首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in modulating chromatin structure, regulation of gene expression, and sensing DNA damage. Here, we report that PARP-1 enzymatic activity is inhibited by macroH2A, a vertebrate histone H2A variant that is enriched on facultative heterochromatin. MacroH2A family members have a large C-terminal non-histone domain (NHD) and H2A-like histone domain. MacroH2A1.2 and PARP-1 interact in vivo and in vitro via the NHD. The NHD of each macroH2A family member was sufficient to inhibit PARP-1 enzymatic activity in vitro. The NHD of macroH2A1.2 was a mixed inhibitor of PARP-1 catalytic activity, with affects on both catalytic activity and the substrate binding affinity of PARP-1. Depletion of PARP-1 by RNA interference caused reactivation of a reporter gene on the inactive X chromosome, demonstrating that PARP-1 participates in the maintenance of silencing. These results suggest that one function of macroH2A in gene silencing is to inhibit PARP-1 enzymatic activity, and this may affect PARP-1 association with chromatin.  相似文献   

4.
5.
6.
 研究不同浓度的血清对全反式视黄酸 (ATRA)抑制肺癌细胞生长的影响 .当细胞培养在 10 %血清中 ,ATRA不能抑制肺癌细胞生长 ,但是当细胞培养在 1%血清中 ,ATRA能够有效地抑制肺癌细胞生长 .视黄酸受体RARβ介导视黄酸的抗癌作用 .Northern印迹分析表明 ,在高浓度血清中AT RA不能诱导RARβ表达 ,但在低浓度血清中ATRA可以诱导RARβ表达 ,并且瞬时转染和CAT测定证实是通过激活RABβ启动子转录活性而诱导RARβ表达的 .孤生受体Nur77受到血清生长因子刺激后会大量表达 ,具有抗视黄酸活性的作用 .肺癌细胞培养在低浓度血清中 ,Nur77mRNA低水平表达和Nur77蛋白不表达 .然而在高浓度血清中 ,Nur77mRNA和蛋白高水平表达 .另外 ,在无血清条件下 ,EGF也可以诱导Nur77表达 .结果提示 ,血清中的生长因子可能拮抗ATRA抑制肺癌细胞生长的作用 ,其作用途径可能是通过刺激细胞中Nur77表达 ,或者通过下调RARβ启动子的转录活性而抑制RARβ的表达  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
A defect in the Werner syndrome protein (WRN) leads to the premature aging disease Werner syndrome (WS). Hallmark features of cells derived from WS patients include genomic instability and hypersensitivity to certain DNA-damaging agents. WRN contains a highly conserved region, the RecQ conserved domain, that plays a central role in protein interactions. We searched for proteins that bound to this region, and the most prominent direct interaction was with poly(ADP-ribose) polymerase 1 (PARP-1), a nuclear enzyme that protects the genome by responding to DNA damage and facilitating DNA repair. In pursuit of a functional interaction between WRN and PARP-1, we found that WS cells are deficient in the poly(ADP-ribosyl)ation pathway after they are treated with the DNA-damaging agents H2O2 and methyl methanesulfonate. After cellular stress, PARP-1 itself becomes activated, but the poly(ADP-ribosyl)ation of other cellular proteins is severely impaired in WS cells. Overexpression of the PARP-1 binding domain of WRN strongly inhibits the poly(ADP-ribosyl)ation activity in H2O2-treated control cell lines. These results indicate that the WRN/PARP-1 complex plays a key role in the cellular response to oxidative stress and alkylating agents, suggesting a role for these proteins in the base excision DNA repair pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号