首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 7 毫秒
1.
利用抑制差减杂交技术分离马铃薯晚疫病抗性相关基因   总被引:15,自引:1,他引:15  
田振东  柳俊  谢从华 《遗传学报》2003,30(7):597-605
以晚疫病病原菌混合小种接种处理48h的马铃薯水平抗性材料(R-gene-free)叶片为目的材料,以未处理材料作为对照,用抑制差减杂交技术构建了一个富集晚疫病抗性相关基因的差减文库。应用反向Northern技术对840个克隆进行斑点杂交筛选,筛选出150个病原诱导后信号明显增强的克隆。26个片段测序结果表明:部分片段基因功能与抗病性明显相关。7个差异表达片段与GenBank EST数据库中已有晚疫病原诱导马铃薯叶片得到的EST有很高同源性(达95%~100%);部分片段核苷酸或氨基酸序列分别与番茄、烟草、拟南芥等的EST序列或氨基酸序列有较高同源性;另有4个基因片段在GenBank EST数据库中未找到明显的同源序列,可能为新发现的基因片段。  相似文献   

2.
3.
Chitinase (EC 3.2.1.14) and β-1,3-glucanase (EC 3.2.1.39) activities in the flavedo of grapefruit ( Citrus paradisi cv. Marsh) were determined at 17 times during the course of fruit development. Chitinase activity is initially high in flavedo, but drops rapidly and is low, although fairly constant throughout the remainder of fruit development. In contrast to chitinase, β-1,3-glucanase activity is lowest in young fruit and increases during development. Western blots of crude flavedo extracts following SDS-PAGE were probed with antibodies raised against purified citrus chitinase and β-1,3-glucanase. Results of immunostaining revealed that changes in the activities of chitinase and β-1,3-glucanase were reflected in the amount of chitinase and glucanase protein present in the extracts. Only a single chitinase band was detected on western blots of crude flavedo extracts, whereas one glucanase band was present in young fruit and a second one appeared later in older fruit. Partial purification of flavedo chitinases and glucanases was performed using extracts prepared from immature and mature fruit for the two enzymes, respectively. Acidic and basic forms of both enzymes were present in the extracts; acidic and basic forms of chitinase were present in nearly equal amounts whereas basic glucanases predominated (91% of total activity). Acidic and basic chitinases differed in substrate specificity as well as products of degradation indicating the heterogeneous nature of the enzymes. Both acidic and basic glucanases required the presence of β-1,3 linkages for activity, were active against both soluble and insoluble β-1,3 glucans and generated similar products.  相似文献   

4.
Chitin, chitosan and peptidoglycan induced chitinase (EC 3. 2. 1. 14) activity in Parthenocissus quinquefolia cells cultured in vitro, while cellulose did not. The real inducers seemed to be oligomers released from the large size polymers by hydrolytic enzymes secreted into the medium during the cell growth and division. This effect was mimicked by the addition to the medium of a partially purified Parthenocissus chitinase/lysozyme (EC 3. 2. 1. 17), which was also able to hydrolyse chitosan. Oligomers of chitin and of chitosan induced the activity to the same level and with the same time course, while peptidoglycan oligomers induced less activity. Oligomers also induced β-1,3-glucanase (EC 3. 2. 1. 6) activities. The changes with time of both activities and the relative effects of the three kinds of polymers suggested that the induction of both enzymes involves a common element early in the signal pathway.  相似文献   

5.
Very little is yet known regarding the molecular mechanisms involved in pathogen defense responses in citrus fruit. Recently, a basic β-1,3-endoglucanase (EC 3.2.2.39) belonging to the pathogenesis-related (PR) group of proteins, has been purified from Citrus sinensis (L) Osbeck cv. `Valencia' orange callus. Specific antibodies raised against the purified protein were used to screen `Valencia' callus and flavedo cDNA expression libraries, and to isolate its corresponding cDNA, designated gns1. The gns1 gene encodes a predicted polypeptide of 336 amino acids with a molecular mass of 37.3 kDa and a basic pI of 9.19, and shares 55–65% identity with several other plant β-1,3-endoglucanase proteins. Hereby, we show that the expression of the gns1 gene is markedly induced by wounding and inoculation with Penicillium digitatum (Pers. Fr.) Sacc., and following treatments with various elicitors that induce fruit resistance against P. digitatum . These treatments include UV irradiation, application of jasmonic acid (JA), β-aminobutyric acid (BABA), Candida oleophila antagonist yeast cells and hot water rinsing and brushing. Overall, based on various RNA gel blot hybridizations, we assume that gns1 is most likely to be part of the molecular mechanisms involved in pathogen defense responses in citrus fruit. *  相似文献   

6.
7.
Electrophoretic data revealed the presence of various isozymes of endoglucanase and beta-glucosidase, the number of which varied from one to three in various species of the genus Aspergillus. pH 5.0 was optimum for all the isozymes whereas metal ion treatment showed complete inhibition of almost all the isozymes by Hg2+ and partial inhibition by Ca2+ and Co2+ of isozymes of both the enzymes. An alteration in the electrophoretic mobility of isozymes of beta-glucosidase was also noticed in some species with Hg2+ treatment.  相似文献   

8.
Although late blight is an important disease in ecofriendly potato cultivation in Korea, it is highly dependent on the use of eco-friendly agricultural materials and the development of biological control technology is low. It is a necessary to develop an effective biocontrol agent to inactivate late blight in the field. AFB2-2 strain is a gram-positive with peritrichous flagella. It can utilize 20 types of carbon sources, like L-arabinose, and D-trehalose at 35°C. The optimal growth temperature of the strain is 37°C. It can survive at 20–50°C in tryptic soy broth. The maximum salt concentration tolerated by AFB2-2 strain is 7.5% NaCl. AFB2-2 strain inhibited the mycelial growth of seven plant pathogens by an average inhibitory zone of 10.2 mm or more. Among the concentrations of AFB2-2, 107 cfu/ml showed the highest control value of 85.7% in the greenhouse. Among the three concentrations of AFB2-2, the disease incidence and severity of potato late blight at 107 cfu/ml was lowest at 0.07 and 6.7, respectively. The nucleotide sequences of AFB2-2 strain were searched in the NCBI GenBank; Bacillus siamensis strain KCTC 13613, Bacillus velezensis strain CR-502, and Bacillus amyloliquefaciens strain DSM7 were found to have a genetic similarity of 99.7%, 99.7%, and 99.5%, respectively. The AFB2-2 strain was found to harbor the biosynthetic genes for bacillomycin D, iturin, and surfactin. Obtained data recommended that the B. velezensis AFB2-2 strain could be considered as a promising biocontrol agent for P. infestans in the field.  相似文献   

9.
The fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a systemic granulomatous mycosis prevalent in Latin America. In an effort to elucidate the molecular mechanisms involved in fungus cell wall assembly and morphogenesis, β-1,3-glucanosyltransferase 3 ( Pb Gel3p) is presented here. Pb Gel3p presented functional similarity to the glucan-elongating/glycophospholipid-anchored surface/pH-regulated /essential for pseudohyphal development protein families, which are involved in fungal cell wall biosynthesis and morphogenesis. The full-length cDNA and gene were obtained. Southern blot and in silico analysis suggested that there is one copy of the gene in P. brasiliensis . The recombinant Pb Gel3p was overexpressed in Escherichia coli , and a polyclonal antibody was obtained. The PbGEL3 mRNA, as well as the protein, was detected at the highest level in the mycelium phase. The protein was immunolocalized at the surface in both the mycelium and the yeast phases. We addressed the potential role of Pb Gel3p in cell wall biosynthesis and morphogenesis by assessing its ability to rescue the phenotype of the Saccharomyces cerevisiae gas1 Δ mutant. The results indicated that Pb Gel3p is a cell wall-associated protein that probably works as a β-1,3-glucan elongase capable of mediating fungal cell wall integrity.  相似文献   

10.
Lichen cellulase may participate in the degradation of the external substrata and/or modification of the photobiont cell wall. To promote a better understanding of the roles of cellulases in lichens, a cyanolichen was chosen because of the absence of cellulose in its symbionts. Freshly-collected thalli of Peltigera canina (L.) Wild, produce β-1,4-glucanase (EC 3.2.1.4, β-1,4-D-glucanohydrolase). This enzyme's activity was detected in the soluble and cell wall fractions and it was found to be secreted to the incubation medium when thalli were floated on water or on cellobiose. Several forms of the enzyme were detected by isoelectrofocusing. In preparative isoelectrofocusing, a single peak was obtained in each fraction, characterized by pls of 5.05, 5.25 and 4.75 in the soluble, cell wall and medium fractions, respectively. These differences were in agreement with the different pattern of bands obtained in slab-isoelectrofocusing, where the most acidic band (pl of 4.45) was present only in the soluble fraction and the band with higher pl (6.17) was more intense in the cell wall fraction. Since both symbionts in a cyanolichen lack cellulose, cellulases cannot participate in the modification of their cell wall; the presence of cellulase in Peltigera canina must therefore be related to the degradation of the tissues of the moss substratum.  相似文献   

11.
β-Galactosidase (EC 3.2.1.23) was purified from the cell wall of the fruit of Japanese pear ( Pyrus serotina Rehder var. culta Rehder cv. Hosui) and characterized. Five peaks of β-galactosidase activity, designated as Gal I to V, were separated by hydrophobic chromatography on butyl toyopearl and ion exchange chromatography on Mono S. These isolated β-galactosidases were investigated with regard to their abilities to release monomeric galactose from the fractionated polymers of native cell wall (cyclo-hexane-trans-1,2-diamine tetraacetic acid-, Na2CO3-, guanidine thiocyanate- and KOH-soluble fractions) and arabinogalactan (from larch wood). All the β-galactosidase fractions were active against native cell wall polysaccharides although to varying degrees. Gal I reacted to all fractions of native cell wall polysaccharides although to varying degrees. Gal I reacted to all fractions of native cell wall and arabinogalactan. Gal II released much galactose only from KOH-soluble polymers and arabinogalactan. Gal III released the most galactose. from cyclohexane- trans -1,2-diamine tetraacetic acid-, Na2CO3- and guanidine thiocyanate-soluble cell wall polymers which probably contained galactosyl side chains of pectic polymers, although it did not react much to arabinogalactan. In addition, the activity of Gal Ill dramatically increased as ripening proceeded. Furthermore, Gal III was purified to homogeneity by gel filtration on TSKgel 3000SW and the size of a polypeptide was 80 kDa on SDS-PAGE.  相似文献   

12.
Mutant tobacco plants deficient for class I beta-1,3-glucanase (GLU I) are decreased in their susceptibility to virus infection. This is correlated with delayed virus spread, a reduction in the size exclusion limit of plasmodesmata and increased cell-wall deposition of the beta-1,3-glucan callose. To further investigate a role of GLU I during cell-to-cell movement of virus infection, we inserted the GLU I coding sequence into TMV for overexpression in infected cells. Compared with the size of local lesions produced on plants infected with virus expressing either an enzymatically inactive GLU I or a frameshift mutant of the gene, the size of local lesions caused by infection with virus expressing active GLU I was consistently increased. Viruses expressing antisense GLU I constructs led to lesions of decreased size. Similar effects were obtained for virus spread using plants grown at 32 degrees C to block the hypersensitive response. Together, these results indicate that enzymatically active GLU I expressed in cells containing replicating virus can increase cell-to-cell movement of virus. This supports the view that GLU I induced locally during infection helps to promote cell-to-cell movement of virus by hydrolyzing callose. Moreover, our results provide the first direct evidence that a biological function of a plant beta-1,3-glucanase depends on its catalytic activity.  相似文献   

13.
In order to better understand the defense strategy of grape berries ( Vitis vinifera L. cv. Pinot noir) as they mature, the activities of the defense‐related proteins, chitinase (CHV, EC 3.2.1.14) and β‐1,3‐glucanase (laminarinase, EC 3.2.1.39) were first estimated in berries at different maturation stages. Chitinase levels rose proportionally to the berry reducing sugar content, an indicator of the berry ripening degree, up to values 10 times higher than the ones seen in resting grapevine leaves. This rise in activity was due to the accumulation of two isoforms, CHV 5 and CHV 11. One more chitinase isoform, CHV 12, appeared in senescent berries. Conversely, no glucanase activity could be detected in berries at any maturation stage. Accumulation of chitinases and (β‐1,3‐glucanases could be stimulated by wounding the berry peduncle. Adding salicylic acid to the wounded berries only potentiated the wounding effect on the berry chitinase activity. The most active chitinase isoform, CHV 5, was purified to homogeneity. It represented about 40% of the total extractable protein content of a ripe berry. Its molecular mass was estimated to be 31 kDa. The peptide sequencing of four of its tryptic fragments revealed strong homologies to several class IV chitinases. Finally, it was shown to inhibit the germination of conidia of Botrytis cinerea by 50% at a concentration of 7.5 µg ml−1.  相似文献   

14.
Chitinase and β-1,3-glucanase activities were assayed in roots, stems and leaves of 12-day-old chickpea ( Cicer arietinum L.) plants. While glucanase activity was higher in roots than in the aerial parts of the plant, leaves had higher Chitinase activity. Both glucanase and chitinase activities were induced in roots and stems in response to wounding (excision into 1-cm pieces), with activity increasing 6 h after treatment, reaching a maximum between 24 and 48 h, and thereafter remaining nearly constant up to 72 h. Ethephon treatment also induced β-1,3-glucanase and chitinase activities in stems but not in roots. Both enzymes occurred in root and stem tissues as a complex mixture of isoenzymes. At least four different peaks with glucanase and chitinase activities could be resolved by gel filtration chromatography on Sephacryl S-200 and chromatofocusing on PBE 94 (pH 4–7). Following ammonium sulfate precipitation and ion exchange on CM- and DEAE-Trisacryl, three β-1,3-glucanase and chitinase fractions, referred to as basic, neutral and acidic, were separated on the basis of their chromatographic behaviour. Most of the total protein (75%) of stem extracts was found in the acidic fraction, whereas the major glucanase (53%) and chitinase (62%) activities were in the basic and neutral fractions, respectively. While wounding resulted in an increase in the neutral glucanase and chitinase activities, the activities of the acidic fractions were promoted by ethephon.  相似文献   

15.
Chitinases (EC 3.2.1.14) and β -1.3 glucanases (EC 3.2.1.39) have been known to play a vital role in the defense of plants against fungal pathogens. The pattern of induction of these two enzymes subsequent to infection by powdery mildew was studied in 10 pairs of near-isogenic lines of barley ( Hordeum vulgare L.) which possess powdery mildew resistance genes. These isogenic lines have been grotiped according to their reaction to the fungus. The induction patterns varied between the resistant and the susceptible cultivars within each group and between different groups. More tsozymcs were induced in susceptible varieties of highly resistant groups and the overall levels and the number of isozymes of chitinases and β -1.3 glucanases were lower in groups with low resistance. The effect of powdery mildew infection and mechanical wounding on the cellular localization of chitinases and β -1.3 glucanases in barley leaves has also been studied. The 31 kDa leaf chitinase, L-CH2, and trace amounts of a 25 kDa chitinase. L-CH3. were present in healthy leaves. Wounding increased the levels of L-CH3 within I ft h. Powdery mildew infection increased the levels of L-CH3 both in intercellular fluid and in intracellular extract of leaves. A /3-I.3 glucanase. GH, also increased after infection and wounding. In infected barley leaves, GL-1 was present both in intercellular space and intracellular extract. It is concluded that powdery mildew resistance genes exhibit qualitative and quantitative differences in the expression of chitinases and β -1.3 glucanases. Further, chitinases and β -1.3 glucanases appear to be a response to active infection rather than the factors responsible for disease resistance.  相似文献   

16.
Mobilization of the reserve β-1,3-glucan (chrysolaminaran) in N-limited cells of the marine diatom Skeletonema costatum (Grev.) Cleve (Bacillariophyceae) was investigated. The diatom was grown in pH-regulated batch cultures with a 14:10-h light:dark cycle until N depletion. In a pulse-chase experiment, the cells were first incubated in high light (200 μmol photons·m 2·s 1) with 14C-bicarbonate until dissolved inorganic carbon was exhausted. Unlabeled bicarbonate (1 mM) was then added, and the cells were incubated in the dark and subsequently in low light (20 μmol photons·m 2·s 1) with additions of 40 μM NH4 + . In the 14C pulse phase with high light and N depletion, β-1,3-glucan accumulated and accounted for 85% of incorporated 14C. In the subsequent 14C chase phases, added NH4 + was assimilated at an N-specific rate of 0.11 h 1 in both the dark and low light, and in both cases it caused a significant mobilization of β-1,3-glucan (dark, 26%; low light, 19%). Biochemical fractionation of organic 14C showed that free amino acids were most rapidly labeled in the early stage of NH4 + assimilation, whereas proteins and polysaccharides were labeled more rapidly after 1.2 h. Analysis of the cellular free amino acids strongly indicated that de novo biosynthesis was occurring, with a Gln:Glu ratio increasing from 0.4 to 10 within 1.2 h. After the NH4 + was exhausted, the cellular pools of glucan and amino acids became constant or slowly decreased. In another experiment, N-limited cells were first incubated in high light until dissolved inorganic carbon was exhausted and were further incubated in high light with 150 μM NH4 + under inorganic carbon limitation. Added NH4 + was assimilated at an N-specific rate of 0.023 h 1, and cellular β-1,3-glucan decreased by 15% within 6 h. Hence, β-1,3-glucan was mobilized during NH4 + assimilation, even though inorganic carbon was modifying the metabolic rates. The results provide new evidence of β-1,3-glucan supplying essential precursors for biosynthesis of amino acids and other components in S. costatum in both the dark and subsaturating light and even saturating light under inorganic carbon limitation.  相似文献   

17.
Agrobacterium-mediated transformation of rice was done using the binary vector pNSP3, harbouring the rice chitinase (chi11) gene under maize ubiquitin promoter and the tobacco β-1,3-glucanase gene under CaMV 35S promoter in the same T-DNA. Four of the six T0 plants had single copies of complete T-DNAs, while the other two had complex integration patterns. Three of the four single-copy lines showed a 3:1 segregation ratio in the T1 generation. Northern and western blot analyses of T1 plants revealed constitutive expression of chitinase and β-1,3-glucanase genes. Homozygous T2 plants of the single-copy lines CG20, CG27 and CG53 showed 62-, 9.6- and 11-fold higher chitinase activity over the control plants. β-1,3-Glucanase activity was 1.1- to 2.5-fold higher in the transgenic plants. Bioassay of homozygous T2 plants of the three single-copy transgenic lines against Rhizoctonia solani revealed a 60% reduction in sheath blight Disease Index in the first week. The Disease Index increased from 61.8 in the first week to 90.6 in the third week in control plants, while it remained low (26.8–34.2) in the transgenic T3 plants in the corresponding period, reflecting the persistence of sheath blight resistance for a longer period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号