首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We reported previously that simulating sleep apnea by exposing rats to eucapnic intermittent hypoxia (E-IH) causes endothelin-dependent hypertension and increases constrictor sensitivity to endothelin-1 (ET-1). In addition, augmented ET-1-induced constriction in small mesenteric arteries (sMA) is mediated by increased Ca(2+) sensitization independent of Rho-associated kinase. We hypothesized that exposing rats to E-IH augments ET-1-mediated vasoconstriction by increasing protein kinase C (PKC)-dependent Ca(2+) sensitization. In sMA, the nonselective PKC inhibitor GF-109203x (3 microM) significantly inhibited ET-1-stimulated constriction in E-IH arteries but did not affect ET-1-stimulated constriction in sham arteries. Phospholipase C inhibitor U-73122 (1 microM) also inhibited constriction by ET-1 in E-IH but not sham sMA. In contrast, the classical PKC (cPKC) inhibitor G?-6976 (1 microM) had no effect on ET-1-mediated vasoconstriction in either group, but a PKCdelta-selective inhibitor (rottlerin, 3 microM) significantly decreased ET-1-mediated constriction in E-IH but not in sham sMA. ET-1 increased PKCdelta phosphorylation in E-IH but not sham sMA. In contrast, ET-1 constriction in thoracic aorta from both sham and E-IH rats was inhibited by G?-6976 but not by rottlerin. These observations support our hypothesis that E-IH exposure significantly increases ET-1-mediated constriction of sMA through PKCdelta activation and modestly augments ET-1 contraction in thoracic aorta through activation of one or more cPKC isoforms. Therefore, upregulation of a PKC pathway may contribute to elevated ET-1-dependent vascular resistance in this model of hypertension.  相似文献   

2.
Recent evidence supports a prominent role for Rho kinase (ROK)-mediated pulmonary vasoconstriction in the development and maintenance of chronic hypoxia (CH)-induced pulmonary hypertension. Endothelin (ET)-1 contributes to the pulmonary hypertensive response to CH, and recent studies by our laboratory and others indicate that pulmonary vascular reactivity following CH is largely independent of changes in vascular smooth muscle (VSM) intracellular free calcium concentration ([Ca(2+)](i)). In addition, CH increases generation of reactive oxygen species (ROS) in pulmonary arteries, which may underlie the shift toward ROK-dependent Ca(2+) sensitization. Therefore, we hypothesized that ROS-dependent RhoA/ROK signaling mediates ET-1-induced Ca(2+) sensitization in pulmonary VSM following CH. To test this hypothesis, we determined the effect of pharmacological inhibitors of ROK, myosin light chain kinase (MLCK), tyrosine kinase (TK), and PKC on ET-1-induced vasoconstriction in endothelium-denuded, Ca(2+)-permeabilized small pulmonary arteries from control and CH (4 wk at 0.5 atm) rats. Further experiments examined ET-1-mediated, ROK-dependent phosphorylation of the regulatory subunit of myosin light chain phosphatase (MLCP), MYPT1. Finally, we measured ET-1-induced ROS generation in dihydroethidium-loaded small pulmonary arteries and investigated the role of ROS in mediating ET-1-induced, RhoA/ROK-dependent Ca(2+) sensitization using the superoxide anion scavenger, tiron. We found that CH increases ET-1-induced Ca(2+) sensitization that is sensitive to inhibition of ROK and MLCK, but not PKC or TK, and correlates with ROK-dependent MYPT1(Thr696) phosphorylation. Furthermore, tiron inhibited basal and ET-1-stimulated ROS generation, RhoA activation, and VSM Ca(2+) sensitization following CH. We conclude that CH augments ET-1-induced Ca(2+) sensitization through ROS-dependent activation of RhoA/ROK signaling in pulmonary VSM.  相似文献   

3.
Tonic physiological activity of RhoA/Rho kinase contributes to the maintenance of penile flaccidity through its involvement in the Ca(2+) sensitization of erectile tissue smooth muscle. The present study hypothesized that Rho kinase is also involved in the modulation of Ca(2+) entry induced by alpha(1)-adrenoceptor stimulation of penile arteries. Rat penile arteries were mounted in microvascular myographs for simultaneous measurements of intracellular Ca(2+) ([Ca(2+)](i)) and force. The Rho-kinase inhibitor Y-27632 markedly reduced norepinephrine-mediated electrically induced contractions and the increases in both [Ca(2+)](i) and tension elicited by the alpha(1)-adrenoceptor agonist phenylephrine (Phe). In contrast, the protein kinase C (PKC) inhibitor Ro-31-8220 reduced tension without altering the Phe-induced increase in [Ca(2+)](i). In the presence of nifedipine, Y-27632 still inhibited the non-L-type Ca(2+) signal and blunted Phe contraction. Y-27632 did not impair the capacitative Ca(2+) entry evoked by store depletion with cyclopiazonic acid but largely reduced the Ba(2+) influx stimulated by Phe in fura-2 AM-loaded arteries. The addition of Y-27632 to arteries depolarized with high KCl markedly reduced tension without changing [Ca(2+)](i). In alpha-toxin-permeabilized penile arteries stimulated with threshold Ca(2+) concentrations, Y-27632 inhibited the sensitization induced by either guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) or Phe in the presence of GTPgammaS. However, Y-27632 failed to alter contractions induced by a maximal concentration of free Ca(2+). These results suggest that Rho kinase, besides its contribution to the Ca(2+) sensitization of the contractile proteins, is also involved in the regulation of Ca(2+) entry through a nonselective cation channel activated by alpha(1)-adenoceptor stimulation in rat penile arteries.  相似文献   

4.
We demonstrated that arteries from rats made hypertensive with chronic nitric oxide (NO) synthase (NOS) inhibition (N(omega)-nitro-L-arginine in drinking water, LHR) have enhanced contractile sensitivity to alpha(2)-adrenergic receptors (alpha(2)-AR) agonist UK-14304 compared with arteries from normotensive rats (NR). NO may regulate vascular tone in part through suppression of RhoA and Rho kinase (ROK). We hypothesized that enhanced RhoA and ROK activity augments alpha(2)-AR contraction in LHR aortic rings. Y-27632 eliminated UK-14304 contraction in LHR and NR aortic rings. The order of increasing sensitivity to Y-27632 was the following: endothelium-intact NR, LHR, and endothelium-denuded NR. UK-14304 stimulated RhoA translocation to the membrane fraction in LHR and denuded NR but not in intact NR aorta. Basally, more RhoA was present in the membrane fraction in denuded NR than in intact NR or LHR aorta. Relaxation to S-nitroso-N-acetyl-penicillamine and Y-27632 in denuded ionomycin-permeabilized rings was greater in NR than in LHR. Together these studies indicate alpha(2)-AR contraction depends on ROK activity more in NR than LHR aorta. Additionally, endogenous NO may regulate RhoA activation, whereas chronic NOS inhibition appears to cause RhoA desensitization.  相似文献   

5.
Endothelin-1 (ET-1), a potent vasoconstrictor, is believed to contribute to the pathogenesis of hypoxic pulmonary hypertension. Previously we demonstrated that contraction induced by ET-1 in intrapulmonary arteries (IPA) from chronically hypoxic (CH) rats occurred independently of changes in intracellular Ca2+ concentration ([Ca2+]i), suggesting that ET-1 increased Ca2+ sensitivity. The mechanisms underlying this effect are unclear but could involve the activation of myosin light chain kinase, Rho kinase, PKC, or tyrosine kinases (TKs), including those from the Src family. In this study, we examined the effect of pharmacological inhibitors of these kinases on maximum tension generated by IPA from CH rats (10% O2 for 21 days) in response to ET-1. Experiments were conducted in the presence of nifedipine, an L-type Ca2+ channel blocker, to isolate the component of contraction that occurred without a change in [Ca2+]i. The mean change in tension caused by ET-1 (10(-8) M) expressed as a percent of the maximum response to KCl was 184.0+/-39.0%. This response was markedly inhibited by the Rho kinase inhibitors Y-27632 and HA-1077 and the TK inhibitors genistein, tyrphostin A23, and PP2. In contrast, staurosporine and GF-109203X, inhibitors of PKC, had no significant inhibitory effect on the tension generated in response to ET-1. We conclude that the component of ET-1-induced contraction that occurs without a change in [Ca2+]i in IPA from CH rats requires activation of Rho kinase and TKs, but not PKC.  相似文献   

6.
KCl causes smooth muscle contraction by elevating intracellular free Ca2+, whereas receptor stimulation activates an additional mechanism, termed Ca2+ sensitization, that can involve activation of RhoA-associated kinase (ROK) and PKC. However, recent studies support the hypothesis that KCl may also increase Ca2+ sensitivity. Our data showed that the PKC inhibitor GF-109203X did not, whereas the ROK inhibitor Y-27632 did, inhibit KCl-induced tonic (5 min) force and myosin light chain (MLC) phosphorylation in rabbit artery. Y-27632 also inhibited BAY K 8644- and ionomycin-induced MLC phosphorylation and force but did not inhibit KCl-induced Ca2+ entry or peak ( approximately 15 s) force. Moreover, KCl and BAY K 8644 nearly doubled the amount of ROK colocalized to caveolae at 30 s, a time that preceded inhibition of force by Y-27632. Colocalization was not inhibited by Y-27632 but was abolished by nifedipine and the calmodulin blocker trifluoperazine. These data support the hypothesis that KCl caused Ca2+ sensitization via ROK activation. We discuss a novel model for ROK activation involving translocation to caveolae that is dependent on Ca2+ entry and involves Ca2+-calmodulin activation.  相似文献   

7.
Pulmonary vascular smooth muscle (VSM) sensitivity to nitric oxide (NO) is enhanced in pulmonary arteries from rats exposed to chronic hypoxia (CH) compared with controls. Furthermore, in contrast to control arteries, relaxation to NO following CH is not reliant on a decrease in VSM intracellular free calcium ([Ca(2+)](i)). We hypothesized that enhanced NO-dependent pulmonary vasodilation following CH is a function of VSM myofilament Ca(2+) desensitization via inhibition of the RhoA/Rho kinase (ROK) pathway. To test this hypothesis, we compared the ability of the NO donor, spermine NONOate, to reverse VSM tone generated by UTP, the ROK agonist sphingosylphosphorylcholine, or the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate in Ca(2+)-permeabilized, endothelium-denuded pulmonary arteries (150- to 300-microm inner diameter) from control and CH (4 wk at 0.5 atm) rats. Arteries were loaded with fura-2 AM to continuously monitor VSM [Ca(2+)](i). We further examined effects of NO on levels of GTP-bound RhoA and ROK membrane translocation as indexes of enzyme activity in arteries from each group. We found that spermine NONOate reversed Y-27632-sensitive Ca(2+) sensitization and inhibited both RhoA and ROK activity in vessels from CH rats but not control animals. In contrast, spermine NONOate was without effect on PKC-mediated vasoconstriction in either group. We conclude that CH mediates a shift in NO signaling to promote pulmonary VSM Ca(2+) desensitization through inhibition of RhoA/ROK.  相似文献   

8.
Reactive oxygen species are implicated in pulmonary hypertension and hypoxic pulmonary vasoconstriction. We examined the effects of low concentrations of peroxide on intrapulmonary arteries (IPA). IPAs from Wistar rats were mounted on a myograph for recording tension and estimating intracellular Ca2+ using Fura-PE3. Ca2+ sensitization was examined in alpha-toxin-permeabilized IPAs, and phosphorylation of MYPT-1 and MLC(20) was assayed by Western blot. Peroxide (30 microM) induced a vasoconstriction with transient and sustained components and equivalent elevations of intracellular Ca2+. The transient constriction was strongly suppressed by indomethacin, the TP-receptor antagonist SQ-29584, and the Rho kinase inhibitor Y-27632, whereas sustained constriction was unaffected. Neither vasoconstriction nor elevation of intracellular Ca2+ was affected by removal of extracellular Ca2+, whereas dantrolene suppressed the former and ryanodine abolished the latter. Peroxide-induced constriction of permeabilized IPAs was unaffected by Y-27632 but abolished by PKC inhibitors; these also suppressed constriction in intact IPAs. Peroxide caused translocation of PKCalpha, but had no significant effect on MYPT-1 or MLC(20) phosphorylation. We conclude that in IPAs peroxide causes transient release of vasoconstrictor prostanoids, but sustained constriction is associated with release of Ca2+ from ryanodine-sensitive stores and a PKC-dependent but Rho kinase- and MLC(20)-independent constrictor mechanism.  相似文献   

9.
We examined the effects of Rho kinase on contraction and intracellular Ca2+ concentration ([Ca2+](i)) in guinea pig trachealis by measuring isometric force and the fura 2 signal [340- to 380-nm fluorescence ratio (F340/F380)]. A Rho kinase inhibitor, Y-27632 (1-1,000 microM), inhibited methacholine (MCh)-induced contraction, with a reduction in F340/F380 in a concentration-dependent manner. The values of EC(50) for contraction and F340/F380 induced by 1 microM MCh with Y-27632 were 27.3 +/- 5.1 and 524.1 +/- 31.0 microM, respectively. With 0.1 microM MCh, the values for these parameters were decreased to 1.0 +/- 0.1 and 98.2 +/- 6.2 microM, respectively. Tension-F340/F380 curves for MCh indicated that Y-27632 caused an ~50% inhibition of MCh-induced contraction, without a reduction in F340/F380. These effects of Y-27632 were not inhibited by a protein kinase C inhibitor, GF-109203X. Our results indicate that inhibition of Rho kinase attenuates both Ca2+ sensitization and [Ca2+](i).  相似文献   

10.
In chronic liver injury, hepatic stellate cells (HSCs) have been implicated as regulators of sinusoidal vascular tone. We studied the relative role of Ca(2+)-dependent and Ca(2+)-independent contraction pathways in rat HSCs and correlated these findings to in situ perfused cirrhotic rat livers. Contraction of primary rat HSCs was studied by a stress-relaxed collagen lattice model. Dose-response curves to the Ca(2+) ionophore A-23187 and to the calmodulin/myosin light chain kinase inhibitor W-7 served to study Ca(2+)-dependent pathways. Y-27632, staurosporin, and calyculin (inhibitors of Rho kinase, protein kinase C, and myosin light chain phosphatase, respectively) were used to investigate Ca(2+)-independent pathways. The actomyosin interaction, the common end target, was inhibited by 2,3-butanedione monoxime. Additionally, the effects of W-7, Y-27632, and staurosporin on intrahepatic vascular resistance were evaluated by in situ perfusion of normal and thioacetamide-treated cirrhotic rat livers stimulated with methoxamine (n = 25 each). In vitro, HSC contraction was shown to be actomyosin based with a regulating role for both Ca(2+)-dependent and -independent pathways. Although the former seem important, an important auxiliary role for the latter was illustrated through their involvement in the phenomenon of "Ca(2+) sensitization." In vivo, preincubation of cirrhotic livers with Y-27632 (10(-4) M) and staurosporin (25 nM), more than with W-7 (10(-4) M), significantly reduced the hyperresponsiveness to methoxamine (10(-4) M) by -66.8 +/- 1.3%, -52.4 +/- 2.7%, and -28.7 +/- 2.8%, respectively, whereas in normal livers this was significantly less: -43.1 +/- 4.2%, -40.2 +/- 4.2%, and -3.8 +/- 6.3%, respectively. Taken together, these results suggest that HSC contraction is based on both Ca(2+)-dependent and -independent pathways, which were shown to be upregulated in the perfused cirrhotic liver, with a predominance of Ca(2+)-independent pathways.  相似文献   

11.
Diabetes is associated with an increased vascular tone usually involved in the pathogenesis of diabetic cardiovascular complications such as hypertension, stroke, coronary artery disease, or erectile dysfunction (ED). Enhanced contractility of penile erectile tissue has been associated with augmented activity of the RhoA/Rho kinase (RhoK) pathway in models of diabetes-associated ED. The present study assessed whether abnormal vasoconstriction in penile arteries from prediabetic obese Zucker rats (OZRs) is due to changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) and/or in myofilament Ca(2+) sensitivity. Penile arteries from OZRs and lean Zucker rats (LZRs) were mounted on microvascular myographs for simultaneous measurements of [Ca(2+)](i) and tension. The relationships between [Ca(2+)](i) and contraction for the α(1)-adrenergic vasoconstrictor phenylephrine (PE) were left shifted and steeper in OZRs compared with LZRs, although the magnitude of the contraction was similar in both groups. In contrast, the vasoconstriction induced by the thromboxane A(2) receptor agonist U-46619 was augmented in arteries from OZRs, and this increase was associated with an increase in both the sensitivity and maximum responses to Ca(2+). The RhoK inhibitor Y-27632 (10 μM) reduced the vasoconstriction induced by PE to a greater extent in OZRs than in LZRs, without altering Ca(2+). Y-27632 inhibited with a greater potency the contraction elicited by high KCl in arteries from OZRs compared with LZRs without changing [Ca(2+)](i). RhoK-II expression was augmented in arteries from OZRs. These results suggest receptor-specific changes in the Ca(2+) handling of penile arteries under conditions of metabolic syndrome. Whereas augmented vasoconstriction upon activation of the thromboxane A(2) receptor is coupled to enhanced Ca(2+) entry, a RhoK-mediated enhancement of myofilament Ca(2+) sensitivity is coupled with the α(1)-adrenergic vasoconstriction in penile arteries from OZRs.  相似文献   

12.
The mechanism mediating epoxyeicosatrienoic acid (EET)-induced contraction of intralobar pulmonary arteries (PA) is currently unknown. EET-induced contraction of PA has been reported to require intact endothelium and activation of the thromboxane/endoperoxide (TP) receptor. Because TP receptor occupation with the thromboxane mimetic U-46619 contracts pulmonary artery via Rho-kinase activation, we examined the hypothesis that 5,6-EET-induced contraction of intralobar rabbit pulmonary arteries is mediated by a Rho-kinase-dependent signaling pathway. In isolated rings of second-order intralobar PA (1-2 mm OD) at basal tension, 5,6-EET (0.3-10 microM) induced increases in active tension that were inhibited by Y-27632 (1 microM) and HA-1077 (10 microM), selective inhibitors of Rho-kinase activity. In PA in which smooth muscle intracellular Ca(2+) concentration ([Ca(2+)](i)) was increased with KCl (25 mM) to produce a submaximal contraction, 5,6-EET (1 microM) induced a contraction that was 7.0 +/- 1.6 times greater than without KCl. 5,6-EET (10 microM) also contracted beta-escin permeabilized PA in which [Ca(2+)](i) was clamped at a concentration resulting in a submaximal contraction. Y-27632 inhibited the 5,6-EET-induced contraction in permeabilized PA. 5,6-EET (10 microM) increased phosphorylation of myosin light chain (MLC), increasing the ratio of phosphorylated MLC/total MLC from 0.10 +/- 0.03 to 0.30 +/- 0.02. Y-27632 prevented this increase in MLC phosphorylation. These data suggest that 5,6-EET induces contraction in intralobar PA by increasing Rho-kinase activity, phosphorylating MLC, and increasing the Ca(2+) sensitivity of the contractile apparatus.  相似文献   

13.
Pulmonary arteries (PA) are resistant to the vasodilator effects of extracellular acidosis in systemic vessels; the mechanism underlying this difference between systemic and pulmonary circulations has not been elucidated. We hypothesized that RhoA/Rho-kinase-mediated Ca2+ sensitization pathway played a greater role in tension development in pulmonary than in systemic vascular smooth muscle and that this pathway was insensitive to acidosis. In arterial rings contracted with the alpha1-agonist phenylephrine (PE), the Rho-kinase inhibitor Y-27632 (< or =3 microM) induced greater relaxation in precontracted PA rings than in aortic rings. In PA rings stimulated by PE, the activation of RhoA was greater than in aorta. Normocapnic acidosis (NA) induced a smaller relaxation in precontracted PA than in aorta. However, in the presence of nifedipine and thapsigargin, when PE-induced contraction was predominantly mediated by Rho-kinase, the relaxant effect of NA was reduced and similar in both vessel types. Furthermore, in the presence of Y-27632, NA induced a greater relaxation in both PA and aorta, which was similar in both vessels. Finally, in alpha-toxin-permeabilized smooth muscle, PE-induced contraction at constant Ca2+ activity was inhibited by Y-27632 and unaffected by acidosis. These results indicate that Ca2+ sensitization induced by the RhoA/Rho-kinase pathway played a greater role in agonist-induced vascular smooth muscle contraction in PA than in aorta and that tension mediated by this pathway was insensitive to acidosis. The predominant role of the RhoA/Rho-kinase pathway in the pulmonary vasculature may account for the resistance of this circulation to the vasodilator effect of acidosis observed in the systemic circulation.  相似文献   

14.
Activation of hepatic stellate cells (HSCs) results in cirrhosis and portal hypertension due to intrahepatic resistance. Activated HSCs increase their contraction after receptor agonist stimulation; however, the signaling pathways for the regulation of contraction are not fully understood. The aim of this study was to elucidate the change in contractile mechanisms of HSCs after cirrhotic activation. The expression pattern of contractile regulatory proteins was analyzed with quantitative RT-PCR and Western blotting. The phosphorylation levels of myosin light chain (MLC), 17-kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17), and MLC phosphatase targeting subunit 1 (MYPT1) after endothelin-1 (ET-1) stimulation in culture-activated HSCs were measured using phosphorylation-specific antibodies. In vivo-activated HSCs were isolated from rats subjected to bile duct ligation and repeated dimethylnitrosoamine injections. HSCs showed increased expression of not only α-smooth muscle actin, but also the contractile regulatory proteins MLC kinase (MLCK), Rho kinase 2 (ROCK2), and CPI-17 during HSC activation in vitro. In culture-activated HSCs, ET-1 increased phosphorylation of CPI-17 at Thr18, which was markedly inhibited by the PKC inhibitor Ro-31-8425. ET-1 induced phosphorylation of MYPT1 at Thr853, which was suppressed by the ROCK inhibitor Y-27632. ET-1 induced sustained phosphorylation of MLC at Thr18/Ser19, which was inhibited by both Ro-31-8425 and Y-27632. Consistent with the data obtained from the in vitro study, HSCs isolated from cirrhotic rats showed increased expression of α-smooth muscle actin, MLCK, CPI-17, and ROCK2 compared with HSCs from nontreated rats. Furthermore, MLC phosphorylation in in vivo-activated HSCs was increased, according to enhanced phosphorylation of CPI-17 and MYPT1 in the presence of ET-1. These results suggest that activated HSCs may participate in constriction of hepatic sinusoids in the cirrhotic liver through both Ca(2+)-dependent (MLCK pathway) and Ca(2+)-sensitization mechanism (CPI-17 and MYPT1 pathways).  相似文献   

15.
The mechanisms of Ca(2+) handling and sensitization were investigated in human small omental arteries exposed to norepinephrine (NE) and to the thromboxane A(2) analog U-46619. Contractions elicited by NE and U-46619 were associated with an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), an increase in Ca(2+)-independent signaling pathways, or an enhancement of the sensitivity of the myofilaments to Ca(2+). The two latter pathways were abolished by protein kinase C (PKC), tyrosine kinase (TK), and Rho-associated protein kinase (ROK) inhibitors. In Ca(2+)-free medium, both NE and U-46619 elicited an increase in tension that was greatly reduced by PKC inhibitors and abolished by caffeine or ryanodine. After depletion of Ca(2+) stores with NE and U-46619 in Ca(2+)-free medium, addition of CaCl(2) in the continuous presence of the agonists produced increases in [Ca(2+)](i) and contractions that were inhibited by nitrendipine and TK inhibitors but not affected by PKC inhibitors. NE and U-46619 induced tyrosine phosphorylation of a 42- or a 58-kDa protein, respectively. These results indicate that the mechanisms leading to contraction elicited by NE and U-46619 in human small omental arteries are composed of Ca(2+) release from ryanodine-sensitive stores, Ca(2+) influx through nitrendipine-sensitive channels, and Ca(2+) sensitization and/or Ca(2+)-independent pathways. They also show that the TK pathway is involved in the tonic contraction associated with Ca(2+) entry, whereas TK, PKC, and ROK mechanisms regulate Ca(2+)-independent signaling pathways or Ca(2+) sensitization.  相似文献   

16.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

17.
Reactive oxygen species (ROS), such as superoxide and H(2)O(2), are capable of modifying vascular tone, although the response to ROS can vary qualitatively among vascular beds, experimental procedures, and species. Endothelin-1 (ET-1) induces superoxide production, which can be dismutated to H(2)O(2). The RhoA/Rho kinase pathway partially mediates ET-1-induced contraction and recently was implicated in superoxide-induced contraction. We hypothesized that H(2)O(2), not superoxide, mediates venous ET-1-induced contraction. Rat thoracic aorta and vena cava contracted to exogenously added H(2)O(2) (1 microM-1 mM) [maximum aortic contraction = 10 +/- 3% of phenylephrine (10 microM) contraction; maximum venous contraction = 85 +/- 13% of norepinephrine (10 microM) contraction]. (+)-(R)-trans-4-(1-aminoethyl-N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632, 10 microM), a Rho kinase inhibitor, significantly reduced venous H(2)O(2)-induced contraction (15 +/- 1% of control maximum) and reduced maximum ET-1-induced contraction by 59 +/- 1%. However, neither the H(2)O(2) scavenger catalase (100 and 2,000 U/ml) nor cell permeable polyethylene glycol-catalase (163 and 326 U/ml) reduced ET-1-induced contraction in the vena cava. The catalase inhibitor 3-aminotriazole (3-AT) also had no effect on maximal venous ET-1-induced contraction. Basal H(2)O(2) levels were three times higher in the vena cava than in the aorta (vena cava, 0.74 +/- 0.09 nmol H(2)O(2)/mg protein; aorta, 0.24 +/- 0.05 nmol H(2)O(2)/mg protein). ET-1 (100 nM) increased H(2)O(2) in the vena cava but not in the aorta (vena cava, 154.10 +/- 17.29% of control H(2)O(2); aorta, 83.72 +/- 20.20%). Antagonism of either ET(A) or ET(B) receptors with the use of atrasentan (30 nM) or BQ-788 (100 nM), respectively, reduced ET-1 (100 nM)-induced increases in venous H(2)O(2). In summary, ET-1 increased H(2)O(2) in veins but not arteries, and venous ET-1-induced H(2)O(2) production was independent of the contractile properties of ET-1.  相似文献   

18.
Intermittent hypoxia (IH) resulting from sleep apnea causes both systemic and pulmonary hypertension. Enhanced endothelin-1 (ET-1)-induced vasoconstrictor reactivity is thought to play a central role in the systemic hypertensive response to IH. However, whether IH similarly increases pulmonary vasoreactivity and the signaling mechanisms involved are unknown. The objective of the present study was to test the hypothesis that IH augments ET-1-induced pulmonary vasoconstrictor reactivity through a PKCβ-dependent signaling pathway. Responses to ET-1 were assessed in endothelium-disrupted, pressurized pulmonary arteries (~150 μm inner diameter) from eucapnic-IH [(E-IH) 3 min cycles, 5% O(2)-5% CO(2)/air flush, 7 h/day; 4 wk] and sham (air-cycled) rats. Arteries were loaded with fura-2 AM to monitor vascular smooth muscle (VSM) intracellular Ca(2+) concentration ([Ca(2+)](i)). E-IH increased vasoconstrictor reactivity without altering Ca(2+) responses, suggestive of myofilament Ca(2+) sensitization. Consistent with our hypothesis, inhibitors of both PKCα/β (myr-PKC) and PKCβ (LY-333-531) selectively decreased vasoconstriction to ET-1 in arteries from E-IH rats and normalized responses between groups, whereas Rho kinase (fasudil) and PKCδ (rottlerin) inhibition were without effect. Although E-IH did not alter arterial PKCα/β mRNA or protein expression, E-IH increased basal PKCβI/II membrane localization and caused ET-1-induced translocation of these isoforms away from the membrane fraction. We conclude that E-IH augments pulmonary vasoconstrictor reactivity to ET-1 through a novel PKCβ-dependent mechanism that is independent of altered PKC expression. These findings provide new insights into signaling mechanisms that contribute to vasoconstriction in the hypertensive pulmonary circulation.  相似文献   

19.
To clarify whether cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) activation and Rho-kinase inhibition share a common mechanism to decrease the Ca2+ sensitivity of airway smooth muscle contraction, we examined the effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a stable cAMP analog, and (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide dihydrochloride, monohydrate (Y-27632), a Rho-kinase inhibitor, on carbachol (CCh)-, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-, 4beta-phorbol 12,13-dibutyrate (PDBu)-, and leukotriene D4 (LTD4)-induced Ca2+ sensitization in alpha-toxin-permeabilized rabbit tracheal and human bronchial smooth muscle. In rabbit trachea, CCh-induced smooth muscle contraction was inhibited by 8-BrcAMP and Y-27632 to a similar extent. However, GTPgammaS-induced smooth muscle contraction was resistant to 8-BrcAMP. In the presence of a saturating concentration of Y-27632, PDBu-induced smooth muscle contraction was completely reversed by 8-BrcAMP. Conversely, PDBu-induced smooth muscle contraction was resistant to Y-27632. In the presence of a saturating concentration of 8-BrcAMP, GTPgammaS-induced Ca2+ sensitization was also reversed by Y-27632. The 8-BrcAMP had no effect on the ATP-triggered contraction of tracheal smooth muscle that had been treated with calyculin A in rigor solutions. The 8-BrcAMP and Y-27632 additively accelerated the relaxation rate of PDBu- and GTPgammaS-treated smooth muscle under myosin light chain kinase-inhibited conditions. In human bronchus, LTD4-induced smooth muscle contraction was inhibited by both 8-BrcAMP and Y-27632. We conclude that cAMP/PKA-induced Ca2+ desensitization contains at least two mechanisms: 1) inhibition of the muscarinic receptor signaling upstream from Rho activation and 2) cAMP/PKA's preferential reversal of PKC-mediated Ca2+ sensitization in airway smooth muscle.  相似文献   

20.
This study examined whether, and by what signaling and ionic mechanisms, pyrimidine nucleotides constrict rat cerebral arteries. Cannulated cerebral arteries stripped of endothelium and pressurized to 15 mmHg constricted in a dose-dependent manner to UTP. This constriction was partly dependent on the depolarization of smooth muscle cells and the activation of voltage-operated Ca(2+) channels. The depolarization and constriction induced by UTP were unaffected by bisindolylmaleimide I, a PKC inhibitor that abolished phorbol ester (PMA)-induced constriction in cerebral arteries. In contrast, the Rhokinase inhibitor Y-27632 attenuated the ability of UTP to both constrict and depolarize cerebral arteries. With patch-clamp electrophysiology, a voltage-dependent delayed rectifying K(+) (K(DR)) current was isolated and shown to consist of a slowly inactivating 4-aminopyridine (4-AP)-sensitive and an -insensitive component. The 4-AP-sensitive K(DR) current was potently suppressed by UTP through a mechanism that was not dependent on PKC. This reflects observations that demonstrated that 1) a PKC activator (PMA) had no effect on K(DR) and 2) PKC inhibitors (calphostin C or bisindolylmaleimide I) could not prevent the suppression of K(DR) by UTP. The Rho kinase inhibitor Y-27632 abolished the ability of UTP to inhibit the K(DR) current, as did inhibition of RhoA with C3 exoenzyme. Cumulatively, these observations indicate that Rho kinase signaling plays an important role in eliciting the cerebral constriction induced by pyrimidine nucleotides. Moreover, they demonstrate for the first time that Rhokinase partly mediates this constriction by altering ion channels that control membrane potential and Ca(2+) influx through voltage-operated Ca(2+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号