation by 4-dimethylaminophenol to an average between 50 and 100 electron transfers per molecule of 4-dimethylaminophenol, when 4-dimethylaminophenol concentration was low and hemoglobin concentration was high. Since 4-dimethylaminophenol reduced ferrihemoglobin to ferrohemoglobin, though more slowly than the catalytic cycle produced it, the increase in ferrihemoglobin content does not indicate the amount of ferrihemoglobin produced.In red cell suspensions at 37° 4-dimethylaminophenol, 0.58 mM, disappeared in 10 min, but dimethylamine continued to be formed, obviously from protein-bound derivative(s) of 4-dimethylaminophenol.The rate of autoxidation of 4-dimethylaminophenol was found to be much lower that the rate of oxidation of 4-dimethylaminophenol by oxyhemoglobin. After autoxidation of 4-dimethylaminophenol several products were isolated and identified which were not detected in incubates of 4-dimethylaminophenol with oxyhemoglobin, namely hydroquinone, 4-methylaminophenol, 4-aminophenol, 2-dimethylamino-1, 4-benzoquinone, a purple and a yellow dye.Nuclear magnetic resonance (NMR), mass spectroscopy, and synthesis from 1,4-benzoquinone and 4-methylaminophenol proved the purple dye to be 2-(N- methyl-N-(p-hydroxyphenyl)-amino-1,4-benzoquinone.The structure of the yellow dye, which is produced also by oxidation of the purple dye with hydrogen peroxide, was not proved unequivocally. IR, NMR spectra and the product of hydrogenation with Pd-charcoal and acetylation showed the compound to be an epoxide of 2-(N-methyl-N-(p-hydroxyphenyl)-amino)-benzoquinone.  相似文献   

20.
Free radicals have been suggested to be largely involved in the genesis of ischemic brain damage, as shown in the protective effects of alpha-phenyl-N-tert-butyl nitrone (PBN), a spin trapping agent, against ischemic cerebral injury. In the present study, the effects of PBN as well as MCI-186, a newly-developed free radical scavenger, and oxypurinol, an inhibitor of xanthine oxidase, were evaluated in a rat transient middle cerebral aretery (MCA) occlusion model to clarify the possible role of free radicals in the reperfusion injury of brain. The volume of cerebral infarction, induced by 2-h occlusion and subsequent 2-h reperfusion of MCA in Fisher-344 rats, was evaluated. The administration of PBN (100 mg/kg) and MCI-186 (100 mg/kg) just before reperfusion of MCA significantly reduced the infarction volume. In contrast, oxypurinol (100 mg/kg) failed to show any preventive effect on the infarction. These results suggest that free radical formation is involved in the cerebral damage induced by ischemia-reperfusion of MCA, and that hydroxyl radical is responsible for the reperfusion injury after transient focal brain ischemia. It is also suggested that xanthine oxidase is not a major source of free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号