首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mitotic kinases of the Polo and Aurora families are key regulators of chromosome segregation and cytokinesis. Here, we have investigated the role of MKlp1 and MKlp2, two vertebrate mitotic kinesins essential for cytokinesis, in the spatial regulation of the Aurora B kinase. Previously, we have demonstrated that MKlp2 recruits Polo-like kinase 1 (Plk1) to the central spindle in anaphase. We now find that in MKlp2 but not MKlp1-depleted cells the Aurora B-INCENP complex remains at the centromeres and fails to relocate to the central spindle. MKlp2 exerts dual control over Aurora B localization, because it is a binding partner for Aurora B, and furthermore for the phosphatase Cdc14A. Cdc14A can dephosphorylate INCENP and may contribute to its relocation to the central spindle in anaphase. We propose that MKlp2 is involved in the localization of Plk1, Aurora B, and Cdc14A to the central spindle during anaphase, and that the integration of signaling by these proteins is necessary for proper cytokinesis.  相似文献   

2.
Human polo-like kinase Plk1 localizes to the centrosomes, kinetochores and central spindle structures during mitosis. It plays an essential role in promoting mitosis and cytokinesis through phosphorylation of a number of different substrates. Kinase activity is regulated by a conserved C-terminal domain, termed the polo box domain (PBD), which acts both as an autoinhibitory domain and as a subcellular localization domain. We have determined the crystal structure of Plk1 PBD (residues 367-603) to 2.2 A resolution and the structure of a phospho-peptide-PBD (residues 345-603) complex to 2.3 A resolution. The two polo boxes of the PBD exhibit identical folds based on a six-stranded beta-sheet and an alpha-helix, despite only 12% sequence identity. The phospho-peptide binds at a site between the two polo boxes. It makes a short antiparallel beta-sheet connection and critical contacts to residues Trp414, Leu490, His538 and Lys540. Most of these residues had been shown to be important for biological activity through mutational studies. The results provide an explanation for phospho-peptide recognition and create the basis for new functional studies.  相似文献   

3.
Cytokinesis is the final step of cell division which partitions genetic and cytosolic content into daughter cells. Failed cytokinesis causes polyploidy, genetic instability, and cancer. Kinases use phosphorylation to regulate the timing and location of the cytokinetic furrow. Polo-like kinase 1 (Plk1) is an essential mitotic kinase that triggers cytokinesis by phosphorylating MgcRacGAP to create a docking site for Ect2 at the central spindle. Ect2 binds to MgcRacGAP via its N-terminal BRCT domain (BRCA1 C-terminal), which docks at specific phosphorylated residues. Here we investigate the minimal Plk1-dependent phosphorylation sites required for cytokinesis onset. We demonstrate that phosphorylation of the major MgcRacGAP site, S157, is necessary but not sufficient to bind the Ect2 BRCT domain. Phosphorylation of an additional residue on MgcRacGAP at S164 is also required to elicit efficient binding. Surprisingly, BRCT binding additionally requires MKLP1 and its cognate interacting N-terminal domain of MgcRacGAP. Our findings indicate that central spindle assembly and 2 Plk1-dependent phosphorylations are required to establish efficient binding of the Ect2 BRCT in early cytokinesis. We propose that these requirements establish a high threshold to restrain premature or ectopic cytokinesis.  相似文献   

4.
Cell division is regulated by protein kinases of the Cdk, Polo, and Aurora families. Although it has long been established that temporal control is central to the coordinated action of these kinases, the importance of spatial regulation has only recently been appreciated and is still poorly understood. The kinesin-6 family motor protein MKlp1 is a key regulator of cytokinesis and an ideal substrate for studying spatially regulated protein-phosphorylation events. MKlp1 is negatively regulated by Cdk1 phosphorylation during metaphase and becomes activated in anaphase when cleavage-furrow assembly commences. Aurora B phosphorylates MKlp1 during anaphase and is required for its function in cytokinesis. Another kinesin-6 family motor, MKlp2, mediates the relocation of Aurora B from the centromeres to the central spindle at the onset of anaphase. We now demonstrate that this process is required for the phosphorylation of MKlp1 at S911, an Aurora B consensus site overlapping a bipartite nuclear localization sequence (NLS). MKlp1(S911A) targets to the central spindle but is prematurely imported into the nucleus and fails to support cytokinesis. Spatial restriction of Aurora B to the central spindle by MKlp2 therefore regulates MKlp1 during cytokinesis in human cells.  相似文献   

5.
6.
The small family of polo-like kinases (Plks) includes Cdc5 from Saccharomyces cerevisiae, Plo1 from Schizosaccharomyces pombe, Polo from Drosophila melanogaster and the four mammalian genes Plk1, Prk/Fnk, Snk and Sak. These kinases control cell cycle progression through the regulation of centrosome maturation and separation, mitotic entry, metaphase to anaphase transition, mitotic exit and cytokinesis. Plks are characterized by an N-terminal Ser/Thr protein kinase domain and the presence of one or two C-terminal regions of similarity, termed the polo box motifs. These motifs have been demonstrated for Cdc5 and Plk1 to be required for mitotic progression and for subcellular localization to mitotic structures. Here we report the 2.0 A crystal structure of a novel domain composed of the polo box motif of murine Sak. The structure consists of a dimeric fold with a deep interfacial cleft and pocket, suggestive of a ligand-binding site. We show that this domain forms homodimers both in vitro and in vivo, and localizes to centrosomes and the cleavage furrow during cytokinesis. The requirement of the polo domain for Plk family function and the unique physical properties of the domain identify it as an attractive target for inhibitor design.  相似文献   

7.
Mitotic kinesin is crucial for spindle assembly and chromosome segregation in cell division. KIF20A/MKlp2, a member of kinesin-6 subfamily, plays important roles in the central spindle organization at anaphase and cytokinesis. In this review, we briefly introduce the discovery and classification of kinesin-6 motors in model organisms, and summarize the biochemical features and mechanics of KIF20A proteins. We emphasize the complicated interactions of KIF20A with partner proteins, including MKlp1, Plk1 and Rab6. Particularly, we highlight the regulation of Cdk1 and chromosomal passenger complex on kinesin-6 KIF20A at late stage of mitosis. We summarized the multiple functions of KIF20A in central spindle assembly and the formation of cleavage furrow in both mitosis and meiosis. In addition, we conclude the expression patterns of KIF20A in tumorigenesis and its applications in tumor therapy.  相似文献   

8.
9.
We reported previously that a guanine nucleotide exchange factor, MyoGEF, localizes to the central spindle, activates RhoA, and is required for cytokinesis. In this study, we have found that Plk1 (polo-like kinase 1) can phosphorylate MyoGEF, thereby recruiting MyoGEF to the central spindle as well as enhancing MyoGEF activity toward RhoA. The in vitro kinase assay shows that Plk1 can phosphorylate MyoGEF on threonine 574. Immunoprecipitation/immunoblot analysis demonstrates that mutation of threonine 574 to alanine dramatically decreases threonine phosphorylation of MyoGEF in transfected HeLa cells, suggesting that threonine 574 is phosphorylated in vivo. Consistent with these observations, immunofluorescence shows that Plk1 and MyoGEF colocalize at the spindle pole and central spindle during mitosis and cytokinesis. Importantly, RNA interference-mediated depletion of Plk1 interferes with the localization of MyoGEF at the spindle pole and central spindle. Moreover, mutation of threonine 574 to alanine in MyoGEF or depletion of Plk1 by RNA interference leads to a decrease in MyoGEF activity toward RhoA in HeLa cells. Therefore, our results suggest that Plk1 can regulate MyoGEF activity and localization, contributing to the regulation of cytokinesis.  相似文献   

10.
Polokinases are a subfamily of the mitotic serine/threonine kinases involved in coordination of a run of mitosis of eukaryotic cells. The main polo-like-kinase 1p (PLK1) is a passenger protein transiently localized to centrosomes, kinetochores and central spindle during mitosis and is required for bi-orientation of the normal metaphase spindle. Its activity is regulated at the level of protein stability and by action of upstream kinases, so that it peaks in metaphase and drops as cells exit mitosis. Regulation of location and activity of Plk1p is bi-phasic: the COOH terminal polo box domain binds to an array of mitotic phosphoproteins and followed by an allosteric conformation is activated to phosphorylate many its substrates. These mode of action involves polokinases into critical transitions of the cell cycle phases, and in control at some checkpoints of this cycle.  相似文献   

11.
《The Journal of cell biology》1995,129(6):1617-1628
Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.  相似文献   

12.
Members of the polo subfamily of protein kinases play pivotal roles in cell proliferation. In addition to the kinase domain, polo kinases have a strikingly conserved sequence in the noncatalytic C-terminal domain, termed the polo box. Here we show that the budding-yeast polo kinase Cdc5, when fused to green fluorescent protein and expressed under its endogenous promoter, localizes at spindle poles and the mother bud neck. Overexpression of Cdc5 can induce a class of cells with abnormally elongated buds in a polo box- and kinase activity-dependent manner. In addition to localizing at the spindle poles and cytokinetic neck filaments, Cdc5 induces and localizes to additional septin ring structures within the elongated buds. Without impairing kinase activity, conservative mutations in the polo box abolish the ability of Cdc5 to functionally complement the defect associated with a cdc5-1 temperature-sensitive mutation, to localize to the spindle poles and cytokinetic neck filaments, and to induce elongated cells with ectopic septin ring structures. Consistent with the polo box-dependent subcellular localization, the C-terminal domain of Cdc5, but not its polo box mutant, is sufficient for subcellular localization, and its overexpression appears to inhibit cytokinesis. These data provide evidence that the polo box is required to direct Cdc5 to specific subcellular locations and induce or organize cytokinetic structures.  相似文献   

13.
We identified the mitotic kinesin-like protein 2 (MKlp2), a kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis, as a target of the mitotic checkpoint protein Mad2. MKlp2 possesses a consensus Mad2-binding motif required for Mad2 binding. Mad2 prevents MKlp2 from loading onto the mitotic spindle, a prerequisite step for its function as a mitotic kinesin. Furthermore, Mad2 inhibits the ability of MKlp2 to relocate the CPC from centromeres, an essential step to promote cytokinesis. An MKlp2 mutant that is refractory to Mad2-mediated inhibition prematurely translocates to the mitotic spindle and mislocalizes the CPC component Aurora B from the midbody of dividing cells. This correlates with an increased incidence of cytokinesis failure. Together, these findings reveal that MKlp2 is a novel mitotic target of Mad2 necessary for proper mitotic progression and cytokinesis.  相似文献   

14.
We previously reported that phosphorylation of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) by polo-like kinase 1 (Plk1) promotes the localization of MyoGEF to the central spindle and increases MyoGEF activity toward RhoA during mitosis. In this study we report that aurora B-mediated phosphorylation of MyoGEF at Thr-544 creates a docking site for Plk1, leading to the localization and activation of MyoGEF at the central spindle. In vitro kinase assays show that aurora B can phosphorylate MyoGEF. T544A mutation drastically decreases aurora B-mediated phosphorylation of MyoGEF in vitro and in transfected HeLa cells. Coimmunoprecipitation and in vitro pulldown assays reveal that phosphorylation of MyoGEF at Thr-544 enhances the binding of Plk1 to MyoGEF. Immunofluorescence analysis shows that aurora B colocalizes with MyoGEF at the central spindle and midbody during cytokinesis. Suppression of aurora B activity by an aurora B inhibitor disrupts the localization of MyoGEF to the central spindle. In addition, T544A mutation interferes with the localization of MyoGEF to the cleavage furrow and decreases MyoGEF activity toward RhoA during mitosis. Taken together, our results suggest that aurora B coordinates with Plk1 to regulate MyoGEF activation and localization, thus contributing to the regulation of cytokinesis.  相似文献   

15.
The events of cell division are regulated by a complex interplay between kinases and phosphatases. Cyclin-dependent kinases (Cdks), polo-like kinases (Plks) and Aurora kinases play central roles in this process. Polo kinase (Plk1 in humans) regulates a wide range of events in mitosis and cytokinesis. To ensure the accuracy of these processes, polo activity itself is subject to complex regulation. Phosphorylation of polo in its T loop (or activation loop) increases its kinase activity several-fold. It has been shown that Aurora A kinase, with its co-factor Bora, activates Plk1 in G2, and that this is essential for recovery from cell cycle arrest induced by DNA damage. In a recent article published in PLoS Biology, we report that Drosophila polo is activated by Aurora B kinase at centromeres, and that this is crucial for polo function in regulating chromosome dynamics in prometaphase. Our results suggest that this regulatory pathway is conserved in humans. Here, we propose a model for the collaboration between Aurora B and polo in the regulation of kinetochore attachment to microtubules in early mitosis. Moreover, we suggest that Aurora B could also function to activate Polo/Plk1 in cytokinesis. Finally, we discuss recent findings and open questions regarding the activation of polo and polo-like kinases by different kinases in mitosis, cytokinesis and other processes.  相似文献   

16.
The events of cell division are regulated by a complex interplay between kinases and phosphatases. Cyclin-dependent kinases (Cdks), polo-like kinases (Plks) and Aurora kinases play central roles in this process. Polo kinase (Plk1 in humans) regulates a wide range of events in mitosis and cytokinesis. To ensure the accuracy of these processes, polo activity itself is subject to complex regulation. Phosphorylation of polo in its T loop (or activation loop) increases its kinase activity several-fold. It has been shown that Aurora A kinase, with its co-factor Bora, activates Plk1 in G2, and that this is essential for recovery from cell cycle arrest induced by DNA damage. In a recent article published in PLoS Biology, we report that Drosophila polo is activated by Aurora B kinase at centromeres, and that this is crucial for polo function in regulating chromosome dynamics in prometaphase. Our results suggest that this regulatory pathway is conserved in humans. Here, we propose a model for the collaboration between Aurora B and polo in the regulation of kinetochore attachment to microtubules in early mitosis. Moreover, we suggest that Aurora B could also function to activate Polo/Plk1 in cytokinesis. Finally, we discuss recent findings and open questions regarding the activation of polo and polo-like kinases by different kinases in mitosis, cytokinesis and other processes.  相似文献   

17.
Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.  相似文献   

18.
Protein kinases play key roles in regulating human cell biology, but manifold substrates and functions make it difficult to understand mechanism. We tested whether we could dissect functions of a pleiotropic mitotic kinase, Polo-like kinase 1 (Plk1), via distinct thresholds of kinase activity. We accomplished this by titrating Plk1 activity in RPE1 human epithelial cells using chemical genetics and verifying results in additional lines. We found that distinct activity thresholds are required for known functions of Plk1 including (from low to high activity) bipolar spindle formation, timely mitotic entry, and formation of a cytokinesis cleavage furrow. Subtle losses in Plk1 activity impaired chromosome congression and produced severe anaphase dysfunction characterized by poor separation of chromosome masses. These two phenotypes were separable, suggesting that they stem from distinct phosphorylation events. Impaired chromosome segregation in anaphase was the most sensitive to modest loss in Plk1 activity. Mechanistically, it was associated with unpaired sister chromatids with stretched kinetochores, suggestive of merotelic attachments. The C-terminal Polo box domain of Plk1 was required for its anaphase function, although it was dispensable for forming a bipolar spindle. The ultimate effect of partial inhibition of Plk1 was the formation of micronuclei, an increase in tetraploid progeny, and senescence. These results demonstrate that different thresholds of Plk1 activity can elicit distinct phenotypes, illustrating a general method for separating pleiotropic functions of a protein kinase even when these are executed close in time.  相似文献   

19.
Dynactin is a protein complex required for the in vivo function of cytoplasmic dynein, a microtubule (MT)‐based motor. Dynactin binds both dynein and MTs via its p150Glued subunit, but little is known about the ‘pointed‐end complex’ that includes the protein subunits Arp11, p62 and the p27/p25 heterodimer. Here, we show that the p27/p25 heterodimer undergoes mitotic phosphorylation by cyclin‐dependent kinase 1 (Cdk1) at a single site, p27 Thr186, to generate an anchoring site for polo‐like kinase 1 (Plk1) at kinetochores. Removal of p27/p25 from dynactin results in reduced levels of Plk1 and its phosphorylated substrates at kinetochores in prometaphase, which correlates with aberrant kinetochore–MT interactions, improper chromosome alignment and abbreviated mitosis. To investigate the structural implications of p27 phosphorylation, we determined the structure of human p27. This revealed an unusual left‐handed β‐helix domain, with the phosphorylation site located within a disordered, C‐terminal segment. We conclude that dynactin plays a previously undescribed regulatory role in the spindle assembly checkpoint by recruiting Plk1 to kinetochores and facilitating phosphorylation of important downstream targets.  相似文献   

20.
Polo-like kinase 3 (Plk3), an immediate early response gene product, plays an important role in the regulation of mitosis, DNA damage checkpoint activation, and Golgi dynamics. Similar to other members of the Plk family, Plk3 has a conserved kinase domain at the N terminus and a Polo box domain consisting of two Polo boxes at the C terminus. In this study, we demonstrate that the Polo box domain of Plk3 is sufficient for subcellular localization of this kinase to the centrosomes, the spindle poles, and the midbody when ectopically expressed in HeLa and U2OS cells. Both Polo boxes are required for the subcellular localization. Overexpression of the Polo box domain, not the kinase domain, of Plk3 causes significant cell cycle arrest and cytokinesis defects, eventually leading to mitotic catastrophe/apoptosis. Interestingly, the Polo box domain of Plk3 is more potent in inhibiting cell proliferation and inducing apoptosis than that of Plk1, suggesting that this domain can provide an additional structural basis for discovery of new anticancer drugs given the current emphasis on Plk1 as a therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号