首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. Schedl  J. Kimble 《Genetics》1988,119(1):43-61
This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3.  相似文献   

2.
M. K. Barton  J. Kimble 《Genetics》1990,125(1):29-39
In wild-type Caenorhabditis elegans, the XO male germ line makes only sperm and the XX hermaphrodite germ line makes sperm and then oocytes. In contrast, the germ line of either a male or a hermaphrodite carrying a mutation of the fog-1 (feminization of the germ line) locus is sexually transformed: cells that would normally make sperm differentiate as oocytes. However, the somatic tissues of fog-1 mutants remain unaffected. All fog-1 alleles identified confer the same phenotype. The fog-1 mutations appear to reduce fog-1 function, indicating that the wild-type fog-1 product is required for specification of a germ cell as a spermatocyte. Two lines of evidence indicate that a germ cell is determined for sex at about the same time that it enters meiosis. These include the fog-1 temperature sensitive period, which coincides in each sex with first entry into meiosis, and the phenotype of a fog-1; glp-1 double mutant. Experiments with double mutants show that fog-1 is epistatic to mutations in all other sex-determining genes tested. These results lead to the conclusion that fog-1 acts at the same level as the fem genes at the end of the sex determination pathway to specify germ cells as sperm.  相似文献   

3.
In the nematode Caenorhabditis elegans, spermatogenesis represents one of two alternative developmental pathways open to premeiotic germ cells. At least two genes, fem-1 and fem-2, control the initiation of spermatogenesis in XX (hermaphrodite) worms, and the entire spectrum of male differentiation in XO animals. Low-dose irradiation of worms treated with the light-activated DNA crosslinking drug trimethylpsoralen, at levels that do not affect cell division or growth rates, blocks spermatogenesis in C. elegans hermaphrodites and produces an identical phenotype to that of temperature-sensitive mutations in the fem genes. Psoralen treatment does not, however, produce corresponding phenotypes of these mutants in XO animals. The developmental age for phenocopy production is the same as the hermaphrodite temperature-sensitive period of the two mutants. The effects of pulses of restrictive temperature and psoralen treatment on fem-2 mutant hermaphrodites are additive, suggesting that psoralen crosslinking may reduce the level of the fem-2 gene product. Microbeam experiments localize the target for the psoralen effect to the primary germ cells in the first stage larvae, indicating that a critical step occurs in a small number of precursor cells prior to their commitment to spermatogenesis.  相似文献   

4.
R. Francis  M. K. Barton  J. Kimble    T. Schedl 《Genetics》1995,139(2):579-606
We have characterized 31 mutations in the gld-1 (defective in germline development) gene of Caenorhabditis elegans. In gld-1(null) hermaphrodites, oogenesis is abolished and a germline tumor forms where oocyte development would normally occur. By contrast, gld-1(null) males are unaffected. The hermaphrodite germline tumor appears to derive from germ cells that enter the meiotic pathway normally but then exit pachytene and return to the mitotic cycle. Certain gld-1 partial loss-of-function mutations also abolish oogenesis, but germ cells arrest in pachytene rather than returning to mitosis. Our results indicate that gld-1 is a tumor suppressor gene required for oocyte development. The tumorous phenotype suggests that gld-1(+) may function to negatively regulate proliferation during meiotic prophase and/or act to direct progression through meiotic prophase. We also show that gld-1(+) has an additional nonessential role in germline sex determination: promotion of hermaphrodite spermatogenesis. This function of gld-1 is inferred from a haplo-insufficient phenotype and from the properties of gain-of-function gld-1 mutations that cause alterations in the sexual identity of germ cells.  相似文献   

5.
We have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild-type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3(gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3(gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3(gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3(gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.  相似文献   

6.
R. E. Ellis  J. Kimble 《Genetics》1995,139(2):561-577
In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two.  相似文献   

7.
The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translational repression. We show that C. briggsae requires neither fem-2 nor fem-3 for hermaphrodite development, and that XO Cb-fem-2/3 animals are transformed into hermaphrodites, not females as in C. elegans. Exhaustive screens for Cb-tra-2 suppressors identified another 75 fem-like mutants, but all are self-fertile hermaphrodites rather than females. Control of hermaphrodite spermatogenesis therefore acts downstream of the fem genes in C. briggsae. The outwardly similar hermaphrodites of C. elegans and C. briggsae thus achieve self-fertility via intervention at different points in the core sex determination pathway. These findings are consistent with convergent evolution of hermaphroditism, which is marked by considerable developmental genetic flexibility.  相似文献   

8.
9.
Tabitha Doniach 《Genetics》1986,114(1):53-76
In the nematode C. elegans, there are two sexes, the self-fertilizing hermaphrodite (XX) and the male (XO). The hermaphrodite is essentially a female that makes sperm for a brief period before oogenesis. Sex determination in C. elegans is controlled by a pathway of autosomal regulatory genes, the state of which is determined by the X:A ratio. One of these genes, tra-2, is required for hermaphrodite development, but not for male development, because null mutations in tra-2 masculinize XX animals but have no effect on XO males. Dominant, gain-of-function tra-2 mutations have now been isolated that completely feminize the germline of XX animals so that they make only oocytes and no sperm and, thus, are female. Most of the tra-2(dom) mutations do not correspondingly feminize XO animals, so they do not appear to interfere with control by her-1, a gene thought to negatively regulate tra-2 in XO animals. Thus, these mutations appear to cause gain of tra-2 function in the XX animal only. Dosage studies indicate that 5 of 7 tra-2(dom) alleles are hypomorphic, so they do not simply elevate XX tra-2 activity overall. These properties suggest that in the wild type, tra-2 activity is under two types of control: (1) in males, it is inactivated by her-1 to allow male development to occur, and (2) in hermaphrodites, tra-2 is active but transiently inactivated by another, unknown, regulator to allow hermaphrodite spermatogenesis; this mode of regulation is hindered by the tra-2(dom) mutations, thereby resulting in XX females.  相似文献   

10.
Haag ES  Kimble J 《Genetics》2000,155(1):105-116
The Caenorhabditis elegans hermaphrodite is essentially a female that produces sperm. In C. elegans, tra-2 promotes female fates and must be repressed to achieve hermaphrodite spermatogenesis. In an effort to learn how mating systems evolve, we have cloned tra-2 from C. remanei, the closest gonochoristic relative of C. elegans. We found its structure to be similar to that of Ce-tra-2 but its sequence to be divergent. RNA interference demonstrates that Cr-tra-2 promotes female fates. Two sites of tra-2 regulation are required for the onset of hermaphrodite spermatogenesis in C. elegans. One, the MX region of TRA-2, is as well conserved in C. remanei as it is in C. briggsae (another male/hermaphrodite species), suggesting that this control is not unique to hermaphrodites. Another, the DRE/TGE element of the tra-2 3' UTR, was not detected by sequence analysis. However, gel-shift assays demonstrate that a factor in C. remanei can bind specifically to the Cr-tra-2 3' UTR, suggesting that this translational control is also conserved. We propose that both controls are general and do not constitute a novel "switch" that enables sexual mosaicism in hermaphrodites. However, subtle quantitative or qualitative differences in their employment may underlie differences in mating system seen in Caenorhabditis.  相似文献   

11.
RNA interference with one of the eight Caenorhabditis elegans linker histone genes triggers desilencing of a repetitive transgene and developmental defects in the hermaphrodite germ line. These characteristics are similar to the phenotype of the C. elegans Polycomb group genes mes-2, mes-3, mes-4, and mes-6 (M. A. Jedrusik and E. Schulze, Development 128:1069-1080, 2001; I. Korf, Y. Fan, and S. Strome, Development 125:2469-2478, 1998). These Polycomb group proteins contribute to germ line-specific chromatin modifications. Using a his-24 deletion mutant and an isoform-specific antibody, we characterized the role of his-24 in C. elegans germ line development. We describe an unexpected cytoplasmic retention of HIS-24 in peculiar granular structures. This phenomenon is confined to the developing germ lines of both sexes. It is strictly dependent on the activities of the chromatin-modifying genes mes-2, mes-3, mes-4, and mes-6, as well as on the C. elegans sirtuin gene sir-2.1. A temperature shift experiment with a mes-3(ts) mutant revealed that mes gene activity is required in a time window ranging from L3 to the early L4 stage before the onset of meiosis. We find that the his-24(ok1024) mutant germ line is characterized by an increased level of the activating H3K4 methylation mark concomitant with a decrease of the repressive H3K9 methylation. In the germ line of his-24(ok1024) mes-3(bn35) double mutant animals, the repressive H3K27 methylation is more reduced than in the respective mes single mutant. These observations distinguish his-24 as an unusual element in the developmental regulation of germ line chromatin structure in C. elegans.  相似文献   

12.
13.
The Deleted in Azoospermia (DAZ) gene family encodes putative translational activators that are required for meiosis and other aspects of gametogenesis in animals. The single Caenorhabditis elegans homologue of DAZ, daz-1, is an essential factor for female meiosis. Here, we show that daz-1 is important for the switch from spermatogenesis to oogenesis (the sperm/oocyte switch), which is an essential step for the hermaphrodite germline to produce oocytes. RNA interference of the daz-1 orthologue in a related nematode, Caenorhabditis briggsae, resulted in a complete loss of the sperm/oocyte switch. The C. elegans hermaphrodite deficient in daz-1 also revealed a failure in the sperm/oocyte switch if the genetic background was conditional masculinization of germline. DAZ-1 could bind specifically to mRNAs encoding the FBF proteins, which are translational regulators for the sperm/oocyte switch and germ stem cell proliferation. Expression of the FBF proteins seemed to be lowered in the daz-1 mutant at the stage for the sperm/oocyte switch. Conversely, a mutation in gld-3, a gene that functionally counteracts FBF, could partially restore oogenesis in the daz-1 mutant. Together, we propose that daz-1 plays a role upstream of the pathway for germ cell sex determination.  相似文献   

14.
We have analyzed the mechanism of sex determination in the germ line of Drosophila by manipulating three parameters: (1) the ratio of X-chromosomes to sets of autosomes (X:A); (2) the state of activity of the gene Sex-lethal (Sxl), and (3) the sex of the gonadal soma. To this end, animals with a ratio of 2X:2A and 2X:3A were sexually transformed into pseudomales by mutations at the sex-determining genes Sxl (Sex-lethal), tra (transformer), tra-2 (transformer-2), or dsx (double-sex). Animals with the karyotype 2X;3A were also transformed into pseudofemales by the constitutive mutation SxlM1. The sexual phenotype of the gonads and of the germ cells was assessed by phase-contrast microscopy. Confirming the conclusions of Steinmann-Zwicky et al. (Cell 57, 157, 1989), we found that all three parameters affect sex determination in germ cells. In contrast to the soma in which sex determination is completely cell-autonomous, sex determination in the germ line has a non-autonomous component inasmuch as the sex of the soma can influence the sexual pathway of the germ cells. Somatic induction has a clear effect on 2X;2A germ cells that carry a Sxl+ allele. These cells, which form eggs in an ovary, can enter spermatogenesis in testes. Mutations that cause partial loss of function or gain of function of Sxl thwart somatic induction and, independently of the sex of the soma, dictate spermatogenesis or oogenesis, respectively. Somatic induction has a much weaker effect on 2X;3A germ cells. This ratio is essentially a male signal for germ cells which consistently enter spermatogenesis in testes, even when they carry SxlM1. In a female soma, however, SxlM1 enables the 2X;3A germ cells to form almost normal eggs. Our results show that sex determination in the germ line is more complex than in the soma. They provide further evidence that the state of Sxl, the key gene for sex determination and dosage compensation in the soma, also determines the sex of the germ cells, and that, in the germ line, the state of activity of Sxl is regulated not only by the X:A ratio, but also by somatic inductive stimuli.  相似文献   

15.
16.
The Caenorhabditis elegans gene mag-1 can substitute functionally for its homolog mago nashi in Drosophila and is predicted to encode a protein that exhibits 80% identity and 88% similarity to Mago nashi (P. A. Newmark et al., 1997, Development 120, 3197-3207). We have used RNA-mediated interference (RNAi) to analyze the phenotypic consequences of impairing mag-1 function in C. elegans. We show here that mag-1(RNAi) causes masculinization of the germ line (Mog phenotype) in RNA-injected hermaphrodites, suggesting that mag-1 is involved in hermaphrodite germ-line sex determination. Epistasis analysis shows that ectopic sperm production caused by mag-1(RNAi) is prevented by loss-of-function (lf) mutations in fog-2, gld-1, fem-1, fem-2, fem-3, and fog-1, all of which cause germ-line feminization in XX hermaphrodites, but not by a her-1(lf) mutation which causes germ-line feminization only in XO males. These results suggest that mag-1 interacts with the fog, fem, and gld genes and acts independently of her-1. We propose that mag-1 normally allows oogenesis by inhibiting function of one or more of these masculinizing genes, which act during the fourth larval stage to promote transient sperm production in the hermaphrodite germ line. When the Mog phenotype is suppressed by a fog-2(lf) mutation, mag-1(RNAi) also causes lethality in the progeny embryos of RNA-injected, mated hermaphrodites, suggesting an essential role for mag-1 during embryogenesis. The defective embryos arrest during morphogenesis with an apparent elongation defect. The distribution pattern of a JAM-1::GFP reporter, which is localized to boundaries of hypodermal cells, shows that hypodermis is disorganized in these embryos. The temporal expression pattern of the mag-1 gene prior to and during morphogenesis appears to be consistent with an essential role of mag-1 in embryonic hypodermal organization and elongation.  相似文献   

17.
18.
Whether a germ cell embarks on oogenesis, the female gametogenic pathway, or spermatogenesis, the male pathway, may be determined cell-autonomously, by the germ cell's own genes, or by the tissue environment in which it is located. The decision may or may not be associated with the time of entry into meiosis, and this in turn may be controlled wholly by the germ cell's own genes, or in part by the environment. These issues will be explored with reference to Caenorhabditis elegans, Drosophila and the mouse.  相似文献   

19.
In Cnidaria, a separation between soma and germline remains unclear. In this work, we studied the origin of germinal cells and determination of the sexual phenotype in Clytia hemisphaerica and Clytia sp. Colonies of C. Hemisphaerica were cultivated and the medusae liberated by each colony raised until maturity. Two hermaphrodite colonies were obtained, liberating male and female medusae. These two colonies and their medusae were raised at 15 degrees C, 21 degrees C, or 24 degrees C. The medusae budded and cultured at 24 degrees C were mainly female (80%). In contrast, if the medusae were released at 15 degrees C, at whatever temperature they were raised later, they were mainly male (85%). The same occurred if, after release at 24 degrees C but before the formation of the gametes, they were kept at 15 degrees C for at least 24 hr. We suggest that there are two subpopulations of germ cells. The female line will be dominant at 24 degrees C but temperature sensitive, with inhibition of this line by a temperature drop to 15 degrees C, this inverting the population sex-ratio. The irreversible action of a temperature drop to 15 degrees C supports the view that the germ cells are isolated very early. In C. hemisphaerica, hermaphrodite medusae were never observed. On the contrary, in Clytia sp., probably a new species, we have found male, female, but also hermaphrodite specimens. This is the second definite example of hermaphroditism described in any hydromedusan. The transformation of female into hermaphrodite then into male specimens occurs at 13 degrees C. These results demonstrate the unstable character of genetic sex determination in cnidarians, at least in certain species.  相似文献   

20.
Transplantation of germ cells from fertile donor mice to the testes of infertile recipient mice results in donor-derived spermatogenesis and transmission of the donor's genetic material to the offspring of recipient animals. Germ cell transplantation provides a bioassay to study the biology of male germ line stem cells, develop systems to isolate and culture spermatogonial stem cells, examine defects in spermatogenesis and treat male infertility. Although most widely studied in rodents, germ cell transplantation has been applied to larger mammals. In domestic animals including pigs, goats and cattle, as well as in primates, germ cells can be transplanted to a recipient testis by ultrasonographic-guided cannulation of the rete testis. Germ cell transplantation was successful between unrelated, immuno-competent pigs and goats, whereas transplantation in rodents requires syngeneic or immuno-compromised recipients. Genetic manipulation of isolated germ line stem cells and subsequent transplantation will result in the production of transgenic sperm. Transgenesis through the male germ line has tremendous potential in domestic animal species where embryonic stem cell technology is not available and current options to generate transgenic animals are inefficient. As an alternative to transplantation of isolated germ cells to a recipient testis, ectopic grafting of testis tissue from diverse mammalian donor species, including horses and primates, into a mouse host represents a novel possibility to study spermatogenesis, to investigate the effects of drugs with the potential to enhance or suppress male fertility, and to produce fertile sperm from immature donors. Therefore, transplantation of germ cells or xenografting of testis tissue are uniquely valuable approaches for the study, preservation and manipulation of male fertility in domestic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号