首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3beta (GSK-3beta) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.  相似文献   

2.
Tumor necrosis factor-alpha (TNF-alpha) mediated attenuation of insulin signaling pathway is an important cause in several disorders like obesity, obesity linked diabetes mellitus. TNF-alpha actions vary depending upon concentration and time of exposure in various cells. In the present study, the effects of long-term TNF-alpha (1 ng/ml) exposure on the components of insulin signaling pathway in HepG2 and HepG2 cells overexpressing constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB) have been investigated. In parental HepG2 cells, TNF-alpha treatment for 24 h reduced the phosphorylation of Akt1/PKB-alpha and GSK-3beta and under these conditions cells also showed reduced insulin responsiveness in terms of Akt1/PKB-alpha and GSK-3beta phosphorylation. TNF-alpha pre-incubated HepG2-CA-Akt/PKB cells showed lower reduction in Akt1/PKB-alpha and GSK-3beta phosphorylation and insulin responsiveness after 24 h as compared to parental HepG2 cells. We report that the long-term TNF-alpha pre-incubation in both parental HepG2 and HepG2-CA-Akt/PKB-alpha cells leads to the reduction in the levels of IRS-1 without altering the levels of IRS-2. In order to understand the reason for the differential insulin resistance in both the cell types, the effect of long-term TNF-alpha treatment on the proteins upstream to Akt/PKB was investigated. TNF-alpha pre-incubation also showed reduced insulin-stimulated Tyr phosphorylation of insulin receptor (IR-beta) in both the cell types, moreover hyperphosphorylation of IRS-1 at Ser 312 residue was observed in TNF-alpha pre-incubated cells. As hyperphosphorylation of IRS-1 at Ser 312 can induce its degradation, it is possible that reduced insulin responsiveness after long-term TNF-alpha pre-incubation observed in this study is due to the decrease in IRS-1 levels.  相似文献   

3.
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase that plays an important role in the regulation of cell proliferation and protein synthesis through the activation of its downstream target ribosomal p70 S6 kinase (p70(S6K)). The levels of p-mTOR are regulated by the protein kinase B (Akt/PKB). Therefore, the effects of insulin and rapamycin (an inhibitor of mTOR) on the phosphorylation of mTOR (Ser 2448) and p70(S6K) (Thr 389) as well as on cell proliferation in parental HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB (HepG2-CA-Akt/PKB) were studied. Insulin increased the levels of phosphorylated mTOR and p70(S6K) in both the cell lines. Rapamycin treatment partially decreased the phosphorylation of mTOR but completely abolished the phosphorylation of p70(S6K) in the absence as well as presence of insulin in both cell lines. The effect of insulin and rapamycin on the cell proliferation in both cell lines was further studied. In the presence of serum, parental HepG2 cells and HepG2-CA-Akt/PKB showed an increase in cell proliferation until 120 and 168 h respectively. Rapamycin inhibited cell proliferation under all experimental conditions more evident under serum deprived conditions. Parental HepG2 cells showed decline in the cell proliferation after 48 h and the presence of insulin prolonged cell survival until 120 h and this effect were also inhibited by rapamycin under serum deprived conditions. On the contrary, HepG2-CA-Akt/PKB cells continued proliferation until 192 h. The effects of insulin on cell proliferation were more pronounced in parental HepG2 cells as compared to HepG2-CA-Akt/PKB cells. Long term effects of rapamcyin significantly decreased the levels of p-mTOR (Ser 2448) both in the presence and absence of insulin in these cells. A positive correlation between the levels of p-mTOR (Ser2448) and cell proliferation was observed (99% confidence interval, r(2)=0.525, p<0.0001). These results suggest that rapamycin causes a decline in the cell growth through the inhibition of mTOR.  相似文献   

4.
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase that plays an important role in the regulation of cell proliferation and protein synthesis through the activation of its downstream target ribosomal p70 S6 kinase (p70S6K). The levels of p-mTOR are regulated by the protein kinase B (Akt/PKB). Therefore, the effects of insulin and rapamycin (an inhibitor of mTOR) on the phosphorylation of mTOR (Ser 2448) and p70S6K (Thr 389) as well as on cell proliferation in parental HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB (HepG2-CA-Akt/PKB) were studied. Insulin increased the levels of phosphorylated mTOR and p70S6K in both the cell lines. Rapamycin treatment partially decreased the phosphorylation of mTOR but completely abolished the phosphorylation of p70S6K in the absence as well as presence of insulin in both cell lines. The effect of insulin and rapamycin on the cell proliferation in both cell lines was further studied. In the presence of serum, parental HepG2 cells and HepG2-CA-Akt/PKB showed an increase in cell proliferation until 120 and 168 h respectively. Rapamycin inhibited cell proliferation under all experimental conditions more evident under serum deprived conditions. Parental HepG2 cells showed decline in the cell proliferation after 48 h and the presence of insulin prolonged cell survival until 120 h and this effect were also inhibited by rapamycin under serum deprived conditions. On the contrary, HepG2-CA-Akt/PKB cells continued proliferation until 192 h. The effects of insulin on cell proliferation were more pronounced in parental HepG2 cells as compared to HepG2-CA-Akt/PKB cells. Long term effects of rapamcyin significantly decreased the levels of p-mTOR (Ser 2448) both in the presence and absence of insulin in these cells. A positive correlation between the levels of p-mTOR (Ser2448) and cell proliferation was observed (99% confidence interval, r2 = 0.525, p < 0.0001). These results suggest that rapamycin causes a decline in the cell growth through the inhibition of mTOR.  相似文献   

5.
Protein kinase B (Akt/PKB) is a key component in the PI 3-kinase mediated cell survival pathway and has oncogenic transformation potential. Although the over-expression of PKB-alpha can prevent cell death following growth factor withdrawal, the long-term effects of stable over-expression of PKB-alpha on cell survival in the absence of growth factors remain to be resolved. In the present study, we generated HepG2 cells with stable expression of active PKB-alpha and compared its characteristics with HepG2 cells. Basal as well as insulin-stimulated levels of Ser(473) and Thr(308) phosphorylation in PKB-alpha transfected HepG2 cells were much higher than HepG2 cells. Constitutive expression of active PKB-alpha enabled HepG2 cells to survive up to 96 h without serum in growth media while HepG2 cells fail to survive after 48 h of serum withdrawal. A strong positive correlation (R(2) = 0.71) between cell proliferation and phosphorylated form of PKB-alpha at Thr(308) was observed along with higher levels of phosphorylated 3'-phosphoinositide-dependent kinase-1 (PDK-1). HepG2 cells with constitutive expression of active PKB-alpha also showed higher levels of phosphorylated p65 subunit of nuclear factor-kappaB (NFkappaB) in comparison with HepG2 cells. Predominant nuclear localization of phosphorylated PKB-alpha was observed in stably transfected HepG2 cells. These results indicate that constitutive expression of active PKB-alpha renders HepG2 cells independent of serum based growth factors for survival and proliferation.  相似文献   

6.
Reduction in or dysfunction of glutamate transporter 1 (GLT1) is linked to several neuronal disorders such as stroke, Alzheimer’s disease, and amyotrophic lateral sclerosis. However, the detailed mechanism underlying GLT1 regulation has not been fully elucidated. In the present study, we first demonstrated the effects of mammalian target of rapamycin (mTOR) signaling on GLT1 regulation. We prepared astrocytes cultured in astrocyte-defined medium (ADM), which contains several growth factors including epidermal growth factor (EGF) and insulin. The levels of phosphorylated Akt (Ser473) and mTOR (Ser2448) increased, and GLT1 levels were increased in ADM-cultured astrocytes. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor or an Akt inhibitor suppressed the phosphorylation of Akt (Ser473) and mTOR (Ser2448) as well as decreased ADM-induced GLT1 upregulation. Treatment with the mTOR inhibitor rapamycin decreased GLT1 protein and mRNA levels. In contrast, rapamycin did not affect Akt (Ser473) phosphorylation. Our results suggest that mTOR is a downstream target of the PI3K/Akt pathway regulating GLT1 expression.  相似文献   

7.
Alpha-synuclein (α-Syn) is a major component of Lewy bodies, a pathological feature of Parkinson's and other neurodegenerative diseases collectively known as synucleinopathies. Among the possible mechanisms of α-Syn-mediated neurotoxicity is interference with cytoprotective pathways such as insulin signaling. Insulin receptor substrate (IRS)-1 is a docking protein linking IRs to downstream signaling pathways such as phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K)1; the latter exerts negative feedback control on insulin signaling, which is impaired in Alzheimer's disease. Our previous study found that α-Syn overexpression can inhibit protein phosphatase (PP)2A activity, which is involved in the protective mechanism of insulin signaling. In this study, we found an increase in IRS-1 phosphorylation at Ser636 and decrease in tyrosine phosphorylation, which accelerated IRS-1 turnover and reduced insulin-Akt signaling in α-Syn-overexpressing SK-N-SH cells and transgenic mice. The mTOR complex (C)1/S6K1 blocker rapamycin inhibited the phosphorylation of IRS-1 at Ser636 in cells overexpressing α-Syn, suggesting that mTORC1/S6K1 activation by α-Syn causes feedback inhibition of insulin signaling via suppression of IRS-1 function. α-Syn overexpression also inhibited PP2A activity, while the PP2A agonist C2 ceramide suppressed both S6K1 activation and IRS-1 Ser636 phosphorylation upon α-Syn overexpression. Thus, α-Syn overexpression negatively regulated IRS-1 via mTORC1/S6K1 signaling while activation of PP2A reverses this process. These results provide evidence for a link between α-Syn and IRS-1 that may represent a novel mechanism for α-Syn-associated pathogenesis.  相似文献   

8.
The mammalian target of rapamycin (mTOR) is a key regulator of protein translation. Signaling via mTOR is increased by growth factors but decreased during nutrient deprivation. Previous studies have identified Ser2448 as a nutrient-regulated phosphorylation site located in the mTOR catalytic domain, insulin stimulates Ser2448 phosphorylation via protein kinase B (PKB), while Ser2448 phosphorylation is attenuated with amino acid starvation. Here we have identified Thr2446 as a novel nutrient-regulated phosphorylation site on mTOR. Thr2446 becomes phosphorylated when CHO-IR cells are nutrient-deprived, but phosphorylation is reduced by insulin stimulation. Nutrient deprivation activates AMP-activated protein kinase (AMPK). To test whether this could be involved in regulating phoshorylation of mTOR, we treated cultured murine myotubes with 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) or dinitrophenol (DNP). Both treatments activated AMPK and also caused a concomitant increase in phosphorylation of Thr2446 and a parallel decrease in insulin's ability to phosphorylate p70 S6 kinase. In vitro kinase assays using peptides based on the sequence in amino acids 2440-2551 of mTOR found that PKB and AMPK are capable of phosphorylating sites in this region. However, phosphorylation by PKB is restricted when Thr2446 is mutated to an acidic residue mimicking phosphorylation. Conversely, AMP-kinase-induced phosphorylation is reduced when Ser2448 is phosphorylated. These data suggest differential phosphorylation Thr2446 and Ser2448 could act as a switch mechanism to integrate signals from nutrient status and growth factors to control the regulation of protein translation.  相似文献   

9.
Ser/Thr phosphorylation of insulin receptor substrate IRS-1 regulates insulin signaling, but the relevant phosphorylated residues and their potential functions during insulin-stimulated signal transduction are difficult to resolve. We used a sequence-specific polyclonal antibody directed against phosphorylated Ser(302) to study IRS-1-mediated signaling during insulin and insulin-like growth factor IGF-I stimulation. Insulin or IGF-I stimulated phosphorylation of Ser(302) in various cell backgrounds and in murine muscle. Wortmannin or rapamycin inhibited Ser(302) phosphorylation, and amino acids or glucose stimulated Ser(302) phosphorylation, suggesting a role for the mTOR cascade. The Ser(302) kinase associates with IRS-1 during immunoprecipitation, but its identity is unknown. The NH(2)-terminal c-Jun kinase did not phosphorylate Ser(302). Replacing Ser(302) with alanine significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and p85 binding and reduced insulin-stimulated phosphorylation of p70(S6K), ribosomal S6 protein, and 4E-BP1; however, this mutation had no effect on insulin-stimulated Akt or glycogen synthase kinase 3beta phosphorylation. Replacing Ser(302) with alanine reduced insulin/IGF-I-stimulated DNA synthesis. We conclude that Ser(302) phosphorylation integrates nutrient availability with insulin/IGF-I signaling to promote mitogenesis and cell growth.  相似文献   

10.
Insulin receptor substrate-1 (IRS-1) and IRS-2 are known to transduce and amplify signals emanating from the insulin receptor. Here we show that Grb2-associated binder 1 (Gab1), despite its structural similarity to IRS proteins, is a negative modulator of hepatic insulin action. Liver-specific Gab1 knockout (LGKO) mice showed enhanced hepatic insulin sensitivity with reduced glycemia and improved glucose tolerance. In LGKO liver, basal and insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2 was elevated, accompanied by enhanced Akt/PKB activation. Conversely, Erk activation by insulin was suppressed in LGKO liver, leading to defective IRS-1 Ser612 phosphorylation. Thus, Gab1 acts to attenuate, through promotion of the Erk pathway, insulin-elicited signals flowing through IRS and Akt proteins, which represents a novel balancing mechanism for control of insulin signal strength in the liver.  相似文献   

11.
Regulation of insulin receptor substrate (IRS)-2 expression is critical to beta-cell survival, but the mechanisms that control this are complex and undefined. Here in pancreatic beta-cells (INS-1), chronic exposure (>8 h) to 15 mm glucose and/or 5 nm IGF-1, increased Ser/Thr phosphorylation of IRS-2, which correlated with decreased IRS-2 levels. This glucose/IGF-1-induced decrease in IRS-2 levels was prevented by the proteasomal inhibitor, lactacystin. In addition, the glucose/IGF-1-induced increase in Ser/Thr phosphorylation of IRS-2 and the subsequent decrease in INS-1 cell IRS-2 protein levels was thwarted by the mammalian target of rapamycin(mTOR) inhibitor, rapamycin. Moreover, adenoviral-mediated expression of constitutively active mTOR (mTORDelta) further increased glucose/IGF-1-induced Ser/Thr phosphorylation of IRS-2 and decreased IRS-2 protein levels, whereas adenoviral-mediated expression of "kinase-dead" mTOR (mTOR-KD) conversely reduced Ser/Thr phosphorylation of IRS-2 and maintained IRS-2 protein levels. In adenoviral-infected beta-cells expressing mTORDelta, the decrease in IRS-2 protein levels was also prevented by rapamycin or lactacystin, further indicating a proteasomal mediated degradation of IRS-2 mediated via mTOR-induced Ser/Thr phosphorylation of IRS-2. Finally, we found that chronic activation of mTOR leading to decreased levels of IRS-2 in INS-1 cells led to a significant decrease in PKB activation and consequently increased beta-cell apoptosis. Thus, chronic activation of mTOR by glucose (and/or IGF-1) in beta-cells leads to increased Ser/Thr phosphorylation of IRS-2 that targets it for proteasomal degradation, resulting in decreased IRS-2 expression and increased beta-cell apoptosis. This may be a contributing mechanism as to how beta-cell mass is decreased by chronic hyperglycemia in the pathogenesis of type-2 diabetes.  相似文献   

12.
Studies of cultured cells have indicated that the mammalian target of rapamycin complex 1 (mTORC1) mediates the development of insulin resistance. Because a role for mTORC1 in the development of skeletal muscle insulin resistance has not been established, we studied mTORC1 activity in skeletal muscles of ob/ob (OB) mice and wild-type (WT) mice. In vivo insulin action was assessed in muscles of mice 15 min following an intraperitoneal injection of insulin or an equivalent volume of saline. In the basal state, the phosphorylation of S6K on Thr(389), mTOR on Ser(2448), and PRAS40 on Thr(246) were increased significantly in muscles from OB mice compared with WT mice. The increase in basal mTORC1 signaling was associated with an increase in basal PKB phosphorylation on Thr(308) and Ser(473). In the insulin-stimulated state, no differences existed in the phosphorylation of S6K on Thr(389), but PKB phosphorylation on Thr(308) and Ser(473) was significantly reduced in muscles of OB compared with WT mice. Despite elevated mTORC1 activity in OB mice, rapamycin treatment did not improve either glucose tolerance or insulin tolerance. These results indicate that the insulin resistance of OB mice is mediated, in part, by factors other than mTORC1.  相似文献   

13.
We have investigated the effects of insulin, amino acids, and the degree of muscle loading on the phosphorylation of Ser(2448), a site in the mammalian target of rapamycin (mTOR) phosphorylated by protein kinase B (PKB) in vitro. Phosphorylation was assessed by immunoblotting with a phosphospecific antibody (anti-Ser(P)(2448)) and with mTAb1, an activating antibody whose binding is inhibited by phosphorylation in the region of mTOR that contains Ser(2448). Incubating rat diaphragm muscles with insulin increased Ser(2448) phosphorylation but did not change the total amount of mTOR. Insulin, but not amino acids, activated PKB, as evidenced by increased phosphorylation of both Ser(308) and Thr(473) in the kinase. Ser(2448) phosphorylation was also modulated by muscle-loading. Overloading the rat plantaris muscle by synergist muscle ablation, which promotes hypertrophy of the plantaris muscle, increased Ser(2448) phosphorylation. In contrast, unloading the gastrocnemius muscle by hindlimb suspension, which promotes atrophy of the muscle, decreased Ser(2448) phosphorylation, an effect that was fully reversible. Neither overloading nor hindlimb suspension significantly changed the total amount of mTOR. In summary, our results demonstrate that atrophy and hypertrophy of skeletal muscle are associated with decreases and increases in Ser(2448) phosphorylation, suggesting that modulation of this site may have an important role in the control of protein synthesis.  相似文献   

14.
REIC is downregulated in immortalized cell lines compared with the parental normal counterparts. It may inhibit colony formation, tumor growth and induce apoptosis. Here, gastric carcinoma or epithelial cells transfected with REIC-expressing plasmid, its siRNA or treated with recombinant REIC were subjected to the phenotypes’ measurement or related molecules’ detection. REIC expression was examined in gastric carcinomas by RT-PCR, western blot and immunohistochemistry. REIC overexpression or treatment resulted in a low karyoplasmic ratio and proliferation, G1 arrest, high apoptosis, low migration, invasion or lamellipodia formation in AGS cells. REIC knockdown caused the opposite in GES-1 cells. Anti-REIC antibody blocked the effects of REIC overexpression on proliferation, G1/S progression and apoptosis. Ectopic REIC expression downregulated the expression of β-catenin, phosphorylated S6K (Thr389), phosphorylated Akt1/2/3 (Ser473), cyclin D2 and E, WAVE2 and upregulated phosphorylated mTOR (Ser2448) expression and the mRNA level of Akt1, Akt2, mTOR, Raptor and Rictor in AGS cells. REIC expression was negatively associated with tumor size, lymph node metastasis, dedifferentiation or poor prognosis of carcinoma. The serum REIC level was significantly higher in healthy individuals than the carcinoma patients and inversely linked to tumor size by ELISA. The possible mechanisms underlying the forced REIC overexpression or recombinant REIC mediated the reversal of the aggressive phenotypes of gastric carcinoma cells are to downregulate β-catenin and WAVE2 expression and to alter other related target proteins. Downregulated REIC expression was closely linked to aggressive behaviors and poor prognosis of gastric carcinoma.  相似文献   

15.
Greene MW  Garofalo RS 《Biochemistry》2002,41(22):7082-7091
Insulin receptor substrates (IRS) 1 and 2 are phosphorylated on serine/threonine (Ser/Thr) residues in quiescent cells (basal phosphorylation), and phosphorylation on both Ser/Thr and tyrosine residues is increased upon insulin stimulation. To determine whether basal Ser/Thr phosphorylation of IRS proteins influences insulin receptor catalyzed tyrosine phosphorylation, recombinant FLAG epitope-tagged IRS-1 (F-IRS-1) and IRS-2 (F-IRS-2) were expressed, purified, and subjected to both dephosphorylation and hyperphosphorylation prior to phosphorylation by the insulin receptor kinase. As expected, hyperphosphorylation of F-IRS-1 and F-IRS-2 by GSK3beta decreased their subsequent phosphorylation on tyrosine residues by the insulin receptor. Surprisingly, however, dephosphorylation of the basal Ser/Thr phosphorylation sites impaired subsequent phosphorylation on tyrosine, suggesting that basal Ser/Thr phosphorylation of F-IRS-1 and F-IRS-2 plays a positive role in phosphorylation by the insulin receptor tyrosine kinase. Dephosphorylation of basal Ser/Thr sites on F-IRS-1 also significantly reduced tyrosine phosphorylation by the IGF-1 receptor. However, dephosphorylation of F-IRS-2 significantly increased phosphorylation by the IGF-1 receptor, suggesting that basal phosphorylation of IRS-2 has divergent effects on its interaction with the insulin and IGF-1 receptors. Phosphorylation of endogenous IRS-1 and IRS-2 from 3T3-L1 adipocytes was modulated in a similar manner. IRS-1 and IRS-2 from serum-fed cells were hyperphosphorylated, and dephosphorylation induced either by serum deprivation or by alkaline phosphatase treatment after immunoprecipitation led to an increase in tyrosine phosphorylation by the insulin receptor. Dephosphorylation of IRS-1 and IRS-2 immunoprecipitated from serum-deprived cells, however, resulted in inhibition of tyrosine phosphorylation by the insulin receptor. These data suggest that Ser/Thr phosphorylation can have both a positive and a negative regulatory role on tyrosine phosphorylation of IRS-1 and IRS-2 by insulin and IGF-1 receptors.  相似文献   

16.
The AMP-activated protein kinase (AMPK) is known to increase cardiac insulin sensitivity on glucose uptake. AMPK also inhibits the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) pathway. Once activated by insulin, mTOR/p70S6K phosphorylates insulin receptor substrate-1 (IRS-1) on serine residues, resulting in its inhibition and reduction of insulin signaling. AMPK was postulated to act on insulin by inhibiting this mTOR/p70S6K-mediated negative feedback loop. We tested this hypothesis in cardiomyocytes. The stimulation of glucose uptake by AMPK activators and insulin correlated with AMPK and protein kinase B (PKB/Akt) activation, respectively. Both treatments induced the phosphorylation of Akt substrate 160 (AS160) known to control glucose uptake. Together, insulin and AMPK activators acted synergistically to induce PKB/Akt overactivation, AS160 overphosphorylation, and glucose uptake overstimulation. This correlated with p70S6K inhibition and with a decrease in serine phosphorylation of IRS-1, indicating the inhibition of the negative feedback loop. We used the mTOR inhibitor rapamycin to confirm these results. Mimicking AMPK activators in the presence of insulin, rapamycin inhibited p70S6K and reduced IRS-1 phosphorylation on serine, resulting in the overphosphorylation of PKB/Akt and AS160. However, rapamycin did not enhance the insulin-induced stimulation of glucose uptake. In conclusion, although the insulin-sensitizing effect of AMPK on PKB/Akt is explained by the inhibition of the insulin-induced negative feedback loop, its effect on glucose uptake is independent of this mechanism. This disconnection revealed that the PKB/Akt/AS160 pathway does not seem to be the rate-limiting step in the control of glucose uptake under insulin treatment.  相似文献   

17.
The mammalian target of rapamycin (mTOR) is a central regulator of cell growth. mTOR exists in two functional complexes, mTORC1 and mTORC2. mTORC1 is rapamycin-sensitive, and results in phosphorylation of 4E-BP1 and S6K1. mTORC2 is proposed to regulate Akt Ser473 phosphorylation and be rapamycin-insensitive. mTORC2 consists of mTOR, mLST8, sin1, Protor/PRR5, and the rapamycin insensitive companion of mTOR (rictor). Here, we show that rapamycin regulates the phosphorylation of rictor. Rapamycin-mediated rictor dephosphorylation is time and concentration dependent, and occurs at physiologically relevant rapamycin concentrations. siRNA knockdown of mTOR also leads to rictor dephosphorylation, suggesting that rictor phosphorylation is mediated by mTOR or one of its downstream targets. Rictor phosphorylation induced by serum, insulin and insulin-like growth factor is blocked by rapamycin. Rictor dephosphorylation is not associated with dephosphorylation of Akt Ser473. Further work is needed to better characterize the mechanism of rictor regulation and its role in rapamycin-mediated growth inhibition.  相似文献   

18.
Insulin receptor substrate (IRS) proteins are tyrosine phosphorylated and mediate multiple signals during activation of the receptors for insulin, insulin-like growth factor 1 (IGF-1), and various cytokines. In order to distinguish common and unique functions of IRS-1, IRS-2, and IRS-4, we expressed them individually in 32D myeloid progenitor cells containing the human insulin receptor (32D(IR)). Insulin promoted the association of Grb-2 with IRS-1 and IRS-4, whereas IRS-2 weakly bound Grb-2; consequently, IRS-1 and IRS-4 enhanced insulin-stimulated mitogen-activated protein kinase activity. During insulin stimulation, IRS-1 and IRS-2 strongly bound p85alpha/beta, which activated phosphatidylinositol (PI) 3-kinase, protein kinase B (PKB)/Akt, and p70(s6k), and promoted the phosphorylation of BAD. IRS-4 also promoted the activation of PKB/Akt and BAD phosphorylation during insulin stimulation; however, it weakly bound or activated p85-associated PI 3-kinase and failed to mediate the activation of p70(s6k). Insulin strongly inhibited apoptosis of interleukin-3 (IL-3)-deprived 32D(IR) cells expressing IRS-1 or IRS-2 but failed to inhibit apoptosis of cells expressing IRS-4. Consequently, 32D(IR) cells expressing IRS-4 proliferated slowly during insulin stimulation. Thus, the activation of PKB/Akt and BAD phosphorylation might not be sufficient to inhibit the apoptosis of IL-3-deprived 32D(IR) cells unless p85-associated PI 3-kinase or p70(s6k) are strongly activated.  相似文献   

19.
Epithelial–mesenchymal transition (EMT), proliferation and migration of RPE cells characterize the development of proliferative vitreoretinopathy (PVR) and other fibro-proliferative eye diseases leading to blindness. A common event in these pathologies is the alteration of the BRB which allows the interaction of RPE cells with thrombin, a pro-inflammatory protease contained in serum. Thrombin promotion of cytoskeletal reorganization, proliferation, and migration has been reported in different cell types, although the molecular mechanisms involved in these processes remain poorly understood. Our previous work demonstrated that thrombin promotes RPE cell proliferation, cytoskeletal remodeling and migration, hallmark processes in the development of PVR. Thrombin induction of RPE cell proliferation requires PI3K, PDK1, and Akt/PKB (Akt) signaling leading to cyclin D1 gene expression. Since Akt functions as an upstream activator of mechanistic target of rapamycin complex 1 (mTORC1) and is also a downstream target for mTORC2, the aim of this work was to determine whether mTOR is involved in thrombin-induced RPE cell proliferation by regulating cyclin D1 expression in immortalized rat RPE-J cell line. Results demonstrate that thrombin-induced cyclin D1 expression and cell proliferation require Akt-independent phosphorylation/activation of mTOR at Ser 2448 mediated by PI3K/PKC-ζ/ERK1/2 signaling, concomitant to Akt-dependent activation of p70S6K carried by mTORC1.  相似文献   

20.
Impaired glucose tolerance precedes type 2 diabetes and is characterized by hyperinsulinemia, which develops to balance peripheral insulin resistance. To gain insight into the deleterious effects of hyperinsulinemia on skeletal muscle, we studied the consequences of prolonged insulin treatment of L6 myoblasts on insulin-dependent signaling pathways. A 24-h long insulin treatment desensitized the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) and p42/p44 MAPK pathways toward a second stimulation with insulin or insulin-like growth factor-1 and led to decreased insulin-induced glucose uptake. Desensitization was correlated to a reduction in insulin receptor substrate (IRS)-1 and IRS-2 protein levels, which was reversed by the PI3K inhibitor LY294002. Co-treatment of cells with insulin and LY294002, while reducing total IRS-1 phosphorylation, increased its phosphotyrosine content, enhancing IRS-1/PI3K association. PDK1, mTOR, and MAPK inhibitors did not block insulin-induced reduction of IRS-1, suggesting that the PI3K serine-kinase activity causes IRS-1 serine phosphorylation and its commitment to proteasomal degradation. Contrarily, insulin-induced IRS-2 down-regulation occurred via a PI3K/mTOR pathway. Suppression of IRS-1/2 down-regulation by LY294002 rescued the responsiveness of PKB and MAPK toward acute insulin stimulation. Conversely, adenoviral-driven expression of constitutively active PI3K induced an insulin-independent reduction in IRS-1/2 protein levels. IRS-2 appears to be the chief molecule responsible for MAPK and PKB activation by insulin, as knockdown of IRS-2 (but not IRS-1) by RNA interference severely impaired activation of both kinases. In summary, (i) PI3K mediates insulin-induced reduction of IRS-1 by phosphorylating it while a PI3K/mTOR pathway controls insulin-induced reduction of IRS-2, (ii) in L6 cells, IRS-2 is the major adapter molecule linking the insulin receptor to activation of PKB and MAPK, (iii) the mechanism of IRS-1/2 down-regulation is different in L6 cells compared with 3T3-L1 adipocytes. In conclusion, the reduction in IRS proteins via different PI3K-mediated mechanisms contributes to the development of an insulin-resistant state in L6 myoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号