共查询到20条相似文献,搜索用时 15 毫秒
1.
Phorbol ester dissociates endothelin-stimulated phosphoinositide hydrolysis and arachidonic acid release in vascular smooth muscle cells 总被引:1,自引:0,他引:1
E E Reynolds L L Mok S Kurokawa 《Biochemical and biophysical research communications》1989,160(2):868-873
Endothelin-stimulated [3H]-inositol phosphate formation and [3H]-arachidonic acid release were measured in cultured vascular smooth muscle cells from rabbit renal artery. Both responses were partially inhibited by pretreatment with pertussis toxin, indicating the involvement of pertussis toxin-sensitive guanine nucleotide binding regulatory proteins in the coupling processes. Pretreatment with the phorbol ester PMA inhibited endothelin-stimulated [3H]-inositol phosphate formation, but potentiated endothelin-stimulated [3H]-arachidonic acid release, suggesting that these two coupling processes occur in a parallel and independent manner in vascular smooth muscle cells. 相似文献
2.
T Kondo F Konishi H Inui T Inagami 《Biochemical and biophysical research communications》1992,187(3):1460-1465
In cultured vascular smooth muscle cells (VSMC), angiotensin II (Ang II) induces a biphasic diacylglycerol (DAG) formation peaking at 15 sec and 5 min. Although it has been well established that the first peak is produced by the hydrolysis of inositol 4,5-bisphosphate (PIP2), the origin of the second DAG peak has never been examined in detail. In the present paper, we provide evidence that the second peak of DAG formation in Ang II-stimulated VSMC originates mainly from PC. 相似文献
3.
Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells 总被引:35,自引:0,他引:35
K K Griendling S E Rittenhouse T A Brock L S Ekstein M A Gimbrone R W Alexander 《The Journal of biological chemistry》1986,261(13):5901-5906
Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes. 相似文献
4.
5.
Regulation of angiotensin II-induced phosphorylation of STAT3 in vascular smooth muscle cells. 总被引:6,自引:0,他引:6
H Liang V J Venema X Wang H Ju R C Venema M B Marrero 《The Journal of biological chemistry》1999,274(28):19846-19851
6.
Characterization of a G protein-activated phosphoinositide 3-kinase in vascular smooth muscle cell nuclei 总被引:4,自引:0,他引:4
Bacqueville D Déléris P Mendre C Pieraggi MT Chap H Guillon G Perret B Breton-Douillon M 《The Journal of biological chemistry》2001,276(25):22170-22176
Recent studies highlight the existence of an autonomous nuclear polyphosphoinositide metabolism related to cellular proliferation and differentiation. However, only few data document the nuclear production of the putative second messengers, the 3-phosphorylated phosphoinositides, by the phosphoinositide 3-kinase (PI3K). In the present paper, we examine whether GTP-binding proteins can directly modulate 3-phosphorylated phosphoinositide metabolism in membrane-free nuclei isolated from pig aorta smooth muscle cells (VSMCs). In vitro PI3K assays performed without the addition of any exogenous substrates revealed that guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) specifically stimulated the nuclear synthesis of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), whereas guanosine 5'-(beta-thio)diphosphate was ineffective. PI3K inhibitors wortmannin and LY294002 prevented GTPgammaS-induced PtdIns(3,4,5)P(3) synthesis. Moreover, pertussis toxin inhibited partially PtdIns(3,4,5)P(3) accumulation, suggesting that nuclear G(i)/G(0) proteins are involved in the activation of PI3K. Immunoblot experiments showed the presence of Galpha(0) proteins in VSMC nuclei. In contrast with previous reports, immunoblots and indirect immunofluorescence failed to detect the p85alpha subunit of the heterodimeric PI3K within VSMC nuclei. By contrast, we have detected the presence of a 117-kDa protein immunologically related to the PI3Kgamma. These results indicate the existence of a G protein-activated PI3K inside VSMC nucleus that might be involved in the control of VSMC proliferation and in the pathogenesis of vascular proliferative disorders. 相似文献
7.
Cholera toxin modulation of angiotensin II-stimulated inositol phosphate production in cultured vascular smooth muscle cells. 下载免费PDF全文
Activation of phospholipase C by angiotensin II in vascular smooth muscle has been postulated to be mediated by an unidentified GTP-binding protein (G-protein). Using a permeabilized preparation of myo-[3H]inositol-labelled cultured vascular smooth muscle cells, we examined the ability of a non-hydrolysable analogue of GTP, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to stimulate inositol phosphate formation. GTP[S] (5 min exposure) stimulated inositol polyphosphate release by up to 3.8-fold in a dose-dependent manner, with an EC50 (concn. producing half-maximal stimulation) of approx. 50 microM. Inositol bisphosphate (IP2) and inositol trisphosphate (IP3) accumulations were also stimulated by NaF (5-20 mM). Furthermore, angiotensin II-induced inositol phosphate formation could be potentiated by a submaximal concentration of GTP[S] (10 microM), and this treatment appeared to interfere with the normal termination mechanism of the initial hormonal signal. The G-protein mediating angiotensin II-stimulated phospholipase C activation was insensitive to pertussis toxin at an exposure time and concentration which were sufficient to completely ADP-ribosylate all available substrate (100 ng/ml, 16 h). In contrast, a similar incubation with cholera toxin markedly inhibited angiotensin II-stimulated IP2 and IP3 release by 67 +/- 6% and 62 +/- 6% respectively. Cholera toxin appeared to inhibit angiotensin II stimulation of phospholipase C by a dual mechanism: it caused a 45% decrease in angiotensin II receptor number, and also inhibited G-protein transduction as assessed by GTP[S]-stimulated IP2 formation. This latter inhibition may be secondary to an increase in cyclic AMP, since it could be simulated by addition of dibutyryl cyclic AMP. Thus angiotensin II-stimulated inositol phosphate formation is cholera-toxin-sensitive, and is mediated by a pertussis-toxin-insensitive G-protein, which may be involved directly in termination of early signal generation. 相似文献
8.
K K Griendling P Delafontaine S E Rittenhouse M A Gimbrone R W Alexander 《The Journal of biological chemistry》1987,262(30):14555-14562
Angiotensin II stimulates sequential phospholipase C-mediated hydrolysis of initially the polyphosphoinositides and subsequently phosphatidylinositol (PI) in cultured rat aortic smooth muscle cells resulting in biphasic, sustained formation of diacylglycerol (DG). The mechanisms underlying this delayed induction of sustained DG accumulation are unknown but may be related to cellular events including processing of the angiotensin II receptor-ligand complex. In the present study, we characterized the kinetics of angiotensin II receptor sequestration and studied the effects of interventions which interfere with receptor processing on the pattern of angiotensin II-induced DG formation and phosphoinositide hydrolysis. Conversion of the angiotensin II receptor to an acid-resistant form was temperature-dependent, with half-times of 1.5 min at 37 degrees C and 7 min at 19 degrees C. Reducing the temperature to 25 or 19 degrees C caused a marked temporal separation between the two phases of DG accumulation. There was a close temporal correlation between the effect of temperature on receptor sequestration and on sustained DG accumulation. Furthermore, phenylarsine oxide (5 min, 10 microM), which inhibited angiotensin II receptor internalization, also selectively inhibited the sustained phase of DG accumulation (81 +/- 6% inhibition). Monensin and chloroquine, which interfere with receptor processing through the lysosomal-degradative pathway, had no effect on angiotensin II-induced DG formation in these cells, suggesting that the processing event important to hormonally induced sustained DG accumulation occurs early in the internalization pathway, probably at the level of the plasma membrane. Moreover, the acid-resistant state of the angiotensin II receptor-ligand complex retained its ability to signal, since removal of the surface signal by competitive antagonism with Sar1-Ile8-angiotensin II or acid-wash only slowly reversed accumulation of DG and depression of total cell calcium. These experiments support our previous observation that the initial and sustained phases of angiotensin II-induced diacylglycerol formation in vascular smooth muscle are differentially controlled and suggest that an early event in the cellular processing of the angiotensin II-receptor complex is essential to maintenance of DG accumulation. 相似文献
9.
Cyclosporin A augments angiotensin II-stimulated rise in intracellular free calcium in vascular smooth muscle cells. 总被引:4,自引:1,他引:3 下载免费PDF全文
Pretreatment of rat vascular smooth muscle cells with the immunosuppressive drug cyclosporin A caused concentration- and time-dependent increases in both the amplitude and duration of the angiotensin II-induced rise in cytosolic free calcium, as measured with quin 2. Cyclosporin A had no significant effect on basal quin 2 fluorescence. However, cyclosporin A increased the basal 45Ca2+ influx. This stimulation of 45Ca2+ influx was not blocked by nifedipine (10(-6) M). Cyclosporin A also augmented the angiotensin II-stimulated influx and efflux of 45Ca2+. These results demonstrate that cyclosporin A increases the permeability of the plasma membrane for Ca2+ and also augments the angiotensin II-induced increases in cytosolic free calcium. 相似文献
10.
Frank GD Eguchi S Motley ED Sasaki T Inagami T 《Biochemical and biophysical research communications》2001,286(4):692-696
Activation of tyrosine kinases is believed to play a central role in angiotensin II (AngII) signaling. Here, we have investigated whether a tyrosine kinase, PYK2, is functionally involved in AngII-induced c-Jun N-terminal kinase (JNK) activation in vascular smooth muscle cells (VSMCs). Adenovirus expressing PYK2 kinase-inactive mutant K457A or a tyrosine phosphorylation site mutant Y402F was transfected in VSMCs. AngII-induced JNK phosphorylation was markedly enhanced by K457A, whereas it was suppressed by Y402F. Protein synthesis induced by AngII was also enhanced by K457A and inhibited by Y402F. In this regard, K457A suppressed PYK2 kinase activation by AngII, whereas it enhanced AngII-induced PYK2 Tyr(402) phosphorylation. By contrast, Y402F inhibited PYK2 Tyr(402) phosphorylation, whereas it markedly enhanced AngII-induced PYK2 kinase activation. Thus, we conclude that PYK2 kinase activity negatively regulates JNK activation and protein synthesis, whereas Tyr(402) phosphorylation positively regulates these events in AngII-stimulated VSMCs, suggesting a unique role of PYK2 in mediating vascular remodeling. 相似文献
11.
The vasodilating peptide adrenomedullin has been reported to regulate vascular tone as well as proliferation and differentiation of various cell types in an autocrine/paracrine manner. Conflicting data have been reported on the adrenomedullin (AM) effect on vascular smooth muscle cell proliferation, a process involved in the progression of vascular remodeling and atherosclerotic lesion. In this paper we investigate the effect of AM on proliferation of human aorta smooth muscle cell (HASMC). AM showed a potent dose-dependent inhibiting effect on angiotensin II (AngII) induced-proliferation and a stimulatory effect on proliferation of quiescent cells. The cAMP/PKA pathway was involved in the AM inhibitory effect of AngII-induced proliferation in HASMC. PI3K/Akt and ERK pathways were involved in the proliferative effect exerted by AM per se. Our results suggest that AM plays a role in the regulation of HASMC growth antagonizing the AngII effect and may be involved in conditions of altered regulation of the blood vessels. 相似文献
12.
H P Reusch S Zimmermann M Schaefer M Paul K Moelling 《The Journal of biological chemistry》2001,276(36):33630-33637
The stimulation of platelet-derived growth factor (PDGF) receptors shifts vascular smooth muscle (VSM) cells toward a more proliferative phenotype. Thrombin activates the same signaling cascades in VSM cells, namely the Ras/Raf/MEK/ERK and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways. Nonetheless, thrombin was not mitogenic, but rather increased the expression of the smooth muscle-specific myosin heavy chain (SM-MHC) indicative of an in vitro re-differentiation of VSM cells. A more detailed analysis of the temporal pattern and relative signal intensities revealed marked differences. The strong and biphasic phosphorylation of ERK1/2 in response to thrombin correlated with its ability to increase the activity of the SM-MHC promoter whereas Akt was only partially and transiently phosphorylated. By contrast, PDGF, a potent mitogen in VSM cells, induced a short-lived ERK1/2 phosphorylation but a complete and sustained phosphorylation of Akt. The phosphorylated form of Akt physically interacted with Raf. Moreover, Akt phosphorylated Raf at Ser(259), resulting in a reduced Raf kinase activity and a termination of MEK and ERK1/2 phosphorylation. Disruption of the PI 3-kinase signaling prevented the PDGF-induced Akt and Raf-Ser(259) phosphorylation. Under these conditions, PDGF elicited a more sustained MEK and ERK phosphorylation and increased SM-MHC promoter activity. Consistently, in cells that express dominant negative Akt, PDGF increased SM-MHC promoter activity. Furthermore, expression of constitutively active Akt blocked the thrombin-stimulated SM-MHC promoter activity. Thus, we present evidence that the balance and cross-regulation between the PI 3-kinase/Akt and Ras/Raf/MEK signaling cascades determine the temporal pattern of ERK1/2 phosphorylation and may thereby guide the phenotypic modulation of vascular smooth muscle cells. 相似文献
13.
Evidence that Na+/H+ exchange regulates angiotensin II-stimulated diacylglycerol accumulation in vascular smooth muscle cells 总被引:4,自引:0,他引:4
Angiotensin II stimulation of vascular smooth muscle cells results in initial, rapid diacylglycerol (DG) formation from the polyphosphoinositides accompanied by intracellular acidification, as well as a more sustained DG accumulation which is accompanied by a prolonged intracellular alkalinization. To determine whether intracellular pH (pHi) modulates DG accumulation, NH4Cl and potassium acetate were used to alter pHi and DG formation was measured. NH4Cl (10 mM) increased pHi from 7.15 +/- 0.05 to 7.34 +/- 0.02 pH units and markedly enhanced the sustained (5 min), but not the initial (15 s), phase of DG formation in response to 100 nM angiotensin II (65 +/- 13% increase). Conversely, intracellular acidification with Na+-free buffer and potassium acetate (20 mM) decreased pHi to 6.93 +/- 0.08 and reduced subsequent angiotensin II-induced sustained DG formation by 82 +/- 9%. In intact cells, inhibition of angiotensin II-stimulated alkalinization by incubation in Na+-free buffer or by addition of the Na+/H+ exchange inhibitor dimethylamiloride (10 microM) decreased the ability of the cell to sustain DG formation, suggesting that active Na+/H+ exchange is necessary for continued DG formation. Thus, it seems that sustained, angiotensin II-induced diacylglycerol accumulation is regulated by intracellular alkalinization secondary to Na+/H+ exchange in cultured vascular smooth muscle cells. 相似文献
14.
Glucose transport in response to angiotensin II (AII) was assessed in cultured vascular smooth muscle (VSM) cells by measuring the uptake of [3H]-2-deoxyglucose, a radiolabeled non-metabolizable glucose analog. Significant stimulation occurred by 2 hr of exposure with the maximum effect being observed between 6 and 8 hr. AII effects were concentration dependent with a threshold response being detected at 0.1 nM. AII-stimulated transport was blocked by saralasin, an AII receptor antagonist, indicating that AII binding to a specific receptor is required for AII to elicit the transport response. AII-stimulated transport was also blocked when cells were incubated with cycloheximide for 6 hr, suggesting that protein synthesis is required for the long-term effects of AII on glucose transport. A specific protein synthesized in response to AII stimulation was the GLUT 1 glucose transporter as assessed by western blot analysis. Inhibition of protein kinase C (PKC) by bisindolylmaleimide and staurosporine did not affect VSM responsiveness to AII, suggesting that AII is capable of stimulating glucose transport through a PKC-independent mechanism; however, VSM responsiveness to AII did appear to be dependent upon the presence of extracellular calcium. The importance of calmodulin in mediating the response of VSM cells to AII was indicated by the inhibition of AII-stimulated glucose transport when VSM cells were incubated in the presence of the calmodulin inhibitors, calmidazolium and W7. Finally, glucose uptake increased with decreasing levels of glucose in the incubation medium. This was accompanied by a corresponding decrease in the relative effectiveness of AII in stimulating glucose uptake. J. Cell. Physiol. 177:94–102, 1998. © 1998 Wiley-Liss, Inc. 相似文献
15.
Angiotensin (Ang) II via the AT(1) receptor acts as a mitogen in vascular smooth muscle cells (VSMC) through stimulation of multiple signaling mechanisms, including tyrosine kinases and mitogen-activated protein kinase (MAPK). In addition, cytosolic phospholipase A(2)(cPLA(2))-dependent release of arachidonic acid (AA) is linked to VSMC growth and we have reported that Ang II stimulates cPLA(2) activity via the AT(1) receptor. The coupling of Ang II to the activation of cPLA(2) appears to involve mechanisms both upstream and downstream of MAPK such that AA stimulates MAPK activity which phosphorylates cPLA(2) to further enhance AA release. However, the upstream mechanisms responsible for activation of cPLA(2) are not well-defined. One possibility includes phosphatidylinositide 3-kinase (PI3K), since PI3K has been reported to participate in the upstream signaling events linked to activation of MAPK. However, it is not known whether PI3K is involved in the Ang II-induced activation of cPLA(2) or if this mechanism is associated with the Ang II-mediated growth of VSMC. Therefore, we used cultured rat VSMC to examine the role of PI3K in the Ang II-dependent phosphorylation of cPLA(2), release of AA, and growth induced by Ang II. Exposure of VSMC to Ang II (100 nM) increased [(3)H]thymidine incorporation, cell number, and the release of [(3)H]AA. Also, using Western analysis, Ang II increased the phosphorylation of MAPK and cPLA(2) which were blocked by the MAPK kinase inhibitor PD98059 (10 microM/L). Similarly, the PI3K inhibitor LY294002 (10 microM/L) abolished the Ang II-mediated increase in MAPK phosphorylation, as well as phosphoserine-PLA(2). Further, inhibition of PI3K blocked the Ang II-induced release of AA and VSMC mitogenesis. However, exogenous AA was able to restore VSMC growth in the presence of LY294002, as well as reverse the inhibition of MAPK and cPLA(2) phosphorylation by LY294002. Thus, it appears from these data that Ang II stimulates the PI3K-sensitive release of AA which stimulates MAPK to phosphorylate cPLA(2) and enhance AA release. This mechanism may play an important role in the Ang II-induced growth of VSMC. 相似文献
16.
OxLDL induces mitogen-activated protein kinase activation mediated via PI3-kinase/Akt in vascular smooth muscle cells 总被引:14,自引:0,他引:14
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs. 相似文献
17.
PDGF activates K-Cl cotransport through phosphoinositide 3-kinase and protein phosphatase-1 in primary cultures of vascular smooth muscle cells 总被引:3,自引:0,他引:3
K-Cl cotransport (K-Cl COT, KCC) is an electroneutrally coupled movement of K and Cl present in most cells. In this work, we studied the pathways of regulation of K-Cl COT by platelet-derived growth factor (PDGF) in primary cultures of vascular smooth muscle cells (VSMCs). Wortmannin and LY 294002 blocked the PDGF-induced K-Cl COT activation, indicating that the phosphoinositide 3-kinase (PI 3-K) pathway is involved. However, PD 98059 had no effect on K-Cl COT activation by PDGF, suggesting that the mitogen-activated protein kinase pathway is not involved under the experimental conditions tested. Involvement of phosphatases was also examined. Sodium orthovanadate, cyclosporin A and okadaic acid had no effect on PDGF-stimulated K-Cl COT. Calyculin A blocked the PDGF-stimulated K-Cl COT by 60%, suggesting that protein phosphatase-1 (PP-1) is a mediator in the PDGF signaling pathway/s. In conclusion, our results indicate that the PDGF-mediated pathways of K-Cl COT regulation involve the signaling molecules PI 3-K and PP-1. 相似文献
18.
Oxidant-induced arachidonic acid release and impairment of fatty acid acylation in vascular smooth muscle cells 总被引:1,自引:0,他引:1
Cane Agnes; Breton Michelyne; Koumanov Kamen; Bereziat Gilbert; Colard Odile 《American journal of physiology. Cell physiology》1998,274(4):C1040
Oxidativedamage, which plays a major role in the early stages ofatherosclerosis, is associated with arachidonic acid (AA) release invascular smooth muscle cells (VSMC) as in other cell types. In thisstudy,H2O2was used to investigate mechanisms of AA release from VSMC on oxidativestress. Cell treatment with H2O2inhibited AA incorporation in an inverse relationship to prolongedH2O2-inducedAA release. Identical kinetics of inhibition of AA incorporation and AArelease were observed after cell treatment withAlF4, a process not involvingphospholipase A2(PLA2) activation as recentlydescribed (A. Cane, M. Breton, G. Béréziat, and O. Colard.Biochem. Pharmacol. 53: 327-337, 1997). AA release was not specific, since oleic acid also increased inthe extracellular medium of cells treated withH2O2or AlF4 as measured by gaschromatography-mass spectrometry. In contrast, AA and oleic acid cellcontent decreased after cell treatment. Oleoyl and arachidonoylacyl-CoA synthases and acyltransferases, assayed using a cell-freesystem, were not significantly modified. In contrast, a goodcorrelation was observed between decreases in AA acylation and cell ATPcontent. The decrease in ATP content is only partially accounted for bymitochondrial damage as assayed by rhodamine 123 assay. We concludethat oxidant-induced arachidonate release results from impairment offatty acid esterification and that ATP availability is probablyresponsible for free AA accumulation on oxidative stress by preventingits reesterification and/or transmembranetransport. 相似文献
19.
TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry after the stimulation of a G(q)-protein-coupled or tyrosine-kinase receptor. TRPC6 translocates to the plasma membrane upon stimulation and remains there as long as the stimulus is present. However, the mechanism that regulates the trafficking and activation of TRPC6 are unclear. In this study we showed phosphoinositide 3-kinase and its antagonistic phosphatase, PTEN, are involved in the activation of TRPC6. The inhibition of PI3K by PIK-93, LY294002, or wortmannin decreased carbachol-induced translocation of TRPC6 to the plasma membrane and carbachol-induced net Ca(2+) entry into T6.11 cells. Conversely, a reduction of PTEN expression did not affect carbachol-induced externalization of TRPC6 but increased Ca(2+) entry through TRPC6 in T6.11 cells. We also showed that the PI3K/PTEN pathway regulates vasopressin-induced translocation of TRPC6 to the plasma membrane and vasopressin-induced Ca(2+) entry into A7r5 cells, which endogenously express TRPC6. In summary, we provided evidence that the PI3K/PTEN pathway plays an important role in the translocation of TRPC6 to the plasma membrane and may thus have a significant impact on Ca(2+) signaling in cells that endogenously express TRPC6. 相似文献
20.
Regulation of atrial natriuretic factor receptors by angiotensin II in rat vascular smooth muscle cells 总被引:1,自引:0,他引:1
P E Chabrier P Roubert M O Lonchampt P Plas P Braquet 《The Journal of biological chemistry》1988,263(26):13199-13202
Atrial natriuretic factor (ANF) is actively involved in the control of blood pressure and fluid homeostasis as a physiological antagonist of the renin-angiotensin system. To evaluate a possible interaction between ANF and angiotensin II (Ang-II) receptors, we investigated the effect of long term pretreatment (18 h) of rat cultured vascular smooth muscle cells with Ang-II. Binding of 125I-labeled ANF and cyclic GMP production induced by ANF were measured. After preincubation of the cells with Ang-II (1, 10, and 100 nM), the number of ANF binding sites (Bmax) was decreased by 30, 59, and 71%, respectively, with a slight decrease of the Kd values. Sar1-Ile8-Ang-II (100 nM), a specific Ang-II receptor antagonist, totally inhibited the down-regulation induced by Ang-II (10 nM). Moreover, the regulatory effect of Ang-II on ANF receptors appeared more slowly as compared to ANF homologous receptor regulation. Ang-II pretreatment did not desensitize but increased cyclic GMP production elicited by ANF, implying that only the number of non-guanylate cyclase-coupled receptors was affected. These findings, which were not observed with 100 nM of epinephrine, norepinephrine, histamine, serotonin, and Arg-vasopressin, demonstrate a specific and functional link between ANF and Ang-II receptors. This study also shows that the regulation of ANF receptors is heterogeneous, providing new evidence of multiple classes of ANF receptors. 相似文献