首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
T lymphocytes are unresponsive to T cell receptor (TCR) stimulation during culture in spaceflight or ground-based microgravity analogs such as the rotating-wall vessel (RWV) bioreactor. The TCR-induced activation of a subset of T cells can be rescued in the RWV by co-stimulation with sub-mitogenic doses of phorbol ester (PMA). We report that PMA co-stimulation of primary human T cells cultured in the RWV rescues the phytohemagglutinin (PHA)-induced activation of the CD8+ and CD4+ T cell subsets as well as naïve and memory CD4+ T cells. Importantly, T cells activated in the RWV by PHA + PMA contained these subsets in proportions strikingly similar to control cultures activated with PHA alone. The data indicate that rescuing T cell activation with PMA co-stimulation does not significantly perturb the heterogeneity of the responding cells, and represent an important proof of principle for the design of immune-boosting agents for use in spaceflight.  相似文献   

3.
A number of experiments, conducted under microgravity conditions, i.e. in space shuttle biolaboratories or in ground based systems simulating the conditions occurring in microgravity, show that in hypogravity, in vitro human lymphocyte activation is severely impaired. However, very early stimulation steps of T lymphocytes are not compromised, since CD69 receptor, the earliest membrane activation marker, is expressed by T cells at a level comparable to that observed on 1 g activated lymphocytes. Since CD69 engagement, together with submitogenic doses of phorbol esters, transduces an activation signal to T lymphocytes, we undertook a comparative study on the stimulation mediated through this receptor on human CD3+ cells cultured under conditions similar to those which occur during exposure to microgravity, i.e. in clinorotation, or at 1 g. During the early hours of activation, increased levels of intracellular calcium and increased mitochondrial membrane potential were detectable in clinorotating as well as in 1 g cells. However, after 48 hours clinorotation, interleukin 2 production by T lymphocytes was significantly reduced and cell proliferation was greatly decreased. By means of a differential proteomics approach on T cells activated in clinorotation or at 1 g for 48 hours, we were able to detect statistically significant quantitative protein alterations. Seven proteins with modified expression values were identified; they are involved in nucleic acids processing, proteasome regulation and cytoskeleton structure.  相似文献   

4.
T lymphocytes fail to proliferate or secrete cytokines in response to T cell receptor (TCR) agonists during culture in spaceflight or ground‐based microgravity analogs such as rotating wall‐vessel (RWV) bioreactors. In RWVs, these responses can be rescued by co‐stimulation with sub‐mitogenic doses of the diacyl glycerol (DAG) mimetic phorbol myristate acetate. Based on this result we hypothesized that TCR activation is abrogated in the RWV due to impaired DAG signaling downstream of the TCR. To test this hypothesis we compared TCR‐induced signal transduction by primary, human, CD4+ T cells in RWV, and static culture. Surprisingly, we found little evidence of impaired DAG signaling in the RWV. Upstream of DAG, the tyrosine phosphorylation of several key components of the TCR‐proximal signal was not affected by culture in the RWV. Similarly, the phosphorylation and compartmentalization of ERK and the degradation of IκB were unchanged by culture in the RWV indicating that RAS‐ and PKC‐mediated signaling downstream of DAG are also unaffected by simulated microgravity. We conclude from these data that TCR signaling through DAG remains intact during culture in the RWV, and that the loss of functional T cell activation in this venue derives from the affect of simulated microgravity on cellular processes that are independent of the canonical TCR pathway. J. Cell. Biochem. 109: 1201–1209, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
The contribution of CD3gamma to the surface expression, internalization, and intracellular trafficking of the TCR/CD3 complex (TCR) has not been completely defined. However, CD3gamma is believed to be crucial for constitutive as well as for phorbol ester-induced internalization. We have explored TCR dynamics in resting and stimulated mature T lymphocytes derived from two unrelated human congenital CD3gamma-deficient (gamma(-)) individuals. In contrast to gamma(-) mutants of the human T cell line Jurkat, which were selected for their lack of membrane TCR and are therefore constitutively surface TCR negative, these natural gamma(-) T cells constitutively expressed surface TCR, mainly through biosynthesis of new chains other than CD3gamma. However, surface (but not intracellular) TCR expression in these cells was less than wild-type cells, and normal surface expression was clearly CD3gamma-dependent, as it was restored by retroviral transduction of CD3gamma. The reduced surface TCR expression was likely caused by an impaired assembly or membrane transport step during recycling, whereas constitutive internalization and degradation were apparently normal. Ab binding to the mutant TCR, but not phorbol ester treatment, caused its down-modulation from the cell surface, albeit at a slower rate than in normal controls. Kinetic confocal analysis indicated that early ligand-induced endocytosis was impaired. After its complete down-modulation, TCR re-expression was also delayed. The results suggest that CD3gamma contributes to, but is not absolutely required for, the regulation of TCR trafficking in resting and Ag-stimulated mature T lymphocytes. The results also indicate that TCR internalization is regulated differently in each case.  相似文献   

7.
Depressed immune function is a well-documented effect of spaceflight. Both in-flight studies and ground-based studies using microgravity analogs, such as rotating wall vessel (RWV) bioreactors, have demonstrated that mitogen-stimulated T lymphocytes exhibit decreased proliferation, IL-2 secretion, and activation marker expression in true microgravity and the dynamic RWV-culture environment. This study investigates the kinetics of RWV-induced T lymphocyte inhibition by monitoring the ability of Balb/c mouse splenocytes to become activated under static culture conditions after concanavalin A (Con A) stimulation in an RWV. Splenocytes were stimulated with Con A and cultured for up to 24 h in the RWV before being allowed to "recover" under static culture conditions in the continued presence of Con A. The T-lymphocyte fraction of splenocytes was assayed during the recovery period for IL-2 secretion, expansion of the T-lymphocyte population, and expression of the activation marker CD25. Our results indicate that CD25 expression was not affected by any duration of RWV exposure. In contrast, proliferation and IL-2 secretion were inhibited by >8 and 12 h of exposure, respectively. Culture in the RWV for 24 h resulted in a near-complete loss of cellular viability during the recovery period, which was not seen in cells maintained in the RWV for 16 h or less. Taken together, these results indicate that for up to 8 h of RWV culture activation is not significantly impaired upon return to static conditions; longer duration RWV culture results in a gradual loss of activation during the recovery period most likely because of decreased T-cell viability and/or IL-2 production.  相似文献   

8.
In the present study, we aimed to demonstrate that CD4 may represent a critical turning point that governs the apoptotic and survival programs in T cells, without modifying the physical association with the TCR-CD3 complex. To address this issue, we have explored the possibility that the activation of CD4 may transduce apoptotic signals unless signaling effectors neutralize them. Our data show that in Jurkat T cells CD4 engagement by Leu3a mAb results in a rapid and strong increase of Lck kinase activity, subsequent alterations of mitochondrial membrane potential, and apoptosis. Critical parameters are coassociation of CD4/Lck with TCR/CD3 and up-regulation of the proapoptotic protein Bax. Indeed, Leu3a-mediated Lck activation failed to induce apoptotic features in Jurkat cells either defective for TCR/CD3 or overexpressing the antiapoptotic protein Bcl-2. Furthermore, we demonstrate that Leu3a treatment of Jurkat cells overexpressing Vav results in the inhibition of mitochondrial damage and apoptosis; this rescue effect is accompanied with a significant decrease of Bax expression observed in apoptotic cells. Our evidence that the activation of Lck activates in T cells apoptotic pathways which are counteracted by Vav, a signaling molecule that cooperates with CD28 to boost TCR signals, suggests a novel role for costimulation in protecting T cells from CD4-mediated cell death.  相似文献   

9.
ABSTRACT: In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.  相似文献   

10.
11.
12.
CD2 can mediate TCR/CD3-independent T cell activation.   总被引:5,自引:0,他引:5  
T lymphocytes can be activated clonotypically through TCR/CD3 complex or polyclonally via the CD2 molecule. Whether CD2-mediated activation is dependent on TCR/CD3 expression or signaling is controversial. We have re-explored this issue by using a series of CD2-transfected, TCR/CD3 surface membrane-negative human and mouse T cells. Our results clearly show that such T cells can be triggered for IL-2 secretion and increases in intracellular Ca2+ through the CD2 molecule in the absence of surface expression of TCR/CD3 complexes. These responses are only observed when cells express high levels of CD2 and there is a critical threshold of CD2 expression necessary for such activation in the absence of CD3. Concomitant expression of TCR/CD3 complex markedly lowers the level of CD2 required for activation via the latter pathway. These results provide a clear resolution of the controversy concerning the requirement for surface CD3 expression in T cell activation through CD2 and further suggest a possible role for CD2 in activation of TCR/CD3-negative cells.  相似文献   

13.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

14.
Regulation of constitutive TCR internalization by the zeta-chain   总被引:1,自引:0,他引:1  
The ability of a T cell to be activated is critically regulated by the number of TCRs expressed on the plasma membrane. Cell surface TCR expression is influenced by dynamic processes such as synthesis and transport of newly assembled receptors, endocytosis of surface TCR, and recycling to the plasma membrane of internalized receptors. In this study, the internalization of fluorescently labeled anti-TCR Abs was used to analyze constitutive endocytosis of TCRs on T cells, and to investigate the role of the zeta-chain in this process. We found that cell surface TCRs lacking zeta were endocytosed more rapidly than completely assembled receptors, and that reexpression of full-length zeta led to a dose-dependent decrease in the rate of TCR internalization. Rapid TCR internalization was also observed with CD4(+)CD8(+) thymocytes from zeta-deficient mice, whereas TCR internalization on thymocytes from CD3-delta deficient animals was slow, similar to that of wild-type thymocytes. This identifies a specific role for zeta in the regulation of constitutive receptor internalization. Furthermore, chimeric zeta molecules containing non-native intracellular amino acid sequences also led to high levels of TCR expression and reduced TCR cycling. These effects were dependent solely on the length of the intracellular tail, ruling out a role for intracellular zeta-specific interactions with other molecules as a mechanism for regulating TCR internalization. Rather, these findings strongly support a model in which the zeta-chain stabilizes TCR residency on the cell surface, and functions to maintain cell surface receptor expression by sterically blocking internalization sequences in other TCR components.  相似文献   

15.
Cross-linking of the human homologue of the murine MEL-14 lymph node homing receptor (Selectin-1, LECAM-1, Leu 8) on both T and B cells results in modification of cell function. To investigate this phenomenon, we performed studies to determine if the Leu 8 molecule influences T cell activation via the TCR/CD3 complex. In initial studies, we treated T cells with immobilized anti-CD3 (OKT3 mAb) in the presence or absence of immobilized Leu 8 mAb. We found that although Leu 8 mAb alone had no effect on T cell proliferation, this antibody markedly augmented immobilized OKT3 mAb-induced proliferation. In further studies, we immunoprecipitated surface radioiodinated T cell lysates with OKT3 and Leu 8 mAb to determine if molecules in the TCR/CD3 complex associate with Leu 8 molecules. Although Leu 8 mAb immunoprecipitated only a single protein of approximately 80 kDa from T cell lysates treated with Nonidet P-40 under reducing condition, it coimmunoprecipitated additional proteins of 48, 42, 28, 24, and 22 kDa from T cell lysates treated with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate. These additional proteins were identified as the alpha-, beta-, gamma-, delta-, and epsilon-chains of the TCR/CD3 complex by one-dimensional and two-dimensional diagonal SDS-PAGE. Densitometric scanning showed that, on average, 18% of the TCR/CD3 complex associates with Leu 8. In a final study, we showed by immunoblotting analysis using anti-zeta peptide antibody that Leu 8 mAb coimmunoprecipitates the zeta-chain of CD3. These results indicate that the human lymph node homing receptor homologue (Leu 8) participates in the activation of T cells, probably via its association with the TCR/CD3 complex.  相似文献   

16.
Regulation of human T lymphocyte mitogenesis by antibodies to CD3   总被引:3,自引:0,他引:3  
The inhibitory and mitogenic effects of anti-CD3 antibodies (anti-CD3) were examined in cultures of human peripheral blood T cells. Resting T cells required the presence of accessory cells (AC) or phorbol myristate acetate (PMA) to be stimulated by soluble anti-CD3 (OKT3 and 64.1). Anti-CD3 was unable to induce activation of AC-depleted T cells as determined by IL 2 receptor expression, IL 2 production, cell cycle analysis, or detectable DNA synthesis. Although T cell responses to PHA also required AC, far fewer were necessary to generate responses. Anti-CD3 inhibited PHA-stimulated T cell IL 2 production, IL 2 receptor expression and proliferation in partially AC-depleted cultures. Moreover, anti-CD3 was able to inhibit PHA responses when added to culture as late as 24 to 42 hr after the initiation of a 96-hr incubation. Increasing concentrations of PHA reduced the inhibitory effect of anti-CD3 on PHA-stimulated T cell proliferation, whereas IL 2 production remained suppressed. Anti-CD3 linked to Sepharose beads effectively inhibited PHA-stimulated T cell DNA synthesis, indicating that internalization of the CD3 molecule was not required for inhibition of PHA responses. Although inhibition of IL 2 production was a major effect of anti-CD3 in PHA-stimulated cultures, it was not the only apparent inhibitory effect because the addition of exogenous IL 2 could not prevent inhibition completely. Intact AC but not IL 1 also reduced anti-CD3-mediated inhibition of PHA responsiveness, whereas the addition of both IL 2 and AC largely prevented inhibition. Thus, anti-CD3 in the absence of adequate AC signals exerted a number of distinct inhibitory effects on mitogen-induced T cell activation. These results suggest that the CD3 molecular complex may play a role in regulating T cell responsiveness after engagement of the T cell receptor by a number of mechanisms, some of which involve inhibition of IL 2 production.  相似文献   

17.
18.
CD4+CD25+ T cells represent a unique population of "professional" suppressor T cells that prevent induction of organ-specific autoimmune disease. In vitro, CD4+CD25+ cells were anergic to simulation via the TCR and when cultured with CD4+CD25- cells, markedly suppressed polyclonal T cell proliferation by specifically inhibiting the production of IL-2. Suppression was cytokine independent, cell contact dependent, and required activation of the suppressors via their TCR. Further characterization of the CD4+CD25+ population demonstrated that they do not contain memory or activated T cells and that they act through an APC-independent mechanism. CD4+CD25+ T cells isolated from TCR transgenic (Tg) mice inhibited responses of CD4+CD25- Tg T cells to the same Ag, but also inhibited the Ag-specific responses of Tg cells specific for a distinct Ag. Suppression required that both peptide/MHC complexes be present in the same culture, but the Ags could be presented by two distinct populations of APC. When CD4+CD25+ T cells were cultured with anti-CD3 and IL-2, they expanded, remained anergic, and in the absence of restimulation via their TCR, suppressed Ag-specific responses of CD4+CD25- T cells from multiple TCR transgenics. Collectively, these data demonstrate that CD4+CD25+ T cells require activation via their TCR to become suppressive, but once activated, their suppressor effector function is completely nonspecific. The cell surface molecules involved in this T-T interaction remain to be characterized.  相似文献   

19.
In order to explore the potential impact of microgravity on flavonoid biosynthesis, we examined isoflavonoid levels in soybean (Glycine max) tissues generated under both spaceflight and clinorotation conditions. A 6-day Space Shuttle-based microgravity exposure resulted in enhanced accumulation of isoflavone glycosides (daidzin, 6"-O-malonyl-7-O-glucosyl daidzein, genistin, 6"-O-malonyl-7-O-glucosyl genistein) in hypocotyl and root tissues, but reduced levels in cotyledons (relative to 1g controls on Earth). Soybean seedlings grown on a horizontally rotating clinostat for 3, 4 and 5 days exhibited (relative to a vertical clinorotation control) an isoflavonoid accumulation pattern similar to the space-grown tissues. Elevated isoflavonoid levels attributable to the clinorotation treatment were transient, with the greatest increase observed in the three-day-treated tissues and smaller increases in the four- and five-day-treated tissues. Differences between stresses presented by spaceflight and clinorotation and the resulting biochemical adaptations are discussed, as is whether the increase in isoflavonoid concentrations were due to differential rates of development under the "gravity" treatments employed. Results suggest that spaceflight exposure does not impair isoflavonoid accumulation in developing soybean tissues and that isoflavonoids respond positively to microgravity as a biochemical strategy of adaptation.  相似文献   

20.
TCR internalization takes place both in resting T cells as part of constitutive TCR cycling, after PKC activation, and during TCR triggering. It is still a matter of debate whether these pathways represent distinct pathways. Thus, some studies have indicated that ligand-induced TCR internalization is regulated by mechanisms distinct from those involved in constitutive internalization, whereas other studies have suggested that the ligand-induced TCR internalization pathway is identical with the constitutive pathway. To resolve this question, we first identified requirements for constitutive TCR cycling. We found that in contrast to PKC-induced TCR internalization where both CD3gamma-S(126) and the CD3gamma leucine-based internalization motif are required, constitutive TCR cycling required neither PKC nor CD3gamma-S(126) but only the CD3gamma leucine-based motif. Having identified these requirements, we next studied ligand-induced internalization in cells with abolished constitutive TCR cycling. We found that ligand-induced TCR internalization was not dependent on constitutive TCR internalization. Likewise, constitutive internalization and recycling of the TCR were independent of an intact ligand-induced internalization of the TCR. In conclusion, ligand-induced TCR internalization and constitutive cycling of the TCR represents two independent pathways regulated by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号