首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Braun M  Sievers A 《Protoplasma》1993,174(1-2):50-61
Summary The actin cytoskeleton is involved in the positioning of statoliths in tip growingChara rhizoids. The balance between the acropetally acting gravity force and the basipetally acting net out-come of cytoskeletal force results in the dynamically stable position of the statoliths 10–30 m above the cell tip. A change of the direction and/or the amount of one of these forces in a vertically growing rhizoid results in a dislocation of statoliths. Centrifugation was used as a tool to study the characteristics of the interaction between statoliths and microfilaments (MFs). Acropetal and basipetal accelerations up to 6.5 g were applied with the newly constructed slow-rotating-centrifuge-microscope (NIZEMI). Higher accelerations were applied by means of a conventional centrifuge, namely acropetally 10–200 g and basipetally 10–70 g. During acropetal accelerations (1.4–6 g), statoliths were displaced to a new stable position nearer to the cell vertex (12–6.5 m distance to the apical cell wall, respectively), but they did not sediment on the apical cell wall. The original position of the statoliths was reestablished within 30 s after centrifugation. Sedimentation of statoliths and reduction of the growth rates of the rhizoids were observed during acropetal accelerations higher than 50 g. When not only the amount but also the direction of the acceleration were changed in comparison to the natural condition, i.e., during basipetal accelerations (1.0–6.5 g), statoliths were displaced into the subapical zone (up to 90 m distance to the apical cell wall); after 15–20 min the retransport of statoliths to the apex against the direction of acceleration started. Finally, the natural position in the tip was reestablished against the direction of continuous centrifugation. Retransport was observed during accelerations up to 70 g. Under the 1 g condition that followed the retransported statoliths showed an up to 5-fold increase in sedimentation time onto the lateral cell wall when placed horizontally. During basipetal centrifugations 70 g all statoliths entered the basal vacuolar part of the rhizoid where they were cotransported in the streaming cytoplasm. It is concluded that the MF system is able to adapt to higher mass accelerations and that the MF system of the polarly growing rhizoid is polarly organized.Abbreviations g gravitational acceleration (9.81 m/s2) - MF microfilament - NIZEMI Niedergeschwindigkeits-Zentrifugen-Mikroskop (slow-rotating-centrifuge-microscope)  相似文献   

2.
Braun M 《Planta》1996,199(3):443-450
Centrifugal accelerations of 50-250 g were applied to rhizoids of Chara globularis Thuill. at stimulation angles (alpha) of 5-90 degrees between the acceleration vector and the rhizoid axis. After the start of centrifugation, the statoliths were pressed asymmetrically onto the centrifugal flank of the apical cell wall. In contrast to the well-known bending (by bowing) under 1 g, the rhizoids responded in two distinct phases. Following an initial phase of sharp bending (by bulging), which is similar to the negatively gravitropic response of Chara protonemata, rhizoids stopped bending and, in the second phase, grew straight in directions clearly deviating from the direction of acceleration. These response angles (beta) between the axis of the bent part of the rhizoid and the acceleration vector were strictly correlated with the g-level of acceleration. The higher the acceleration the greater was beta. Except for the sharp bending, the shape and growth rate of the centrifuged rhizoids were not different from those of gravistimulated control rhizoids at 1 g. These results indicate that gravitropic bending of rhizoids during enhanced accelerations (5 degrees < or = alpha < or = 90 degrees) is caused not only by subapical differential flank growth, as it is the case at 1 g, but also by also by the centripetal displacement of the growth centre as was recently discussed for the negative gravitropism of Chara protonemata. A hypothesis for cytoskeletally mediated polar growth is presented based on data from positive gravitropic bending of Chara rhizoids at 1 g and from the anomalous gravitropic bending of rhizoids compared with the negatively gravitropic bending of Chara protonemata. The data obtained are also relevant to a general understanding of graviperception in higher-plant organs.  相似文献   

3.
Hodick D 《Planta》1994,195(1):43-49
The unicellular protonema of Chara fragilis Desv. was investigated in order to establish a reaction chain for negative gravitropism in tip-growing cells. The time course of gravitropic bending after stimulation at angles of 45 degrees or 90 degrees showed three distinct phases of graviresponse. During the first hour after onset of stimulation a strong upward shift of the tip took place. This initial response was followed by an interval of almost straight growth. Complete reorientation was achieved in a third phase with very low bending rates. Gravitropic reorientation could be completely abolished by basipetal centrifugation of the cells, which lastingly removed conspicuous dark organelles from the protonema tip, thus identifying them as statoliths. Within minutes after onset of gravistimulation most or all statoliths were transported acropetally from their resting position 20-100 micrometers from the cell apex to the lower side of the apical dome. This transport is actin-dependent since it could be inhibited with cytochalasin B. Within minutes after arrival of the statoliths, the apical dome flattened on its lower side and bulged on the upper one. After this massive initial response the statoliths remained firmly sedimented, but the distance between this sedimented complex and the cell vertex increased from 7 micrometers to 22 micrometers during the first hour of stimulation and bending rates sharply declined. From this it is concluded that only statoliths inside the apical dome convey information about the spatial orientation of the cell in the gravitropic reaction chain. After inversion of the protonema the statoliths transiently arranged into a disk-shaped complex about 8 micrometers above the vertex. When this statolith complex tilted towards one side of the apical dome, growth was shifted in the opposite direction and bending started. It is argued that the statoliths intruding into the apical dome may displace a growth-organizing structure from its symmetrical position in the apex and may thus cause bending by bulging. In the positively gravitropic Chara rhizoids only a more stable anchorage of the growth-organizing structure is required. As a consequence, sedimented statoliths cannot dislocate this structure from the vertex. Instead they obstruct a symmetrical distribution of cell-wall-forming vesicles around the structure and thus cause bending by bowing.  相似文献   

4.
Hejnowicz Z  Sievers A 《Protoplasma》1981,108(1-2):117-137
Summary The behavior of statoliths in rhizoids differently oriented with respect to the gravity vector indicates that there are cytoskeleton elements which exert forces on the statoliths, mostly in the longitudinal directions. Compared to the sum of the forces acting on a statolith, the gravitational force is a relatively small component,i.e., less than 1/5 of the cytoskeleton force. The balance is disturbed by displacing the rhizoid from the normal vertical orientation. It is also reversibly disturbed by cytochalasin B such that some statoliths move against the gravity force. Phalloidin stabilizes the position of the statoliths against cytochalasin B. We infer that microfilaments are involved in controlling the position of statoliths, and that there is a considerable tension on these microfilaments. The vibration frequency of the microfilaments corresponding to this tension is in the ultrasonic range.Visiting Professor on a grant from Deutsche Forschungsgemeinschaft.  相似文献   

5.
Braun M  Hauslage J  Czogalla A  Limbach C 《Planta》2004,219(3):379-388
Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.Abbreviations ADF Actin-depolymerizing factor - CD Cytochalasin D - MF Microfilament  相似文献   

6.
In-vivo differential interference contrast microscopy was used to detect individual Golgi vesicles and a new structure in the tip of fast-growing rhizoids of Chara fragilis Desvaux. This structure is a spherical clear zone which is free of Golgi vesicles, has a diameter of 5 m and is positioned in the center of the apical Golgi-vesicle accumulation (Spitzenkörper). After glutaraldehyde fixation and osmium tetroxide-potassium ferricyanide staining of the rhizoid, followed by serial sectioning and three-dimensional reconstruction, the spherical zone shows a tight accumulation of anastomosing endoplasmic reticulum (ER) membranes. The ER membranes radiate from this aggregate towards the apical plasmalemma and to the membranes of the statolith compartments. Upon gravistimulation the ER aggregate changes its position according to the new growth direction, indicating its participation in growth determination. After treatment of the rhizoid with cytochalasin B or phalloidin the ER aggregate disappears and the statoliths sediment. It is concluded that the integrity of the ER aggregate is actin-dependent and that it is related to the polar organisation of the gravitropically growing cell tip.Abbreviations CB cytochalasin B - DIC differential interference contrast microscopy - DMSO dimethyl sulfoxide - ER endoplasmic reticulum  相似文献   

7.
Buchen B  Hejnowicz Z  Braun M  Sievers A 《Protoplasma》1991,165(1-3):121-126
Summary In-vivo videomicroscopy ofChara rhizoids under 10–4g demonstrated that gravity affected the velocities of cytoplasmic streaming. Both, the acropetal and basipetal streaming velocities increased on the change to microgravity. The endogenous difference in the velocities of the oppositely directed cytoplasmic streams was maintained under microgravity, yet the difference was diminished as the basipetal streaming velocity increased more than the acropetal streaming velocity. Direction and structure of microfilaments labeled by rhodamine-phalloidin had not changed after 6 min of microgravity.Abbreviations g gravitational acceleration - Nizemi slow rotating centrifuge microscope - Texus technological experiments under reduced gravity  相似文献   

8.
M. Braun 《Protoplasma》1996,191(1-2):1-8
Summary Myosin-related proteins have been localized immunocytochemically in gravity-sensing rhizoids of the green algaChara globularis using a monoclonal antibody against the heavy chain of myosin from mouse 3T3 cells and a polyclonal antibody to bovine skeletal and smooth muscle myosin. In the basal zone of the rhizoids which contain a large vacuole, streaming endoplasm and stationary cortical cytoplasm, the monoclonal antibody stained myosin-related proteins as diffusely fluorescing endoplasmic strands. This pattern is similar to the arrangement of subcortical actin filament bundles. In the apical zone which contains an aggregation of ER membranes and secretory vesicles for tip growth, diffuse immunofluorescence was detected; the intensity of the signal increasing towards the apical cell wall. The most prominent myosin-staining was associated with the surface of statoliths in the apical zone. The polyclonal antibody produced a punctate staining pattern in the basal zone, caused by myosin-related proteins associated with the surface of drganelles in the streaming endoplasm and the periphery of the nucleus. In the apical zone, this antibody revealed myosin-immunofluorescence on the surface of statoliths in methacrylate-embedded rhizoids. Neither antibody revealed myosin-immunofluorescence on the surface of organelles and vesicles in the relatively stationary cytoplasm of the subapical zone. These results indicate (i) that different classes of myosin are involved in the various transport processes inChara rhizoids; (ii) that cytoplasmic streaming in rhizoids is driven by actomyosin, corresponding to the findings onChara internodal cells; (iii) that actindependent control of statolith position and active movement is mediated by myosin-related proteins associated with the statolith surfaces; and (iv) that myosin-related proteins are involved in the process of tip growth.  相似文献   

9.
Intracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of Arabidopsis stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing. Here we show that a confocal microscope equipped with optical tweezers can be a powerful tool to trap and manipulate amyloplasts noninvasively, while simultaneously observing cellular responses such as vacuolar dynamics in living cells. A near-infrared (λ=1064 nm) laser that was focused into the endodermal cells at 1 mW of laser power attracted and captured amyloplasts at the laser focus. The optical force exerted on the amyloplasts was theoretically estimated to be up to 1 pN. Interestingly, endosomes and trans-Golgi network were trapped at 30 mW but not at 1 mW, which is probably due to lower refractive indices of these organelles than that of the amyloplasts. Because amyloplasts are in close proximity to vacuolar membranes in endodermal cells, their physical interaction could be visualized in real time. The vacuolar membranes drastically stretched and deformed in response to the manipulated movements of amyloplasts by optical tweezers. Our new method provides deep insights into the biophysical properties of plant organelles in vivo and opens a new avenue for studying gravity-sensing mechanisms in plants.  相似文献   

10.
Limbach C  Staehelin LA  Sievers A  Braun M 《Planta》2008,227(5):1101-1114
We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Summary Measurements of cytoplasmic streaming inChara rhizoids were made by a streak-photography method combined with dark-field illumination. The velocity of cytoplasmic streaming in the acropetal direction was faster than in the basipetal direction. The difference in the streaming velocities in both morphological directions was apparently due to endogenous forces. In addition to this, a small difference attributable to gravity was superimposed if the rhizoid was oriented parallel to the gravity vector. The difference in the endogenous forces underlying the oppositely directed streams may be as high as about 12-fold the force imposed by gravity but, on average, it is about 5-fold the gravity force. In the normal vertical position of the rhizoid, this endogenously generated difference is enhanced by the gravity effect. In contrast to the variability of streaming rate due to endogenous forces, the effect of the gravity force is relatively uniform. The difference between acropetal and basipetal streaming velocities is perpetuated over the whole range of lowered velocities after treatment with cytochalasin B. After prolonged incubation in cytochalasin B, the basipetal streaming stops earlier than the acropetal streaming. A difference in the length of filaments on both sides of the streaming machinery in rhizoids is proposed as the structural basis for the difference in velocities.  相似文献   

12.
Markus Braun  Peter Richter 《Planta》1999,209(4):414-423
The localization of cytoplasmic free calcium and a dihydropyridine (DHP) receptor, a putative calcium channel, was recorded during the opposite graviresponses of tip-growing Chara rhizoids and Chara protonemata by using the calcium indicator Calcium Crimson and a fluorescently labeled dihydropyridine (FL-DHP). In upward (negatively gravitropically) growing protonemata and downward (positively gravitropically) growing rhizoids, a steep Ca2+ gradient and DHP receptors were found to be symmetrically localized in the tip. However, the localization of the Ca2+ gradient and DHP receptors differed considerably during the gravitropic responses upon horizontal positioning of the two cell types. During the graviresponse of rhizoids, a continuous bowing downward by differential flank growth, the Ca2+ gradient and DHP receptors remained symmetrically localized in the tip at the centre of growth. However, after tilting protonemata into a horizontal position, there was a drastic displacement of the Ca2+ gradient and FL-DHP to the upper flank of the apical dome. This displacement occurred after the apical intrusion and sedimentation of the statoliths but clearly before the change in the growth direction became evident. In protonemata, the reorientation of the growth direction started with the appearence of a bulge on that site of the upper flank which was predicted by the asymmetrically displaced Ca2+ gradient. With the upward shift of the cell tip, which is suggested to result from a statolith-induced displacement of the growth centre, the Ca2+ gradient and DHP receptors became symmetrically relocalized in the apical dome. No major asymmetrical rearrangement was observed during the following phase of gravitropic curvature which is characterized by slower rates of bending. Labeling with FL-DHP was completely inhibited by a non-fluorescently labeled dihydropyridine. From these results it is suggested that FL-DHP labels calcium channels in rhizoids and protonemata. In rhizoids, positive gravitropic curvature is caused by differential growth limited to the opposite subapical flanks of the apical dome, a process which does not involve displacement of the growth centre, the calcium gradient or calcium channels. In protonemata, however, it is proposed that a statolith-induced asymmetrical relocalization of calcium channels and the Ca2+ gradient precedes, and might mediate, the rearrangement of the centre of growth, most likely by the displacement of the Spitzenk?rper, to the upper flank, which results in the negative gravitropic reorientation of the growth direction. Received: 13 February 1999 / Accepted: 25 June 1999  相似文献   

13.
Saether N  Iversen TH 《Planta》1991,184(4):491-497
The mutant TC 7 of Arabidopsis thaliana (L.) Heynh. has been reported to be starch-free and still exhibit root gravitropism (T. Caspar and B. G. Pickard 1989, Planta 177, 185–197). This is not consistent with the hypothesis that plastid starch has a statolith function in gravity perception. In the present study, initial light microscopy using the same mutant showed apparently starch-free statocytes. However, ultrastructural examination detected residues of amyloplast starch grains in addition to the starch-depleted amyloplasts. Applying a point-counting morphometric method, the starch grains in the individual amyloplasts in the mutant were generally found to occupy more than 20% and in a few cases up to 60% of the amyloplast area. In the wild type (WT) the starch occupied on average 98 % of the amyloplast area and appeared as densely packed grains. The amyloplasts occupied 13.9% of the area of the statocyte in the mutant and 23.3% of the statocyte area in the WT. Sedimentation of starch-depleted amyloplasts in the mutant was not detected after 40 min of inversion while in the WT the amyloplasts sedimented at a speed of 6 m · h-1. The gravitropic reactivity and the curvature pattern were also examined in the WT and the mutant. The time-courses of root curvature in the WT and the mutant showed that when cultivated under standard conditions for 60 h in darkness, the curvatures were 83° and 44°, respectively, after 25 h of continuous stimulation in the horizontal position. The WT roots curved significantly more rapidly and with a more normal gravitropic pattern than those of the mutant. These results are discussed in relation to the results previously obtained with the mutant and with respect to the starch-statolith hypothesis.Abbreviation WT wild type This work was supported by grants from Norwegian Research Council for Science and the Humanities (NAVF) which we gratefully acknowledge. We would also like to thank Dr. Timothy Caspar, Michigan State University, East Lansing, USA, for providing us with the seeds of TC 75.  相似文献   

14.
Summary In tip-growingChara rhizoids, the in-vivo saltatory movements of Golgi vesicles were recorded. The movements in radial direction back and forth between the ER aggregate and the plasma membrane occurred three times more often than movements passing the ER aggregate tangentially. The mean velocity of the class of Golgi vesicles observed (0.4–1 m in diameter) was approx. 0.3 m/s. Higher speed of 1–1.5 m/s occurred only in radial directions. Possibly, the ER aggregate is involved in guidance of the Golgi vesicles.Abbreviations DIC differential interference contrast - ER endoplasmic reticulum - OsFeCN osmium tetroxide-potassium ferricyanide Dedicated to the memory of Professor O. Kiermayer  相似文献   

15.
The organization of the microtubule (MT) and actin microfilament (MF) cytoskeleton of tip-growing rhizoids and protonemata of characean green algae was examined by confocal laser scanning microscopy. This analysis included microinjection of fluorescent tubulin and phallotoxins into living cells, as well as immunofluorescence labeling of fixed material and fluorescent phallotoxin labeling of unfixed material. Although the morphologically very similar positively gravitropic (downward growing) rhizoids and negatively gravitropic (upward growing) protonemata show opposite gravitropic responses, no differences were detected in the extensive three-dimensional distribution of actin MFs and MTs in both cell types. Tubulin microinjection revealed that in contrast to internodal cells, fluorescent tubulin incorporated very slowly into the MT arrays of rhizoids, suggesting that MT dynamics are very different in tip-growing and diffusely expanding cells. Microtubules assembled from multiple sites at the plasma membrane in the basal zone, and a dense subapical array emerged from a diffuse nucleation centre on the basal side of the nuclear envelope. Immunofluorescence confirmed these distribution patterns but revealed more extensive MT arrays. In the basal zone, short branching clusters of MTs form two cortical hemicylinders. Subapical, axially oriented MTs are distributed in equal density throughout the peripheral and inner cytoplasm and are closely associated with subapical organelles. Microtubules, however, are completely absent from the apical zones of rhizoids and protonemata. Actin MFs were found in all zones of rhizoids and protonemata including the apex. Two files of axially oriented bundles of subcortical actin MFs and ring-like actin structures in the streaming endoplasm of rhizoids were detected in the basal zones by microinjection or rhodamine-phalloidin labeling. The subapical zone contains a dense array of mainly axially oriented actin MFs that co-distribute with the subapical MT array. In the apex, actin MFs form thicker bundles that converge into a remarkably distinct actin patch in the apical dome, whose position coincides with the position of the endoplasmic reticulum aggregate in the centre of the Spitzenk?rper. Actin MFs radiate from the actin patch towards the apical membrane. Together with results from previous inhibitor studies (Braun and Sievers, 1994, Eur J Cell Biol 63: 289–298), these results suggest that MTs have a stabilizing function in maintaining the polar cytoplasmic and cytoskeletal organization. The motile processes, however, are mediated by actin. In particular, the actin cytoskeleton appears to be involved in the structural and functional organization of the Spitzenk?rper and thus is responsible for controlling cell shape and growth direction. Despite the similar structural arrangements of the actin cytoskeleton, major differences in the function of actin MFs have been observed in rhizoids and protonemata. Since actin MFs are more directly involved in the gravitropic response of protonemata than of rhizoids, the opposite gravitropism in the two cell types seems to be based mainly on different properties and activities of the actin cytoskeleton. Received: 14 September 1997 / Accepted: 16 October 1997  相似文献   

16.
B. McLean  B. E. Juniper 《Planta》1986,169(2):153-161
Young elongating internodal cells of Chara globularis var. capillacea (Thuill.) Zanev. were rapidly frozen and freze-fractured in order to observed transient events occurring within the plasma membrane. Several structures have been observed. Relatively small depressions, varying in depth, are prolific and scattered at random over the plasma membrane. Charasomes and clusters of particle rosettes are common. Arrays of intramembrane particle lines are a characteristic feature of the internodal cell plasma membrane. The charasomes and the arrays of particle lines occupy a considerable proportion of the plasma membrane. In these young cells, substantial movement must take place across this membrane and its basic structure must fluctuate accordingly. The innumerable small depressions may represent pinocytotic and secretory processes. The array of intramembrane particle lines may represent stages in fusion between the membranes of vesicles within the cytoplasm and the plasma membrane. The technique of ultra-rapid freezing allows these events and their intermediate stages to be visualised; some features of the membrane may only be seen by this method.  相似文献   

17.
The mechanism by which sub-cortical actin bundles and membranous organelles are immobilised in the cortical cytoplasm of the alga Chara was studied by perfusing cells with a solution containing 1% Triton X-100. Light and scanning electron microscopy and the release of starch grains and chlorophyll-protein complexes indicated that the detergent extensively solubilised the chloroplasts. However, the sub-cortical actin bundles remained in situ even though they were originally separated from the plasma membrane by the chloroplasts. A fibrous layer between chloroplasts and plasma membrane became readily visible after detergent extraction of the cells and could be released by low-ionic-strength ethylenediaminetetraacetic acid, thioglycollate and trypsin. The same treatments applied to cells not subject to detergent extraction released the membrane-bound organelles and actin bundles and no fibrous meshwork was visible on subsequent extraction with Triton. It is, therefore, concluded that a detergent-insoluble cortical cytoskeleton exists and contributes to the immobility of the actin and cortical organelles in the cells.Abbreviation EDTA ethylenediaminetetraacetic acid  相似文献   

18.
Optical tweezers are employed to study the action of the histone-like protein from Thermotoga maritima (TmHU) on DNA at a single molecule level. Binding and disruption of TmHU to and from DNA are found to take place in discrete steps of 4-5 nm length and a net binding enthalpy of about 16kBT. This is in reasonable agreement with a microscopic model that estimates the extension of the binding sites of the protein and evaluates the energetics mainly for bending of the DNA in the course of interaction.  相似文献   

19.
Nitrate-selective microelectrodes have been made using a quaternary ammonium sensor, methyl-tridodecylammonium nitrate, in a Polyvinylchloride matrix. These electrodes showed a log-linear response from 0.1 to 100 mol · m?3 nitrate with a typical slope of 55.6 mV per decade change in nitrate concentration. The only physiologically significant interfering anion was chloride but the lower limit of nitrate detection was 0.5 mol · m?3 in the presence of 100 mol · m?3 chloride which means this interference will not be important in most physiological situations. These microelectrodes were used to measure nitrate concentrations in internodal cells of Chara corallina cultured under low nitrate and nitrate-replete conditions for 6 to 30 weeks. Cells maintained in low nitrate only showed measurements which were less than the detection limit of the electrodes, while cells grown under nitrate-replete conditions showed two populations of measurements having means of 1.6 and 6.2 mol · m?3. Chemical analysis of the high-nitrate cells indicated that they contained a mean nitrate concentration of 5.9 mol · m?3. As vacuolar nitrate concentration would dominate this whole-cell measurement, it is concluded that the higher concentration measured with the electrodes represents vacuolar nitrate concentration and the lower value represents the cytoplasmic concentration. This intracellular distribution of nitrate could only be achieved passively if the electrical potential difference across the tonoplast is between +25 and + 35 mV.  相似文献   

20.
Two types of plasmodesmata are found within an antheridium of Chara vulgaris: open plasmodesmata filled with electron-transparent cytoplasm, and plugged plasmodesmata, filled with an osmiophilic dense substance. Open plasmodesmata occur only between cells synchronized completely in respect of their advancement in cell-cycle progression or differentiation. Plugged plasmodesmata connect different types of cells or cells of the same type at various stages of the cell cycle. Open plasmodesmata may become plugged, and vice versa. These changes are connected with the limitation or extension of synchronization of cellular divisions and differentiation within the groups of cells in the antheridium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号