首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microglia: phagocyte and glia cell   总被引:10,自引:0,他引:10  
Microglia are the resident immune cells of the brain, and are located within the brain parenchyme behind the blood-brain barrier. They originate from mesodermal hemapoietic precursors and are slowly turned over and replenished by proliferation in the adult central nervous system. In the healthy brain resting, ramified microglia function as supportive glia cells, and their activation status is regulated by neurons through soluble mediators and cell-cell contact. However, in response to brain pathology microglia become activated: acquisition of innate immune cell functions render microglia competent to react towards brain injury through tissue repair or induction of immune responses. In certain pathological conditions, however, microglia activation may sustain a chronic inflammation of the brain, leading to neuronal dysfunction and cell death. This might be mediated by the microglial release of extracellular toxic reactive oxygen and nitrogen species. Nevertheless, in the future microglia may potentially be harnessed for therapeutical purposes.  相似文献   

2.
3.
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.  相似文献   

4.
5.
Microglia are the resident macrophage-like population in the CNS. Microglia remain quiescent until injury or infection activates the cells to perform effector inflammatory and APC functions. Our previous studies have shown that microglia infected with a neurotropic strain of Theiler's murine encephalomyelitis virus secreted innate immune cytokines and up-regulated costimulatory molecules and MHC class II, enabling the cells to present viral and myelin Ags to CD4+ T cells. Recently, TLRs have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. We examined TLR expression on brain microglia and their functional responses upon stimulation with various TLR agonists. We report that mouse microglia express mRNA for all of the recently identified TLRs, TLR1-9, used for recognition of bacterial and viral molecular patterns. Furthermore, stimulation of quiescent microglia with various TLR agonists, including LPS (TLR4), peptidoglycan (TLR2), polyinosinic-polycytidylic acid (TLR3), CpG DNA (TLR9), and infection with viable Theiler's murine encephalomyelitis virus, activated the cells to up-regulate unique patterns of innate and effector immune cytokines and chemokines at the mRNA and protein levels. In addition, TLR stimulation activated up-regulation of MHC class II and costimulatory molecules, enabling the microglia to efficiently present myelin Ags to CD4+ T cells. Thus, microglia appear to be a unique and important component of both the innate and adaptive immune response, providing the CNS with a means to rapidly and efficiently respond to a wide variety of pathogens.  相似文献   

6.
Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target - calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.  相似文献   

7.
After central nervous system (CNS) trauma, axons have a low capacity for regeneration. Regeneration failure is associated with a muted regenerative response of the neuron itself, combined with a growth-inhibitory and cytotoxic post-injury environment. After spinal cord injury (SCI), resident and infiltrating immune cells (especially microglia/macrophages) contribute significantly to the growth-refractory milieu near the lesion. By targeting both the regenerative potential of the axon and the cytotoxic phenotype of microglia/macrophages, we may be able to improve CNS repair after SCI. In this review, we discuss molecules shown to impact CNS repair by affecting both immune cells and neurons. Specifically, we provide examples of pattern recognition receptors, integrins, cytokines/chemokines, nuclear receptors and galectins that could improve CNS repair. In many cases, signaling by these molecules is complex and may have contradictory effects on recovery depending on the cell types involved or the model studied. Despite this caveat, deciphering convergent signaling pathways on immune cells (which affect axon growth indirectly) and neurons (direct effects on axon growth) could improve repair and recovery after SCI. Future studies must continue to consider how regenerative therapies targeting neurons impact other cells in the pathological CNS. By identifying molecules that simultaneously improve axon regenerative capacity and drive the protective, growth-promoting phenotype of immune cells, we may discover SCI therapies that act synergistically to improve CNS repair and functional recovery.  相似文献   

8.
Until recently, adaptive immunity and cytotoxic T cells were considered as the only essential components of the antiviral defence arsenal. Additional data that do not rule out the crucial role of these cells in the clearance of viral pathogens have, however, recently emerged. They indicate that innate immune cells such as macrophages, dendritic cells, gammadelta T cells as well as natural killer (NK) cells play a primordial role in this mechanism. It is now well established that innate immune cells can detect various pathogens (bacteria, viruses, fungi or parasites) very rapidly and respond to their presence through the activation of specific receptors. Once activated, these molecules trigger several signalling cascades that culminate in the establishment of very potent defence mechanisms. In addition, cytokines produced during this initial response are essential for the activation of the adaptive immune response which will add specificity and memory to the system. Among the innate immune receptors, attention has focused on the Toll-like receptors (TLR) and many reports indicate that some of the TLRs are clearly involved in defence against viral pathogens. However, new molecules, acting independently from any TLR, have recently been discovered. They define a second antiviral pathway which is presently the subject of intense research. In this article, we will review the role of the different molecules involved in each pathway within the framework of innate antiviral defence.  相似文献   

9.
Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4)), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4) promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a "sensor" that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis.  相似文献   

10.
Toll样受体(Toll-like receptors,TLR)是先天性免疫反应识别病原体的一个重要分子,在免疫系统中发挥关键作用.其家族各种成员的主要功能是识别入侵病原体表面的各种不同分子模式,随后启动免疫反应,达到保护机体作用.在大脑中,小胶质细胞可以作为抗原提呈细胞,参与脑内免疫反应,也可以通过分泌各种促炎症因子启动或促进免疫反应,而TLR家族在中枢神经免疫系统的作用仍存在争议,它既可以通过促进神经免疫反应枢纽因子的表达来增强免疫,也可因免疫过度而损伤神经细胞.总之,Toll信号通路对中枢神经系统疾病有一定的调控作用.  相似文献   

11.
Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage.KEY WORDS: Brain, Intravital microscopy, Leukocytes, Microglia, Neurodegeneration, Zebrafish  相似文献   

12.
Jeong HK  Ji KM  Kim B  Kim J  Jou I  Joe EH 《PloS one》2010,5(10):e13756

Background

Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury.

Methods and Findings

Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc) and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH+ and Iba-1+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side) did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d.

Conclusions

Different cellular components (microglia, astrocytes, monocytes, and neutrophils) and different factors (proinflammatory and neurotrophic) could be produced in inflammatory processes depending on the nature of the injury. The results in this study suggest that the inflammatory responses of microglia and monocytes in response to ATP-induced acute injury could not be neurotoxic.  相似文献   

13.
Microglia, the innate immune cells of the CNS, play a pivotal role in brain injury and disease. Microglia are extremely motile; their highly ramified processes constantly survey the brain parenchyma, and they respond promptly to brain damage with targeted process movement toward the injury site. Microglia play a key role in brain development and function by pruning synapses during development, phagocytosing apoptotic newborn neurons, and regulating neuronal activity by direct microglia-neuron or indirect microglia-astrocyte-neuron interactions, which all depend on their process motility. This review highlights recent discoveries about microglial dynamics, focusing on the receptors, ion channels, and signaling pathways involved.  相似文献   

14.
Microglia, the resident brain immune cells, have garnered a reputation as major effectors of circuit wiring due to their ability to prune synapses. Other roles of microglia in regulating neuronal circuit development have so far received comparatively less attention. Here, we review the latest studies that have contributed to our increased understanding of how microglia regulate brain wiring beyond their role in synapse pruning. We summarize recent findings showing that microglia regulate neuronal numbers and influence neuronal connectivity through a bidirectional communication between microglia and neurons, processes regulated by neuronal activity and the remodeling of the extracellular matrix. Finally, we speculate on the potential contribution of microglia to the development of functional networks and propose an integrative view of microglia as active elements of neural circuits.  相似文献   

15.
16.
Following neuronal injury, microglia initiate repair by phagocytosing dead neurons without eliciting inflammation. Prior evidence indicates triggering receptor expressed by myeloid cells-2 (TREM2) promotes phagocytosis and retards inflammation. However, evidence that microglia and neurons directly interact through TREM2 to orchestrate microglial function is lacking. We here demonstrate that TREM2 interacts with endogenous ligands on neurons. Staining with TREM2-Fc identified TREM2 ligands (TREM2-L) on Neuro2A cells and on cultured cortical and dopamine neurons. Apoptosis greatly increased the expression of TREM2-L. Furthermore, apoptotic neurons stimulated TREM2 signaling, and an anti-TREM2 mAb blocked stimulation. To examine the interaction between TREM2 and TREM2-L in phagocytosis, we studied BV2 microglial cells and their engulfment of apoptotic Neuro2A. One of our anti-TREM2 mAb, but not others, reduced engulfment, suggesting the presence of a functional site on TREM2 interacting with neurons. Further, Chinese hamster ovary cells transfected with TREM2 conferred phagocytic activity of neuronal cells demonstrating that TREM2 is both required and sufficient for competent uptake of apoptotic neuronal cells. Finally, while TREM2-L are expressed on neurons, TREM2 is not; in the brain, it is found on microglia. TREM2 and TREM2-L form a receptor–ligand pair connecting microglia with apoptotic neurons, directing removal of damaged cells to allow repair.  相似文献   

17.
Neutrophils have long been viewed as the final effector cells of an acute inflammatory response, with a primary role in the clearance of extracellular pathogens. However, more recent evidence has extended the functions of these cells. The newly discovered repertoire of effector molecules in the neutrophil armamentarium includes a broad array of cytokines, extracellular traps and effector molecules of the humoral arm of the innate immune system. In addition, neutrophils are involved in the activation, regulation and effector functions of innate and adaptive immune cells. Accordingly, neutrophils have a crucial role in the pathogenesis of a broad range of diseases, including infections caused by intracellular pathogens, autoimmunity, chronic inflammation and cancer.  相似文献   

18.
HMGB1: endogenous danger signaling   总被引:12,自引:0,他引:12  
While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions.  相似文献   

19.
Involvement of the central nervous system (CNS) is the most severe consequence of some parasitic infections. Protozoal infections comprise a group of diseases that together affect billions of people worldwide and, according to the World Health Organization, are responsible for more than 500000 deaths annually. They include African and American trypanosomiasis, leishmaniasis, malaria, toxoplasmosis, and amoebiasis. Mechanisms underlying invasion of the brain parenchyma by protozoa are not well understood and may depend on parasite nature: a vascular invasion route is most common. Immunosuppression favors parasite invasion into the CNS and therefore the host immune response plays a pivotal role in the development of a neuropathology in these infectious diseases. In the brain, microglia are the resident immune cells active in defense against pathogens that target the CNS. Beside their direct role in innate immunity, they also play a principal role in coordinating the trafficking and recruitment of other immune cells from the periphery to the CNS. Despite their evident involvement in the neuropathology of protozoan infections, little attention has given to microglia–parasite interactions. This review describes the most prominent features of microglial cells and protozoan parasites and summarizes the most recent information regarding the reaction of microglial cells to parasitic infections. We highlight the involvement of the periphery–brain axis and emphasize possible scenarios for microglia–parasite interactions.  相似文献   

20.
Microglia are a proliferative population of resident brain macrophages that under physiological conditions self‐renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as ‘priming’. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first‐generation G1 mTerc?/?)‐ and late‐generation (third‐generation G3 and G4 mTerc?/?) telomerase‐deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late‐generation mTerc?/? microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc?/? microglia are comparable with microglia derived from G1 mTerc?/? mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc?/? microglia mice show an enhanced pro‐inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age‐associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood–brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号