首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
2.
3.
Structures of N-terminally acetylated proteins   总被引:15,自引:0,他引:15  
Primary structures of 250 characterized proteins with N-terminally acetylated residues were correlated with residue distributions and other data. Excluding multiple forms derived from characterized species variants, the structures represent 105 different types of acetylated proteins. Results of comparisons extend previous suggestions based on fewer structures and define relationships further. The N-terminal residue that is acetylated is of a limited type and is frequently a small residue, with a heavy over-representation of serine and alanine. However, the occurrence of methionine at the acetylated position is also high, whereas that of glycine is less frequent than previously estimated. Lysine is over-represented in the N-terminal region, as is aspartic and glutamic acids at a few positions close to the acetylated N-terminus (especially the adjacent position). Finally, distributions of branched-chain residues in the N-terminal region of acetylated proteins are altered in relation to those of proteins in general, isoleucine is over-represented, and leucine and valine are under-represented. The results suggest that alpha-amino-acetylated proteins have special residues in N-terminally non-hydrophobic structures. Data are compatible with a protective function for acetylation but do not exclude further role(s) in processing or other special functions.  相似文献   

4.
Polevoda B  Sherman F 《Genome biology》2002,3(5):reviews0006.1-reviews00066
  相似文献   

5.
We have measured the solution and film vacuum ultraviolet circular dichroism of a series of acetylated glucans containing α- and β-(1→3), (1→4), and (1→6) linkages. In addition to the 210-nm band studied previously, we observe the entire π-π* band near 190 nm; these bands are negative for all triacetates regardless of configuration and conformation. A band near 170 nm shows configurational sensitivity for (1→3)- and (1→6)-linked polysaccharides. The band is positive for both (1→4)-linked triacetates, but when cellulose triacetate is partially deacetylated, the 170-nm band becomes negative, thus making the correlation complete. The positive 170-nm band in cellulose triacetate films is more than an order of magnitude more intense than in any other case and, further, is accompanied by an equally large negative band near 153 nm, raising the possibility that the dichroism in the triacetate arises from strong excitonic interactions which are disrupted upon partial deacetylation.  相似文献   

6.
Conversion of lysine residues to homoarginine led to protein stabilization as determined earlier by hydrogen isotope exchange (P. Cupo W. El-Deiry, P. L. Whitney and W. M. Awad, Jr., 1980, J. Biol. Chem.255, 10828–10833). In order to see if neutralization of charges on lysine residues affected stability, a homogeneous derivative of chymotrypsinogen was prepared wherein all amino groups were acetylated. Hydrogen isotope exchange studies indicated that the derivative was less stable than the native protein. In addition, highly guanidinated chymotrypsinogen was prepared by first coupling ethylenediamine to carboxyl groups of guanidinated chymotrypsinogen. Thereafter the protein was treated with O-methylisourea to form guanidinoethylamido groups at the ends of carboxyl residues. Acrylamide gel electrophoresis indicated that two products were formed. Hydrogen isotope exchange studies demonstrated that superguanidinated chymotrypsinogen is even less stable than the acetylated derivative. Thus guanidination of residues in addition to lysine does not lead to protein stabilization. The possibility is that such a highly cationic protein causes backbone fluctuations because of repulsion of surface charges.  相似文献   

7.
C Prives  J L Manley 《Cell》2001,107(7):815-818
Recent studies suggest that acetylation of the p53 tumor suppressor protein is not important for its DNA binding activity, as was previously thought. We discuss here a number of theories as to how this modification may serve to regulate the protein's functions.  相似文献   

8.
To study the interaction between carboxyl groups and amino groups in native lysozyme [EC 3.2.1.17], and to identify the positions and the pK values of the abnormal carboxyl groups, N-acetylated lysozyme was prepared. The acetylation did not affect the molecular shape of the enzyme, but changed six amino groups to a non-ionizable form, leaving one amino group free; this was determined to be Lys 33. In addition, pH titration of the acetylated lysozyme in 0.2 or 0.02 M KCl aqueous solution indicated fewer titratable groups with pK(int) of 7.8 or 10.4 compared with the native protein, though the number of titratable carboxyl groups was not affected by the acetylation. From the pH titration results and structural considerations, the unititratable carboxyl groups were suggested to be Asp 48, Asp 66, and Asp 87. On the other hand, spectrophotometric titration in 0.2 M KCl showed that all three tyrosine residues are titratable in the acetylated protein, although an abnormal tyrosine residue exists in the native state. Tyr 20 was suggested to be untitratable in the pH range of 8-12.6.  相似文献   

9.
A modified trypsin (AA-trypsin, acetylated with acetic acid N-hydroxysuccinimide ester) gave increased yields of Bzl-Arg-Leu-NH2 dipeptide (90% versus 59% for native trypsin) when used in 95% acetonitrile. AA-Trypsin had decreased Km and increased kcat values for amide and ester substrates. kcat/Km also increased for each substrate upon modification. AA-Trypsin showed enhanced esterase activity in hydrophilic solvents compared with native enzyme.  相似文献   

10.
11.
12.
13.
Distribution of acetylated alpha-tubulin in Physarum polycephalum   总被引:4,自引:1,他引:3       下载免费PDF全文
The expression and cytological distribution of acetylated alpha-tubulin was investigated in Physarum polycephalum. A monoclonal antibody specific for acetylated alpha-tubulin, 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094), was used to screen for this protein during three different stages of the Physarum life cycle--the amoeba, the flagellate, and the plasmodium. Western blots of two-dimensional gels of amoebal and flagellate proteins reveal that this antibody recognizes the alpha 3 tubulin isotype, which was previously shown to be formed by posttranslational modification (Green, L. L., and W. F. Dove, 1984, Mol. Cell. Biol., 4:1706-1711). Double-label immunofluorescence demonstrates that, in the flagellate, acetylated alpha-tubulin is localized in the flagella and flagellar cone. Similar experiments with amoebae interestingly reveal that only within the microtubule organizing center (MTOC) are there detectable amounts of acetylated alpha-tubulin. In contrast, the plasmodial stage gives no evidence for acetylated alpha-tubulin by Western blotting or by immunofluorescence.  相似文献   

14.
Activation of acetylated chymotrypsinogen with trypsin leads to catalytically active acetylated delta-chymotrypsin containing NH2-terminal isoleucine. The importance of the cationic terminus to the control of the active conformation of acetylated delta-chymotrypsin has been demonstrated (Oppenheimer, H. L., Labouesse, B., and Hess, G. P. (1966) J. Biol. Chem. 241, 2720). Later studies appeared to suggest that the modification of isoleucine-16 of delta-chymotrypsin is not accompanied by the loss of catalytic activity as measured by the hydrolysis of N-acetyl-L-tyrosine ethyl ester (Agarwal, S. P., Martin, C. J., Blair, T. T., and Marini, M.A. (1971)Biochem. Biophys. Res. Commun. 43, 510; Blair, T. T., Marini, M. A., Agarwal, S. P., and Martin, C. J. (1971) FEBS Lett. 1486) or by the loss of active site content (Ghelis, C., Garel, J. R., and Labouesse, J. (1970) Biochemistry 9, 3902). In the present studies, controlled acetylation of the terminal alpha-aminogroup of acetylated delta-chymotrypsin with acetic anhydride led to a progressive loss of active sites of the enzyme. Determination of the catalytic and kinetic properties of the modified enzyme with the specific ester substrate N-acetyl-L-tyrosine ethyl ester or the nonspecific substrates p-nitrophenyl acetate and cinnamyol imidazole gave nearly identical results. With N-acetyl-L-tyrosine ethyl ester as substrate, the Km (app) values for acetylated delta-chymotrypsin (1.0 plus or minus 0.1 mM) and the modified enzyme (0.67 plus or minus 0.05 mM) are nearly identical and the kcat value is reduced to about 25% in the latter enzyme species. This value correlates well with about 20% of the active sites in this enzyme as measured by the rapid initial liberation of p-nitrophenol. With p-nitrophenyl acetate as substrate, the acylation rate constants (0.13 plus or minus 0.04 s(-1) at pH 6.0, 25 degrees, in 3.3% acetonitrile) and the deacylation rate constants (0.01 s(-1) at pH 8.5, 25 degrees, in 3.3% acetonitrile) are identical for the acetyl isoleucine-16 and the isoleucine-16 enzymes. Furthermore, the residual enzyme activity could be correlated well with the residual NH2-terminal isoleucine content and with the moles of [1--14C]acetyl groups incorporated per mol of the enzyme. The activity associated with the modified enzyme can be attributed to the enzyme species in which isoleucine-16 of acetylated delta-chymotrypsin is not acetylated. These data are in general agreement with the studies of Ghelis et al. (1970) but are in disagreement with the results of Blair et al. (1971) and of Agarwal et al. (1971) and confirm the hypothesis that the final conformation of acetylated delta-chymotrypsin containing an acetylated NH2 terminus is catalytically inactive and resembles acetylated zymogen in many of its physical properties.  相似文献   

15.
16.
Chemo-enzymatic synthesis of C-9 acetylated sialosides   总被引:1,自引:0,他引:1  
Rauvolfova J  Venot A  Boons GJ 《Carbohydrate research》2008,343(10-11):1605-1611
A chemo-enzymatic synthesis of [(5-acetamido-9-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2-->3)-O-(beta-D-galactopyranosyl)-(1-->3)-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)]-l-serine acetate (1) has been accomplished by a regioselective chemical acetylation of Neu5Ac (2) to give 9-O-acetylated sialic acid 3, which was enzymatically converted into CMP-Neu5,9Ac(2) (4) employing a recombinant CMP-sialic acid synthetase from Neisseria meningitis [EC 2.7.7.43]. The resulting compound was then employed for the enzymatic glycosylation of the C-3' hydroxyl of chemically prepared glycosylated amino acid 10 using recombinant rat alpha-(2-->3)-O-sialyltransferase expressed in Spodooptera frugiperda [EC 2.4.99.4] to give, after deprotection of the N(alpha)-benzyloxycarbonyl (CBz)-protecting group of serine, target compound 1. The N(alpha)-CBz-protected intermediate 11 can be employed for the synthesis of glycolipopeptides for immunization purposes.  相似文献   

17.
Cho E  Lee S  Jung S 《Carbohydrate research》2008,343(5):912-918
Alpha-cyclosophorotridecaose (alpha-C13) produced by Ralstonia solanacearum is isolated by trichloroacetic acid treatment and subjected to various chromatographic techniques. Here, we report for the first time that R. solanacearum produces acetylated alpha-C13. Structural analyses of the acetylated alpha-C13 were performed with 1D or 2D NMR spectroscopy, MALDI-TOF MS and HPLC. The results show that the alpha-C13 is substituted by mainly one acetyl residue at the C-6 position of the glucose unit.  相似文献   

18.
Thymosin beta4 (43 aa) is a highly conserved acidic peptide which regulates actin polymerization in mammalian cells by sequestering globular actin. Thymosin beta4 is undergoing clinical trials as a drug for the treatment of venous stasis ulcers, corneal wounds and injuries, as well as acute myocardial infarction. Currently, thymosin beta4 is produced with solid-phase chemical synthesis. Biotechnological synthesis of this peptide presents difficulties because N-terminal amino acid residue of thymosin beta4 is acetylated. In this study we propose a method for producing the recombinant precursor of thymosin beta4 and its subsequent targeted chemical acetylation. Desacetylthymosin beta4 was synthesized as a part of a hybrid protein with thioredoxin and a specific TEV (tobacco etch virus) protease cleavage site. The following scheme was developed for the purification of desacetylthymosin beta4: (i) the biosynthesis of a soluble hybrid protein (HP) in Escherichia coli; (ii) isolation of the HP by ion exchange chromatography; (iii) cleavage of the HP with TEVprotease; (iv) purification of desacetylthymosin beta4 by ultra-filtration. N-terminal acetylation of desacetylthymosin beta4 was performed with acetic anhydride under acidic conditions (pH 3). The reaction yield was 55%. Thymosin beta4 was then purified by reverse-phase high performance liquid chromatography. The proposed synthetic approach to recombinant thymosin beta4 is suitable for scale-up and can provide for the medical use of highly purified preparation with a yield of 20 mg from 1 L of culture.  相似文献   

19.
Synthetic peptides corresponding to regions within the amino-terminal domains of the core histones H2A, H2B, H3, and H4, in which epsilon-acetyllysine has been substituted for selected lysines, have been used to raise polyclonal antisera in rabbits. Such antisera can be specific not only for individual acetylated histones but also for histone isoforms acetylated at particular lysine residues. In this article, we describe procedures for the preparation, affinity purification, and initial characterization of site-specific antisera to acetylated histones.  相似文献   

20.
A bacterium (strain A1) isolated from a ditch synthesized three kinds of intracellular alginate lyases: A1-I (molecular weight [M.W.] 60,000), A1-II-1 (M.W. 60,000) and A1-II-2 (M.W. 25,000) in laboratory-scale cultures. However, when cells of strain A1 were grown on an industrial scale, another lyase (A1-III) was produced other than A1-I, A1-II-1 and A1-II-2. The A1-III lyase was a monomer with a M.W. of about 38,000, and its activity toward bacterial (acetylated) alginates was much higher (2-fold) than that toward seaweed (non-acetylated) alginates. The N-terminal amino acid sequence of A1-III lyase was consistent with that of A1-I lyase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号