首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enhanced cardiac beta(2)-adrenoceptor (beta(2)-AR) responsiveness can increase susceptibility to ventricular fibrillation (VF). Exercise training can decrease cardiac sympathetic activity and could, thereby, reduce beta(2)-AR responsiveness and decrease the risk for VF. Therefore, dogs with healed myocardial infarctions were subjected to 2 min of coronary occlusion during the last minute of a submaximal exercise test; VF was observed in 20 susceptible, but not in 13 resistant, dogs. The dogs were then subjected to a 10-wk exercise-training program (n = 9 susceptible and 8 resistant) or an equivalent sedentary period (n = 11 susceptible and 5 resistant). Before training, the beta(2)-AR antagonist ICI-118551 (0.2 mg/kg) significantly reduced the peak contractile (by echocardiography) response to isoproterenol more in the susceptible than in the resistant dogs: -45.5 +/- 6.5 vs. -19.2 +/- 6.3%. After training, the susceptible and resistant dogs exhibited similar responses to the beta(2)-AR antagonist: -12.1 +/- 5.7 and -16.2 +/- 6.4%, respectively. In contrast, ICI-118551 provoked even greater reductions in the isoproterenol response in the sedentary susceptible dogs: -62.3 +/- 4.6%. The beta(2)-AR agonist zinterol (1 microM) elicited significantly smaller increases in isotonic shortening in ventricular myocytes from susceptible dogs after training (n = 8, +7.2 +/- 4.8%) than in those from sedentary dogs (n = 7, +42.8 +/- 5.8%), a response similar to that of the resistant dogs: +3.0 +/- 1.4% (n = 6) and +3.2 +/- 1.8% (n = 5) for trained and sedentary, respectively. After training, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period and VF could still be induced in the remaining seven animals. Thus exercise training can restore cardiac beta-AR balance (by reducing beta(2)-AR responsiveness) and could, thereby, prevent VF.  相似文献   

2.
Exercise training (ExT) normalizes the increased sympathetic outflow in heart failure (HF), but the mechanisms are not known. We hypothesized that ExT would normalize the augmented glutamatergic mechanisms mediated by N-methyl-d-aspartic acid (NMDA) receptors within the paraventricular nucleus (PVN) that occur with HF. Four groups of rats were used: 1) sham-operated (Sham) sedentary (Sed), 2) Sham ExT, 3) HF Sed, and 4) HF ExT. HF was induced by left coronary artery ligation, and ExT consisted of 3 wk of treadmill running. In alpha-chloralose-urethane-anesthetized rats, the increase in renal sympathetic nerve activity in response to the highest dose of NMDA (200 pmol) injected into the PVN in the HF Sed group was approximately twice that of the Sham Sed group. In the HF ExT group the response was not different from the Sham Sed and Sham ExT groups. Relative NMDA NR1 receptor subunit mRNA expression was 63% higher in the HF Sed group compared with the Sham Sed group but in the HF ExT group was not different from the Sham Sed and Sham ExT groups. NR1 receptor subunit protein expression was increased 87% in the HF Sed group compared with the Sham Sed group but in the HF ExT group was not significantly different from the Sham Sed and Sham ExT groups. Thus one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of glutamatergic mechanisms within the PVN.  相似文献   

3.
The cardiac sarcoplasmic reticulum calcium-ATPase (SERCA2a), Na+/Ca2+ exchanger (NCX1), and ryanodine receptor (RyR2) are proteins involved in the regulation of myocyte calcium. We tested whether exercise training (ET) alters those proteins during development of chronic heart failure (CHF). Ten dogs were chronically instrumented to permit hemodynamic measurements. Five dogs underwent 4 wk of cardiac pacing (210 beats/min for 3 wk and 240 beats/min for the 4th wk), whereas five dogs underwent the same pacing regimen plus daily ET (5.1 +/- 0.3 km/h, 2 h/day). Paced animals developed CHF characterized by hemodynamic abnormalities and reduced ejection fraction. ET preserved resting hemodynamics and ejection fraction. Left ventricular samples were obtained from all dogs and another five normal dogs for mRNA (Northern analysis, band intensities normalized to glyceraldehyde-3-phosphate dehydrogenase) and protein level (Western analysis, band intensities normalized to tubulin) measurements. In failing hearts, SERCA2a was decreased by 33% (P < 0.05) and 65% (P < 0.05) in mRNA and protein level, respectively, compared with normal hearts; there was only an 8.6% reduction in mRNA and a 32% reduction in protein in exercised animals (P < 0.05 from CHF). mRNA expression of NCX1 increased by 44% in paced-only dogs compared with normal (P < 0.05) but only by 22% in trained dogs (P < 0.05 vs. CHF); protein level of NCX1 was elevated in paced-only dogs (71%, P < 0.05) but partially normalized by ET (33%, P < 0.05 from CHF). RyR2 was not altered in any of the dogs. In conclusion, long-term ET may ameliorate cardiac deterioration during development of CHF, in part via normalization of myocardial calcium-handling proteins.  相似文献   

4.
Both a large heart rate (HR) increase at exercise onset and a slow heart rate (HR) recovery following the termination of exercise have been linked to an increased risk for ventricular fibrillation (VF) in patients with coronary artery disease. Endurance exercise training can alter cardiac autonomic regulation. Therefore, it is possible that this intervention could restore a more normal HR regulation in high-risk individuals. To test this hypothesis, HR and HR variability (HRV, 0.24- to 1.04-Hz frequency component; an index of cardiac vagal activity) responses to submaximal exercise were measured 30, 60, and 120 s after exercise onset and 30, 60, and 120 s following the termination of exercise in dogs with healed myocardial infarctions known to be susceptible (n = 19) to VF (induced by a 2-min coronary occlusion during the last minute of a submaximal exercise test). These studies were then repeated after either a 10-wk exercise program (treadmill running, n = 10) or an equivalent sedentary period (n = 9). After 10 wk, the response to exercise was not altered in the sedentary animals. In contrast, endurance exercise increased indexes of cardiac vagal activity such that HR at exercise onset was reduced (30 s after exercise onset: HR pretraining 179 +/- 8.4 vs. posttraining 151.4 +/- 6.6 beats/min; HRV pretraining 4.0 +/- 0.4 vs. posttraining 5.8 +/- 0.4 ln ms(2)), whereas HR recovery 30 s after the termination of exercise increased (HR pretraining 186 +/- 7.8 vs. posttraining 159.4 +/- 7.7 beats/min; HRV pretraining 2.4 +/- 0.3 vs. posttraining 4.0 +/- 0.6 ln ms(2)). Thus endurance exercise training restored a more normal HR regulation in dogs susceptible to VF.  相似文献   

5.
Our goal was to examine whether exercise training (ExT) could normalize impaired nitric oxide synthase (NOS)-dependent dilation of cerebral (pial) arterioles during type 1 diabetes (T1D). We measured the in vivo diameter of pial arterioles in sedentary and exercised nondiabetic and diabetic rats in response to an endothelial NOS (eNOS)-dependent (ADP), an neuronal NOS (nNOS)-dependent [N-methyl-D-aspartate (NMDA)], and a NOS-independent (nitroglycerin) agonist. In addition, we measured superoxide anion levels in brain tissue under basal conditions in sedentary and exercised nondiabetic and diabetic rats. Furthermore, we used Western blot analysis to determine eNOS and nNOS protein levels in cerebral vessels/brain tissue in sedentary and exercised nondiabetic and diabetic rats. We found that ADP and NMDA produced a dilation of pial arterioles that was similar in sedentary and exercised nondiabetic rats. In contrast, ADP and NMDA produced only minimal vasodilation in sedentary diabetic rats. ExT restored impaired ADP- and NMDA-induced vasodilation observed in diabetic rats to that observed in nondiabetics. Nitroglycerin produced a dilation of pial arterioles that was similar in sedentary and exercised nondiabetic and diabetic rats. Superoxide levels in cortex tissue were similar in sedentary and exercised nondiabetic rats, were increased in sedentary diabetic rats, and were normalized by ExT in diabetic rats. Finally, we found that eNOS protein was increased in diabetic rats and further increased by ExT and that nNOS protein was not influenced by T1D but was increased by ExT. We conclude that ExT can alleviate impaired eNOS- and nNOS-dependent responses of pial arterioles during T1D.  相似文献   

6.
7.
To determine whether endurance exercise training can improve left ventricular function in response to beta-adrenergic stimulation, young healthy sedentary subjects (10 women and 6 men) were studied before and after 12 wk of endurance exercise training. Training consisted of 3 days/wk of interval training (running and cycling) and 3 days/wk of continuous running for 40 min. The training resulted in an increase in maximal O2 uptake from 41.0 +/- 2 to 49.3 +/- 2 ml.kg-1.min-1 (P less than 0.01). Left ventricular function was evaluated by two-dimensional echocardiography under basal conditions and during beta-adrenergic stimulation induced by isoproterenol infusion. Fractional shortening (FS) under basal conditions was unchanged after training (36 +/- 1 vs. 36 +/- 2%). During the highest dose of isoproterenol, FS was 52 +/- 1% before and 56 +/- 1% after training (P less than 0.05). At comparable changes in end-systolic wall stress (sigma es), the increase in FS induced by isoproterenol was significantly larger after training (13 +/- 1 vs. 17 +/- 2%, P less than 0.01). Furthermore there was a greater decrease in end-systolic dimension at similar changes in sigma es in the trained state during isoproterenol infusion (-4.6 +/- 0.1 mm before vs. -7.0 +/- 0.1 mm after training, P less than 0.01). There were no concurrent changes in end-diastolic dimension between the trained and untrained states during isoproterenol infusion, suggesting no significant changes in preload at comparable levels of sigma es.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
To define the relationship between ischemia-reperfusion-induced myocardial damage (IRD) and the occurrence of ventricular tachycardia (VT) and fibrillation (VF), we studied 23 dogs with a three-dimensional activation mapping system. Left anterior descending (LAD) coronary artery occlusion and reperfusion were performed while recording electrograms during VF and atrial pacing. Prior nonischemic sites showing IRD, defined as at least 10% loss of electrogram voltage after reperfusion, had the longest ventricular effective refractory periods (ERPs). IRD sites also occurred more frequently in dogs with reperfusion VF (44 +/- 2 sites, P < 0.01) compared with dogs with VT (18 +/- 5 sites) and no VT (16 +/- 3 sites). In dogs (n = 3) with 3 h of reperfusion, 95% of IRD sites still had lower voltage than those recorded during occlusion. Activation mapping of the first eight complexes of VF had Purkinje or endocardial focal origin in 57%, and complexes originated from IRD sites in 28%. In contrast, dogs with only reperfusion VT also had Purkinje or endocardial focal origin in 79%, but only 5% (P < 0.01 vs. VF dogs) of the sites of origin had IRD. Therefore, dogs with reperfusion VF had more IRD sites where the ERP was longest, and more focal ventricular complexes originated from IRD sites, indicating that IRD may be one important factor in the occurrence of VF during reperfusion.  相似文献   

10.
11.
A large heart rate (HR) increase at the onset of exercise has been linked to an increased risk for adverse cardiovascular events, including cardiac death. However, the relationship between changes in cardiac autonomic regulation induced by exercise onset and the confirmed susceptibility to ventricular fibrillation (VF) has not been established. Therefore, a retrospective analysis of the HR response to exercise onset was made in mongrel dogs with healed myocardial infarctions that were either susceptible (S, n = 131) or resistant (R, n = 114) to VF (induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise). The ECG was recorded, and time series analysis of HR variability (vagal activity index, the 0.24-1.04-Hz frequency component of R-R interval variability) was measured before and 30, 60, and 120 s after the onset of exercise (treadmill running). Exercise elicited significantly (ANOVA, P < 0.0001) greater increases in HR in susceptible dogs at all three times (e.g., at 60 s: R, 46.8 +/- 2.3 vs. S, 57.1 +/- 2.2 beats/min). However, the vagal activity index decreased to a similar extent in both groups of dogs (at 60 s: R, -2.8 +/- 0.1 vs. S, -3.0 +/- 0.2 ln ms2). Beta-adrenoceptor blockade (BB, propranolol 1.0 mg/kg iv) reduced the HR increase and eliminated the differences noted between the groups [at 60 s: R (n = 26), 40.4 +/- 3.2 vs. S (n = 31), 37.5 +/- 2.4 beats/min]. After BB, exercise once again elicited similar declines in vagal activity in both groups (at 60 s: R, -3.6 +/- 0.5 vs. S, -3.2 +/- 0.4 ln ms2). When considered together, these data suggest that at the onset of exercise HR increases to a greater extent in animals prone to VF compared with dogs resistant to this malignant arrhythmia due to an enhanced cardiac sympathetic activation in the susceptible dogs.  相似文献   

12.
This study was conducted to systematically investigate whether induction and maintenance of ventricular fibrillation in the canine heart, change with age during the early postnatal development. Forty-eight mongrel puppies from seven litters, were randomly selected for size and studied at weekly intervals from 1-6 weeks for determination of ventricular fibrillation threshold and incidence of spontaneous defibrillation. Another fourteen mongrel puppies 8-11 weeks old and 10 adult dogs were similarly studied. Ventricular fibrillation threshold increased progressively with age up to the eighth week (VFTmA = 8.38 + 2.67 wk-0.134.wk2, r = 0.995) and thereafter reached a plateau, which was not significantly different from the ventricular fibrillation threshold of adult dogs (26.5 +/- 2.2 mA). In contrast, the high incidence of spontaneous defibrillation at early age decreased rapidly between second and fourth week and became rare thereafter, (%SDF = 281.e-0.60wk, r = 0.94. This rapid drop could not be explained by the increase in mean body weight, which did not change significantly during this early period (BWkg = 0.59.e0.23wk, r = 0.97). Our findings suggest first, that the vulnerability of the neonatal dog heart to electrical induction of ventricular fibrillation decreases progressively during early age. Second, that spontaneous defibrillation decreases precipitously between the second and fourth week of age, a change not sufficiently explained by the modest body weight gain during that time. Thus, it appears that about the third week of age ventricular vulnerability to fibrillation and ability to defibrillation reach a critical point, where lethal arrhythmias may become both inducible and sustainable, to result in death.  相似文献   

13.
Exercise training (ExT) normalizes the increased sympathetic outflow in heart failure (HF), but the underlying mechanisms are not known. We hypothesized ExT would normalize the augmented activation of the paraventricular nucleus (PVN) via an angiotensinergic mechanism during HF. Four groups of rats used were the following: 1) sham-sedentary (Sed); 2) sham-ExT; 3) HF-Sed, and 4) HF-ExT. HF was induced by left coronary artery ligation. Four weeks after surgery, 3 wk of treadmill running was performed in ExT groups. The number of FosB-positive cells in the PVN was significantly increased in HF-Sed group compared with the sham-Sed group. ExT normalized (negated) this increase in the rats with HF. In anesthetized condition, the increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) in response to microinjection of angiotensin (ANG) II (50~200 pmol) in the PVN of HF-Sed group were significantly greater than of the sham-Sed group. In the HF-ExT group the responses to microinjection of ANG II were not different from sham-Sed or sham-ExT groups. Blockade of ANG II type 1 (AT(1)) receptors with losartan in the PVN produced a significantly greater decrease in RSNA, MAP, and HR in HF-Sed group compared with sham-Sed group. ExT prevented the difference between HF and sham groups. AT(1) receptor protein expression was increased 50% in HF-Sed group compared with sham-Sed group. In the HF-ExT group, AT(1) receptor protein expression was not significantly different from sham-Sed or sham-ExT groups. In conclusion, one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of angiotensinergic mechanisms within the PVN.  相似文献   

14.
Parasympathetic neural activity modulates some ventricular arrhythmias in man. Therefore, a canine model of arrhythmias produced by the interaction of halothane and catecholamines was used to study the effects of vagal stimulation on the induction of ventricular fibrillation. The dose of catecholamine required to induce ventricular fibrillation was determined during a constant heart rate. Vagal stimulation reversibly raised the norepinephrine dose that produced ventricular fibrillation from 16.4 +/- 2.4 to 30.0 +/- 3.8 micrograms (p less than 0.001, n = 10), and the epinephrine dose from 15.5 +/- 2.0 to 22.5 +/- 2.6 micrograms (p less than 0.001, n = 5). Following atropine, vagal stimulation failed to raise the threshold dose of norepinephrine (16.8 +/- 2.4 vs. 18.3 +/- 3.3 micrograms, nonsignificant, n = 6) or epinephrine (15.5 +/- 2.0 vs. 16.0 +/- 2.3 micrograms, nonsignificant, n = 5). Ligation of the cervical vagus nerves did not affect the epinephrine threshold dose (16.3 +/- 3.3 vs. 17.5 +/- 2.7 micrograms, nonsignificant, n = 5). Following elevation of basal vagal tone by morphine premedication, the norepinephrine threshold of 53.0 +/- 9.2 micrograms declined by a nonsignificant amount to 46.5 +/- 11.5 micrograms after vagotomy (nonsignificant, n = 5). Thus resting vagal tone does not prevent catecholamine-halothane-induced ventricular fibrillation, whereas increasing vagal tone by electrical stimulation substantially protects against this arrhythmia. The protection is mediated through a muscarinic cholinergic receptor.  相似文献   

15.
The hemodynamic response to submaximal exercise was investigated in 38 mongrel dogs with healed anterior wall myocardial infarctions. The dogs were chronically instrumented to measure heart rate (HR), left ventricular pressure (LVP), LVP rate of change, and coronary blood flow. A 2 min coronary occlusion was initiated during the last minute of an exercise stress test and continued for 1 min after cessation of exercise. Nineteen dogs had ventricular fibrillation (susceptible) while 19 animals did not (resistant) during this test. The cardiac response to submaximal exercise was markedly different between the two groups. The susceptible dogs exhibited a significantly higher HR and left ventricular end-diastolic pressure (LVEDP) but a significantly lower left ventricular systolic pressure (LVSP) in response to exercise than did the resistant animals. (For example, response to 6.4 kph at 8% grade; HR, susceptible 201.4 +/- 5.1 beats/min vs. resistant 176.2 +/- 5.6 beats/min; LVEDP, susceptible 19.4 +/- 1.1 mmHg vs. resistant 12.3 +/- 1.7 mmHg; LVSP, susceptible 136.9 +/- 7.9 mmHg vs. resistant 154.6 +/- 9.8 mmHg.) beta-Adrenergic receptor blockade with propranolol reduced the difference noted in the HR response but exacerbated the LVP differences (response to 6.4 kph at 8% grade; HR, susceptible 163.4 +/- 4.7 mmHg vs. resistant 150.3 +/- 6.4 mmHg; LVEDP susceptible 28.4 +/- 2.1 mmHg vs. resistant 19.6 +/- 3.0 mmHg; LVSP, susceptible 122.2 +/- 8.1 mmHg vs. resistant 142.8 +/- 10.7 mmHg). These data indicate that the animals particularly vulnerable to ventricular fibrillation also exhibit a greater degree of left ventricular dysfunction and an increased sympathetic efferent activity.  相似文献   

16.
The effect of training on properties of a sarcolemmal ATP-sensitive K+ current (I(K(ATP))) was examined in left ventricular cardiocytes isolated from sedentary (Sed) and trained (Tr) female Sprague-Dawley rats. Whole cell patch-clamp techniques were used to characterize I(K(ATP)), an anoxia-inducible, glibencamide-sensitive current. An anoxic condition was induced by superfusing cells with a buffer that was equilibrated with 100% N(2), maintained under a layer of argon, and that contained 2-deoxy-D-glucose. Over a 1-h period of anoxia, 59% of Tr cells and 85% Sed cells expressed I(K(ATP)). In those cells that did express I(K(ATP)), the time to expression of the current during the anoxic period occurred significantly later in cells from the Tr group compared with the Sed. Peak I(K(ATP)) density was significantly lower in the Tr cells compared with the Sed cells. These results indicate that the onset and magnitude of I(K(ATP)) were altered by training. These alterations in I(K(ATP)) may be reflective of processes that contribute to training-induced cardioprotection against ischemia-reperfusion damage.  相似文献   

17.
18.
19.
Andrew JS Coats 《Trials》2000,1(3):155-6
Chronic heart failure (CHF) is a common condition with a poor prognosis. It is associated with poor exercise tolerance and debilitating symptoms. These symptoms appear to be associated with pathophysiological changes that occur systemically in the patient with CHF. Exercise training in carefully selected patients has been shown to be safe and to improve exercise capacity. Many of the pathophysiological abnormalities of CHF are improved by training. Some studies have suggested a possible improvement in morbidity and mortality with training. This review analyzes the controlled clinical trials of exercise training in CHF published to date.  相似文献   

20.
To determine the extent and sources of adaptive response in gas-exchange to major lung resection during somatic maturation, immature male foxhounds underwent right pneumonectomy (R-Pnx, n = 5) or right thoracotomy without pneumonectomy (Sham, n = 6) at 2 mo of age. One year after surgery, exercise capacity and pulmonary gas-exchange were determined during treadmill exercise. Lung diffusing capacity (DL) and cardiac output were measured by a rebreathing technique. In animals after R-Pnx, maximal O2 uptake, lung volume, arterial blood gases, and DL during exercise were completely normal. Postmortem morphometric analysis 18 mo after R-Pnx (n = 3) showed a vigorous compensatory increase in alveolar septal tissue volume involving all cellular compartments of the septum compared with the control lung; as a result, alveolar-capillary surface areas and DL estimated by morphometry were restored to normal. In both groups, estimates of DL by the morphometric method agreed closely with estimates obtained by the physiological method during peak exercise. These data show that extensive lung resection in immature dogs stimulates a vigorous compensatory growth of alveolar tissue in excess of maturational lung growth, resulting in complete normalization of aerobic capacity and gas-exchange function at maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号