首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Lianas are woody vines that play an important role in forest dynamics in tropical and subtropical areas. Their relationship to various biotic and abiotic conditions is, however, not yet wholly clear. We explored how the size, climbing mechanisms, diversity and abundance of woody lianas is related to host plant size, environmental factors and topography. Liana assemblages were examined in twenty 20 × 20 m plots in each of three topographic sites (valley, slope and ridge) in a subtropical secondary forest in southeastern Taiwan. The valley site had the highest abundance and species richness of lianas. The abiotic factors, soil pH and rock cover, were related to different topographic sites. Larger lianas were always found on larger host trees, while smaller lianas were found in smaller trees; no lianas with a DBH greater than 10 cm were found. Significantly more adhesive lianas were found on larger trees whereas twining and leaning-hook lianas were found in smaller trees. In conclusion, this study demonstrates that the species of liana is associated with the size and type of tree growing under different topographic conditions.  相似文献   

2.
探究地形变化对不同生活型植物叶功能性状的影响有助于深入理解森林群落物种组成的维持特征。该研究以湖北星斗山常绿落叶阔叶混交林为研究对象, 测量了50个样地中224种木本植物的叶面积、叶厚度、叶干质量、叶干物质含量和比叶面积, 运用单因素方差分析揭示了乔木、灌木和木质藤本的叶功能性状变异特征, 并采用偏曼特尔检验分别从群落水平和物种水平分析了地形变化对不同生活型木本植物叶功能性状的影响。研究发现: 不同生活型植物叶性状变异系数分布范围为23.42%-110.45%; 不同生活型之间的植物叶功能性状差异明显。群落水平上, 海拔与乔木叶干质量、灌木叶面积和木质藤本叶厚度显著正相关, 坡度仅对灌木和木质藤本比叶面积具有显著影响, 坡向与灌木叶厚度、叶干质量和比叶面积显著正相关。物种水平上, 海拔比坡度和坡向对植物叶功能性状影响更为显著, 且不同物种对地形变化的敏感度不一致; 在控制空间结构影响后, 地形因子对植物叶功能性状的影响降低。该研究结果表明, 不同生活型植物的叶功能性状对地形变化的响应格局不同, 这可能是星斗山常绿落叶阔叶混交林植物多样性的主要维持机制。  相似文献   

3.
木质藤本植物是热带、亚热带山地森林重要的组分之一, 在森林动态、生态系统过程和森林生物多样性形成与维持等方面具有重要作用。本文调查了哀牢山中山湿性常绿阔叶林木质藤本植物的多样性及其在垂直和水平空间上的分布规律。在20个20 m × 50 m的样地中共调查到DBH≥0.2 cm的木质藤本植物1,145株, 隶属于19科25属29种, 其中物种最丰富的科为菝葜科(4种)和蔷薇科(3种), 但多度最高的科为葡萄科(363株, 占总株数的31.7%)。研究发现林下木质藤本(通常DBH < 1 cm)拥有较高的物种丰富度和多度, 对木质藤本植物多样性具有较大的贡献。有55.7%的个体分布在林下层, 林冠层占28.8%, 亚冠层只有15.5%。木质藤本的垂直空间分布在不同径级、不同攀援类型之间具有明显的差异。 从水平空间分布来看, 地形是影响木质藤本的一个重要因素: 沟谷木质藤本的物种丰富度、多度和基面积分别是坡面的171%, 420%和606%; 有12个物种只分布在沟谷生境。这表明哀牢山中山湿性常绿阔叶林木质藤本植物对生境具有偏好性。  相似文献   

4.
Liana species have a variety of habitat preferences. Although morphological traits connected to resource acquisition may vary by habitat preference, few studies have investigated such associations in lianas. In previous work on temperate lianas, we observed (1) free standing leafy shoots and (2) climbing shoots that clung to host plants; we examined relationships between habitat preference and shoot production patterns in five liana species. Among the five species, two were more frequent at the forest edges (forest-edge species), and two were more common within the forests (forest-interior species). The proportion of climbing shoots in current-year shoot mass of young plants (3–8 m in height) was greater in the forest-edge species (45–60%) than in the forest-interior species (6–30%). In consequence, there was a greater leaf mass ratio in the total current-year shoots of forest-interior species. This, combined with a greater specific leaf area, endows forest-interior species with a leaf area per unit shoot mass double that of forest-edge species. Forest-edge species had longer individual climbing shoots whose length per unit stem mass was smaller than in forest-interior lianas. Extension efficiency, measured as the sum of the climbing stem length per unit current-year shoot mass, was thus similar between forest-edge and interior species. In conclusion, liana shoot production patterns were related to species habitat preferences. A trade-off between current potential productivity (leaves) and the ability to search for hosts and/or well-lit environments (climbing stems) may underpin these relationships.  相似文献   

5.
Closed‐canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species‐conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree‐species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0–100‐m transect from edge to forest interior) on the liana community and liana–host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana‐infested trees, and determinants of the rates of tree infestation within five forest fragments (23–58 ha in area) and five nearby intact‐forest sites. Fragmented forests experienced considerable disturbance‐induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small‐sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low‐disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.  相似文献   

6.
木质藤本是生物多样性的重要组成,木质藤本通过影响支持木进而影响群落的结构和功能,但在生物多样性丰富的北热带喀斯特森林中,木质藤本与支持木的关系鲜为人知。以喀斯特季节性雨林的五桠果叶木姜子(Litsea dilleniifolia)群落为研究对象,对木质藤本的密度、分布格局及其与主要树种的关系进行调查研究,分析木质藤本对树木的影响。结果显示:(1)五桠果叶木姜子群落内木质藤本平均密度为0.0913株/m2,木质藤本在0-20m空间尺度整体表现为聚集分布,且随着尺度增大,聚集强度逐渐减弱;不同径级木质藤本在不同尺度上的分布格局不同。(2)木质藤本对不同径级、不同种类、不同聚集强度的支持木选择表现以下体征:随着支持木径级增加,木质藤本攀附的比例和每木藤本数有增加趋势,且木质藤本胸径与支持木胸径呈极显著正相关;附藤率较高的支持木有紫葳科(Bignoniaceae)种类和东京桐(Deutzianthus tonkinensis),单木附藤数量多的是南方紫金牛(Ardisia thyrsiflora);物种的聚集强度与附藤率、附藤数量呈负相关。(3)木质藤本的密度与支持木死亡率关系不显著,而物种的附藤率与死亡率呈极显著负相关。以上结果表明,木质藤本密度在原生性喀斯特季节性雨林中并不高,且木质藤本对支持木具有选择性,但其对五桠果叶木姜子群落的死亡率并未产生显著影响。该研究可为喀斯特原生性季节性雨林的物种共存、极小植物种群保育提供理论依据,也可为石漠化区域的植被修复提供科学参考。  相似文献   

7.
Lianas are an important component of Neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P 50) and maximum hydraulic conductivity (K h), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forests.  相似文献   

8.
Tropical secondary forests form an important part of the landscape. Understanding functional traits of species that colonize at different points in succession can provide insight into community assembly. Although studies on functional traits during forest succession have focused on trees, lianas (woody vines) also contribute strongly to forest biomass, species richness, and dynamics. We examined life history traits of lianas in a forest chronosequence in Costa Rica to determine which traits vary consistently over succession. We conducted 0.1 ha vegetation inventories in 30 sites. To examine the establishment of young individuals, we only included small lianas (0.5–1.5 cm diameter at 1.3 m height). For each species, we identified seed size, dispersal mode, climbing mode, and whether or not the seedling is self‐supporting. We found a strong axis of variation determined by seed size and seedling growth habit, with early successional communities dominated by small‐seeded species with abiotic dispersal and climbing seedlings, while large‐seeded, animal‐dispersed species with free‐standing seedlings increased in abundance with stand age. Contrary to previous research and theory, we found a decrease in the abundance of stem twiners and no decrease in the abundance of tendril‐climbers during succession. Seed size appears to be a better indicator of liana successional stage than climbing mode. Liana life history traits change predictably over succession, particularly traits related to seedling establishment. Identifying whether these trait differences persist into the growth strategies of mature lianas is an important research goal, with potential ramifications for understanding the impact of lianas during tropical forest succession.  相似文献   

9.
Lianas are an important component of tropical forests; they alter tree mortality and recruitment and impact biogeochemical cycling. Recent evidence suggests that the abundance of lianas in tropical forests is increasing. To understand and predict the effect of lianas on ecosystem processes in tropical forests, it is important to understand the mechanisms through which they compete with trees. In this study, we investigated the functional traits of lianas and trees in a lowland tropical forest in northeast Queensland, Australia. The site is located at 16.1° south latitude and experiences significant seasonality in rainfall, with pronounced wet and dry seasons. It is also subject to relatively frequent disturbance by cyclones. We asked the question of whether the canopy liana community at this site would display functional traits consistent with a competitive advantage over trees in response to disturbance, or in response to dry season water stress. We found that traits that we considered indicative of a dry season advantage (xylem water δ18O as an indicator of rooting depth; leaf and stem tissue δ13C and instantaneous gas exchange as measures of water‐use efficiency) did not differ between canopy lianas and canopy trees. On the other hand, lianas differed from trees in traits that should confer an advantage in response to disturbance (low wood density; low leaf dry matter content; high leaf N concentration; high mass‐based photosynthetic rates). We conclude that the liana community at the study site expressed functional traits geared towards rapid resource acquisition and growth in response to disturbance, rather than outcompeting trees during periods of water stress. These results contribute to a body of literature which will be useful for parameterising a liana functional type in ecosystem models.  相似文献   

10.
Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.  相似文献   

11.
Aim Lianas are abundant and diverse throughout the world and constitute an important structural and functional component of tropical forests. This study aims to investigate liana diversity, abundance and their functional traits in Indian tropical dry evergreen forest (TDEF).Methods A total of ten 1-ha plots, one each in 10 Indian TDEF sites were demarcated. Each 1-ha plot was divided into one-hundred 10- × 10-m quadrats to facilitate woody species inventory. All lianas ≥1cm diameter measured at 130cm from the rooting point and all trees ≥10-cm girth at breast height (gbh) were recorded from the study sites to analyze the patterns of liana diversity and abundance and also to compare the contribution of lianas to the total woody species richness, density and basal area. Liana variables across the study sites were compared using one-way analysis of variance. The qualitative functional traits of inventoried lianas and trees were assessed on the field and referring to pertinent field manuals.Important findings A total of 9237 liana individuals (ranged from 408–1658 individuals ha-1) representing 52 species, 45 genera and 28 families were encountered from the 10 study sites. Liana species richness ranged from 11–31 species ha-1 in 10 sites, which averaged 23.4 (±5.7) species ha-1. The total basal area of lianas in the study sites was 7. 3 m 2 (0.20–1.76 m 2 ha-1). There was a significant variation in liana species richness, density and basal area across the studied sites. On the whole, lianas contributed 52%, 49.3% and 4.1% to the total woody species (lianas and trees) richness, density and basal area, respectively. Liana trait analysis revealed the majority (50%) of lianas belonged to brevi-deciduous type. Stem twining was the chief climbing mechanism, exhibited by 21 species (52.6% of total abundance). More than half of the liana species (34 species; 6925 individuals) had microphyllous leaves. Fleshy-fruited lianas mostly bearing berries and drupes constituted the major fruit type in the studied sites. Zoochory was the predominant dispersal mode observed in 63.4% of species. Considering the ecological and functional role of lianas in Indian TDEF, the need for conservation is emphasized.  相似文献   

12.
Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (?30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (?19%) and ecosystem (?7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles.  相似文献   

13.
The species richness and density of lianas (woody vines) in tropical forests is determined by various abiotic and biotic factors. Factors such as altitude, forest patch size and the degree of forest disturbance are known to exert strong influences on liana species richness and density. We investigated how liana species richness and density were concurrently influenced by altitude (1700–2360 m), forest patch size, forest patch location (edge or interior) and disturbance intensity in the tropical montane evergreen forests, of the Nilgiri and Palni hills, Western Ghats, southern India. All woody lianas (≥1 cm dbh) were enumerated in plots of 30 × 30 m in small, medium and large forest patches, which were located along an altitudinal gradient ranging from 1700 to 2360 m. A total of 1980 individual lianas were recorded, belonging to 45 species, 32 genera and 21 families, from a total sampling area of 13.86 ha (across 154 plots). Liana species richness and density decreased significantly with increasing altitude and increased with increasing forest patch size. Within forest patches, the proportion of forest edge or interior habitat influenced liana distribution and succession especially when compared across the patch size categories. Liana species richness and density also varied along the altitudinal gradient when examined using eco-physiological guilds (i.e. shade tolerance, dispersal mode and climbing mechanism). The species richness and density of lianas within these ecological guilds responded negatively to increasing altitude and positively to increasing patch size and additionally displayed differing sensitivities to forest disturbance. Importantly, the degree of forest disturbance significantly altered the relationship between liana species richness and density to increasing altitude and patches size, and as such is likely the primary influence on liana response to montane forest succession. Our findings suggest that managing forest disturbance in the examined montane forests would assist in conserving local liana diversity across the examined altitudinal range.  相似文献   

14.
热带雨林木质藤本植物叶片性状及其关联   总被引:2,自引:0,他引:2  
热带雨林中木质藤本植物较为丰富。随着全球气候变化加剧,木质藤本植物的丰富度具有不断增加的趋势,有可能对热带森林的结构、功能和动态产生重要影响。然而,目前对木质藤本响应环境变化的机制所知甚少。本研究以13个科20种热带雨林常见木质藤本植物为材料,测定了冠层叶片的17个形态特征及结构性状,并分析了性状间的相互关系。结果表明,叶片相对含水量的种间变异最小(变异系数为5%),而上表皮厚度的种间变异最大(变异系数为80%),其它性状的种间变异系数为24%~61%。木质藤本植物的叶脉密度、叶片密度均与气孔密度呈显著正相关,叶片干物质含量与比叶面积呈显著负相关。与相同生境的树木相比,木质藤本的叶面积更小、气孔密度和叶片密度更低、比叶面积更高,但两种植物类群的叶片横切面组织结构厚度无显著差异。研究结果对理解木质藤本植物的生态适应性具有重要意义。  相似文献   

15.
Lianas are poorly characterized for central African forests. We quantify variation in liana composition, diversity and community structure in different forest types in the Yangambi Man and Biosphere Reserve, Democratic Republic of Congo. These attributes of liana assemblages were examined in 12 1-ha plots, randomly demarcated within regrowth forest, old growth monodominant forest, old growth mixed forest and old growth edge forest. Using a combination of multivariate and univariate community analyses, we visualize the patterns of these liana assemblage attributes and/or test for their significant differences across forest types. The combined 12 1-ha area contains 2,638 lianas (≥2 cm diameter) representing 105 species, 49 genera and 22 families. Liana species composition differed significantly across forest types. Taxonomic diversity was higher in old growth mixed forests compared to old growth monodominant and regrowth forests. Trait diversity was higher than expected in the regrowth forest as opposed to the rest of forest types. Similarly, the regrowth forest differed from the rest of forest types in the pattern of liana species ecological traits and diameter frequency distribution. The regrowth forest was also less densely populated in lianas and had lower liana total basal area than the rest of forest types. We speculate that the mechanism of liana competitive exclusion by dominant tree species is mainly responsible for the lower liana species diversity in monodominant compared to mixed forests. We attribute variation in liana community structure between regrowth and old growth forests mostly to short development time of size hierarchies.  相似文献   

16.
Yi Ding  Runguo Zang 《Biotropica》2009,41(5):618-624
Lianas are an integral part of tropical forest ecosystems, which usually respond strongly to severe disturbances, such as logging. To compare the effect of different logging systems on the lianas diversity in tropical rain forest, we recorded all lianas and trees ≥1 cm dbh in two 40-year-old forest sites after clear cutting (CC) and selective cutting (SC) as well as in an old-growth (OG) lowland tropical rain forest on Hainan Island in south China. Results showed that OG contained fewer liana stems and lower species richness (stems: 261, richness: 42 in 1 ha) than CC (606, 52) and SC (727, 50). However, OG had the highest Fisher's α diversity index (17.3) and species richness per stem (0.184). Species composition and dbh class distribution of lianas varied significantly with different logging systems. The mean liana dbh in OG (22.1 cm) were higher than those in CC (7.0 cm) and SC (10.4 cm). Stem twining was the most frequent climbing mechanism represented in the forest, as shown by the greatest species richness, abundance, basal area, and host tree number with this mechanism. The percent of host tree stems ≥4 cm dbh hosting at least one liana individual in SC (39%) was higher than CC (23%) and OG (19.5%). Large host trees (dbh≥60 cm) were more likely to be infested by lianas in SC and OG. Our study demonstrated that logging disturbance could significantly change the composition and structure of liana communities in the lowland tropical rain forest of south China.
  相似文献   

17.
《植物生态学报》2020,44(3):192
木质藤本是热带森林的重要组成部分, 显著影响森林的结构和功能。已有研究发现木质藤本与乔木的水力结构存在显著差异: 木质藤本的缠绕或攀缘茎细小, 但其木质部具有粗大的长导管, 输水效率高, 抗栓塞能力低。为降低基因型差异对比较结果的影响, 该研究选取热带崖豆藤属(Millettia)和买麻藤属(Gnetum)的乔木和木质藤本, 比较同属内不同生长型植物的水力和光合性状的差异, 分析水分传导效率与抗栓塞能力之间以及水力与光合性状之间的相关关系。结果发现: (1)崖豆藤属植物水力性状的种间差异大, 与生活型和需光性有关。耐阴的木质藤本反而具有较低的水分传导效率和较高的抗栓塞能力。(2)买麻藤属植物是裸子植物较为进化的类群(具有导管和阔叶), 其乔木的水分传导效率很低, 但是其木质藤本的水分传导效率高于其他阳生性的被子植物。(3)不论乔木还是木质藤本, 水分传导的有效性与安全性在枝条和叶片水平上均没有显著的权衡关系。(4)与同属乔木相比, 木质藤本的叶片较枝条的抗栓塞能力更强, 在旱季具有更高的最大净光合速率和气孔导度, 支持了木质藤本的“旱季生长优势假说”。该研究揭示了热带木质藤本水力性状的多样性和重要性, 为阐明环境变化对这一重要植物类群的影响, 需要对它们的水力特征进行更广泛的研究。  相似文献   

18.
ABSTRACT

Background: Lianas are an important component of tropical forests that respond to logging disturbance. Determining liana response to selective logging chronosequence is important for understanding long-term logging effects on lianas and tropical forests.

Aims: Our objective was to quantify the response of liana communities to selective logging chronosequence in a moist semi-deciduous forest in Ghana.

Methods: Liana community characteristics were determined in ten 40 m × 40 m plots randomly and homogenously distributed in each of four selectively logged forest stands that had been logged 2, 14, 40 and 68 years before the surveys and in an old-growth forest stand (ca. >200 years).

Results: Liana species composition differed significantly among the forest stands, as a function of logging time span, while species richness fluctuated along the chronosequence. The abundance of liana communities and of reproductive and climbing guilds was lower in the logged forests than in the old-growth forest. The ratio of liana abundance and basal area to those of trees was similar in the logged forests, but significantly lower than those in the old-growth forest.

Conclusions: Logging impacts on liana community structure and functional traits were largely evident, though no clear chronosequence trends were recorded, except for species composition.  相似文献   

19.
Dong He  Shekhar R. Biswas 《Oikos》2019,128(5):659-667
Species’ response to environmental site conditions and neighborhood interactions are among the important drivers of species’ spatial distributions and the resultant interspecies spatial association. The importance of competition to interspecies spatial association can be inferred from a high degree of trait dissimilarity of the associated species, and vice versa for environmental filtering. However, because the importance of environmental filtering and competition in structuring plant communities often vary with spatial scale and with plant life stage, the species’ spatial association–trait dissimilarity relationship should vary accordingly. We tested these assumptions in a fully mapped 50‐ha subtropical evergreen forest of China, where we assessed the degrees of interspecies spatial associations between adult trees and between saplings at two different spatial scales (10 m versus 40 m) and measured the degrees of trait dissimilarity of the associated species using six traits (leaf area, specific leaf area, leaf dry‐matter content, wood density, wood dry‐matter content and maximum height). Consistent across spatial scales and plant life stages, the degree of interspecies spatial association and the degree of overall trait dissimilarity (i.e. all six traits together) were negatively correlated, suggesting that environmental filtering might help assemble functionally similar species in the forest under study. However, when we looked into the spatial association–trait dissimilarity relationship for individual traits, we found that the relationships between interspecies spatial associations and the dissimilarity of wood density and dry‐matter content were significant for adults but not for saplings, suggesting the importance of wood traits in species’ survival during ontogeny. We conclude that processes shaping interspecies spatial association are spatial scale and plant life stage dependent, and that the distributions of functional traits offer useful insights into the processes underlying community spatial structure.  相似文献   

20.

Background and Aims

Most tropical lianas have specialized organs of attachment such as twining stems, hooks or tendrils but some do not. Many climbers also have an early self-supporting phase of growth and in some species this can produce treelet-sized individuals. This study focuses on how a liana can climb without specialized attachment organs and how biomechanical properties of the stem are modulated between self-supporting treelets and canopy-climbing lianas.

Methods

Biomechanics and stem development were investigated in self-supporting to climbing individuals of Manihot aff. quinquepartita (Euphorbiaceae) from tropical rain forest at Saül, central French Guiana. Bending tests were carried out close to the site of growth. Mechanical properties, including Young''s elastic modulus, were observed with reference to habit type and changes in stem anatomy during development.

Key Results

This liana species can show a remarkably long phase of self-supporting growth as treelets with stiff, juvenile wood characterizing the branches and main stem. During the early phase of climbing, stiff but unstable stem segments are loosely held in a vertical position to host plants via petiole bases. The stiffest stems – those having the highest values of Young''s modulus measured in bending – belonged to young, leaning and climbing stems. Only when climbing stems are securely anchored into the surrounding vegetation by a system of wide-angled branches, does the plant develop highly flexible stem properties. As in many specialized lianas, the change in stiffness is linked to the development of wood with numerous large vessels and thin-walled fibres.

Conclusions

Some angiosperms can develop highly effective climbing behaviour and specialized flexible stems without highly specialized organs of attachment. This is linked to a high degree of developmental plasticity in early stages of growth. Young individuals in either open or closed marginal forest conditions can grow as substantial treelets or as leaning/climbing plants, depending on the availability of host supports. The species of liana studied differs both in terms of development and biomechanics from many other lianas that climb via twining, tendrils or other specialized attachment organs.Key words: Biomechanics, bending, developmental plasticity, French Guiana, liana, Manihot aff. quinquepartita (Euphorbiaceae), treelet, branch angle climber, Young''s modulus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号