首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The formation of laminae within the retina requires the coordinate regulation of cell differentiation and migration. The cell adhesion molecule and member of the immunoglobulin superfamily, receptor protein tyrosine phosphatase Mu, PTPmu, is expressed in precursor and early, differentiated cells of the prelaminated retina, and later becomes restricted to the inner plexiform, ganglion cell, and optic fiber layers. Since the timing of PTPmu expression correlates with the peak period of retinal lamination, we examined whether this RPTP could be regulating cell adhesion and migration within the retina, and thus influencing retinal development. Chick retinal organ cultures were infected with herpes simplex viruses encoding either an antisense sequence to PTPmu, wild-type PTPmu, or a catalytically inactive mutant form of PTPmu, and homophilic adhesion was blocked by using a function-blocking antibody. All conditions that perturbed PTPmu dramatically disrupted retinal histogenesis. Our findings demonstrate that catalytic activity and adhesion mediated by PTPmu regulate lamination of the retina, emphasizing the importance of adhesion and signaling via receptor protein tyrosine phosphatases in the developing nervous system. To our knowledge, this is the first demonstration that an Ig superfamily RPTP regulates the lamination of any neural tissue.  相似文献   

2.
B50/GAP-43 has been implicated in neural plasticity, development, and regeneration. Several studies of axonally transported proteins in the optic nerve have shown that this protein is synthesized by developing and regenerating retinal ganglion cells in mammals, amphibians, and fish. However, previous studies using immunohistochemistry to localize B50/GAP-43 in retina have shown that this protein is found in the inner plexiform layer in adults. Since the inner plexiform layer contains the processes of amacrine cells, ganglion cells, and bipolar cells to determine which cells in the retina express B50/GAP-43, we have now used in situ hybridization to localize the mRNA that codes for this protein in the developing rat retina. We have found that B50/GAP-43 is expressed primarily by cells in the retinal ganglion cell layer as early as embryonic day 15, and until 3 weeks postnatal. Some cells in the inner nuclear layer, possibly a subclass of amacrine cells, also express B50/GAP-43 protein and mRNA; however, the other retinal neurons–bipolar cells, photoreceptors, and horizontal cells express little, if any, B50/GAP-43 at any stage in their development. Early in development, the protein appears in the somata and axons of ganglion cells, while later in development, B50/GAP-43 becomes concentrated in the inner plexiform layer, where it continues to be expressed in adult animals. These results are discussed in terms of previous proposals as to the functions of this molecule. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Changes in the distribution of 1P1-antigen in the developing chick retina have been examined by indirect immunofiuorescence staining technique using the novel monoclonal antibody (MAb) 1P1. Expression of the 1P1 antigen was found to be regulated in radial as well as in tangential dimension of the retina, being preferentially or exclusively located in the inner and outer plexiform layers of the neural retina depending on the stages of development. With the onset of the formation of the inner plexiform layer 1P1 antigen becomes expressed in the retina. With progressing differentiation of the inner plexiform layer 1P1 immunofiuorescence revealed 2 subbands at E9 and 6 subbands at E18. At postnatal stages (after P3) immunoreactivity was reduced in an inside-outside sequence leading to the complete absence of the 1P1 antigen in adulthood. 1P1 antigen expression in the outer plexiform layer was also subject to developmental regulation. The spatio-temporal pattern of 1P1 antigen expression was correlated with the time course of histological differentiation of chick retina, namely the synapse rich plexiform layers. Whether the 1P1 antigen was functionally involved in dendrite extension and synapse formation was discussed.  相似文献   

4.
We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.  相似文献   

5.
In the vertebrate retina, neurites from distinct neuronal cell types are constrained within the plexiform layers, allowing for establishment of retinal lamination. However, the mechanisms by which retinal neurites are segregated within the inner or outer plexiform layers are not known. We find that the transmembrane semaphorins Sema5A and Sema5B constrain neurites from multiple retinal neuron subtypes within the inner plexiform layer (IPL). In Sema5A?/?; Sema5B?/? mice, retinal ganglion cells (RGCs) and amacrine and bipolar cells exhibit severe defects leading to neurite mistargeting into the outer portions of the retina. These targeting abnormalities are more prominent in the outer (OFF) layers of the IPL and result in functional defects in select RGC response properties. Sema5A and Sema5B inhibit retinal neurite outgrowth through PlexinA1 and PlexinA3 receptors both in vitro and in vivo. These findings define a set of ligands and receptors required for the establishment of inner retinal lamination and function.  相似文献   

6.
The localization, isoform pattern, and mRNA distribution of the synapse-organizing molecule agrin was investigated in the developing avian retina. Injection of anti-agrin Fab fragments into the vitreous humor of chick eyes of embryonic days 3 to 20, a procedure that labels only extracellular agrin, reveals staining in the inner and outer plexiform layers before, during, and after the period of synapse formation. The labeling in these layers changes from a diffuse to a punctate pattern at the time when synapses form. At all stages investigated, the inner limiting membrane (a basal lamina that separates vitreous from neural retina) is intensely labeled, as are the axonal processes of retinal ganglion cells in the optic fiber layer and in the optic nerve, although the staining intensity declines after embryonic day 10 in both retina and optic nerve. In culture, axons of retinal ganglion cells also express agrin-like immunoreactivity on their surfaces. Polymerase chain reaction analysis reveals that several different agrin isoforms are expressed in the developing neural retina. In situ hybridization studies show that agrin isoforms are expressed in the ganglion cell and inner nuclear layers, correlating well with the staining for agrin protein in the optic fiber and plexiform layers. The expression of mRNA coding for several agrin isoforms and the presence of extracellular agrin in the synapse-containing layers during the period of synapse formation is consistent with the idea that agrin isoforms might play a role during synapse formation in the central nervous system. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
In order to study cell differentiation and morphogenesis of neural retina, ultracytochemical examination for acetylcholine esterase (AChE) was carried out on neural retinal cells from 6-day-old chick embryos cultured in monolayer for 20 days. AChE is a suitable marker for identifying cell specificity and structure of cultured neural retinal cells, because its specific localization in the intact chick neural retina has been established. After about 2 weeks of culturing a number of cell aggregates formed on the monolayer sheet of glial cells, in which cell bodies were generally located on the periphery regions while their cellular processes were in the center, forming neuropil structures. Among such peripherally located cells presumptive ganglion, amacrine, bipolar, and photoreceptor cells could be distinguished. In the neuropil structures, some cellular processes had typical ribbon synapses indicating that these structures correspond to the plexiform layers of the retina. We could also classify the neuropils into two types of both from the AChE activity and from the structure of the nerve terminals. These findings indicate that our cell culture system can be used for the study of cell differentiation and histogenesis of retinal cells.  相似文献   

8.
The possible presence and action of growth hormone (GH) in the neural retina was investigated in newborn mice. The neural retina was found to be a site of GH gene expression, as GH mRNA was abundant in cells of the retinal ganglion cell layer, in which GH was also detected. It was also a site of GH action, since GH receptor (GHR) immunoreactivity mirrored that of GH. Actions of GH within the eye were indicated by a reduction in its axial length and retinal width (its neuroblastic, inner plexiform, and optic fiber layers) in GHR gene disrupted mice (GHR-/-), in comparison with wild type (GHR+/+) littermates. In the absence of GH signaling, four proteins in the retinal proteome of the GHR-/- mice (identified by 2-D gels and MS) differed in abundance with those in the wild type mice. Brain abundant membrane attached signal protein-1 (BASP-1) was down-regulated, whereas protein kinase C inhibitor 1, cyclophilin A, KH domain-containing, RNA-binding, signal transduction-associated protein 3 were up-regulated in GHR-/- mice. These proteins are involved in retinal vascularization, neural proliferation and neurite outgrowth. GH might thus have hitherto unsuspected roles in these processes during retinal development.  相似文献   

9.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

10.
In order to investigate whether N-methyl-D-aspartate (NMDA) receptors with distinct pharmacological properties are differentially distributed within the retinal layers, the spatial distribution and temporal regulation of all NMDA receptor subunits was analyzed in parallel on the protein level in the rat retina during development. Immunohistochemistry was performed on retinal sections at different developmental ages between embryonic (E) days 20/21 and the adult stage using specific antibodies against NMDA subunits (NR1, NR2A-D). All NMDA subunits were expressed in the rat retina postnatally but showed different spatial patterns. In particular, and in contrast to previous in situ hybridization studies, labeling of NR2 subunits was observed in horizontal cell bodies and in the outer plexiform layer, indicating that functional NMDA receptors are expressed in this retinal cell type in the rat. Expression of NR2D was restricted to the inner retina and seemed to be involved in neurotransmission within the rod pathway. In the inner plexiform layer (IPL), distinct patterns of labeling were observed for different NMDA subunits. NR1 was found in two bands which can be related to the off- and on-signal pathways, whereas NR2A and NR2B were located in two bands within the off-sublaminae of the IPL. The antibody against NR2C was distributed throughout the whole IPL, and NR2D was expressed exclusively in the innermost part of the IPL where rod bipolar cell terminals terminate. Distinct bands of immunoreactivity in the IPL were observed only from P14 on. In conclusion, there are clear differences in the spatial distribution and temporal expression of NMDA receptor subtypes in the rodent retina. This indicates that specific retinal cells selectively express glutamate receptors composed of different subunit combinations and thus display different pharmacological and kinetic properties.  相似文献   

11.
12.
The expression of polysialic acid (PSA) on neural cell adhesion molecule (NCAM) is known to attenuate cell-cell interactions. During neural development the widespread expression of PSA-NCAM creates permissive conditions for the migration of neuronal and glial precursors and the guidance and targeting of axons. NCAM polysialylation can occur via either of two specific sialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), and the purpose of this study was to determine if retroviral delivery of either PST or STX could induce PSA expression in vivo and thereby alter tissue plasticity. Retroviruses expressing GFP-PST or GFP-STX were injected into embryonic retina, and development was evaluated by examining neuroepithelial structure, the expression of markers for specific cell types, cellular proliferation, and apoptosis. Chick retina was chosen because it down-regulates PSA early in its development and has a highly stereotyped program of morphogenesis. Retroviral expression of PST induced PSA expression in retina and resulted in severe but localized alterations in retinal morphogenesis, including an early disruption of radial glial cell morphology, highly disorganized retinal layers, and invasion of pigmented cells into the neural retina. In contrast, retroviral delivery of STX did not induce PSA expression or affect morphogenesis. These findings demonstrate that expression of PSA is sufficient to promote morphological alterations in a relatively nonplastic neural tissue.  相似文献   

13.
M Matsunaga  K Hatta  M Takeichi 《Neuron》1988,1(4):289-295
We investigated the role of N-cadherin cell adhesion molecules in the histogenesis of the chicken neural retina. In the undifferentiated retina of early embryos, N-cadherin is almost evenly distributed. With differentiation, N-cadherin was gradually localized in particular cell layers. In the 8.5 to 10.5 day embryos, N-cadherin was most abundant in the optic nerve fiber layer, the plexiform layers and the outer limiting membrane. Thereafter, this molecule gradually diminished from most parts of the retina, except in the outer limiting membrane. When incubated with Fab fragments of a polyclonal antibody to N-cadherin, retinas of early embryos tended to dissociate and could not be maintained as a tissue mass. Retinas from older embryos were not dissociated by the Fab, but their morphogenesis was severely affected. We conclude that N-cadherin is essential for maintaining the overall structure of the undifferentiated retina, but during development, its role becomes restricted to maintaining more specific regions of the tissue. We also suggest that there might be additional, unidentified cadherin-like molecules in the retina.  相似文献   

14.
A molecular view of vertebrate retinal development   总被引:4,自引:0,他引:4  
  相似文献   

15.
In order to study lens-retina relationships during development, we cloned the zebrafish alphaA-crystallin cDNA and its promoter region. Using a 2.8-kb fragment of the zebrafish alphaA-crystallin promoter (z(alpha)Acry), we expressed the diphtheria toxin A fragment (DTA) in zebrafish embryos in a lens-specific manner. Injection of the z(alpha)Acry-DTA plasmid into eggs at the one-or two-cell stage resulted in the formation of small eyes, in which both lens and retina were reduced in size. In the DTA-expressing lenses, their fiber structure was disorganized, indicating that normal lens development had been abrogated. The neural retina also showed abnormal development, although this tissue did not express DTA. Lamination in the retina did not develop well, and molecular markers for the outer and inner plexiform layers were either abnormally expressed or absent. However, cell type-specific markers of ganglion and bipolar cells, as well as photoreceptors, were expressed in appropriate positions, indicating that initial differentiation of these retinal subpopulations occurred in the DTA-expressing embryos. Cell proliferation also proceeded normally in these embryos, although apoptosis was enhanced. These results suggest that the differentiated lens plays a critical role in the morphogenetic organization of retinal cells during eye development in zebrafish embryos.  相似文献   

16.
Freeze-dried sections (14 microns thick) of retinal layers were prepared from mice with retinal degeneration (C3H strain) and control mice (C57BL strain). The weighed sections (2-30 ng dry weight) were analyzed using our microassay methods. In the control retina, gamma-aminobutyric acid (GABA) concentration and glutamate decarboxylase (GAD) activity, on a dry weight basis, increased from birth to 9 weeks of age and decreased slightly at 20 weeks. In the degenerated retina, the levels of GABA and GAD activity were higher at birth than in the control retina, and continued to increase until 20 weeks of age, at which time the GAD activity reached a markedly high level. This increase was found when the total GABA and GAD levels per retina were determined. In the normal retinal layers, GABA and GAD were confined primarily to the inner plexiform layer. In the degenerated retina, GAD activity gradually increased in the inner layers during postnatal development, but by 20 weeks the increase was most prominent in the inner part of inner nuclear layer and in the outer part of inner plexiform layer. GABA transaminase activity and its distribution were not much different in both normal and degenerated retinas during development.  相似文献   

17.
A multi-layer mathematical model of oxygen supply and consumption in the rat retina is described. The model takes advantage of the highly layered structure of the retina and the compartmentalisation of the available oxygen sources. The retina is divided into eight layers, each with a distinct oxygen consumption or supply rate. When applied to the available data from intraretinal oxygen measurements in the rat under normal physiological conditions, a close fit between the model and the data was achieved (r(2)=0.98+0.005, n=6). The model was then used to investigate recent evidence of oxygen regulating mechanisms in the rat retina during systemic hyperoxia. Fitting our model to the experimental data (r(2)=0.988+0.004, n=25) allowed the relative oxygen delivery or consumption of the key retinal layers to be determined. Two factors combine to produce the relative stability of inner retinal oxygen levels in hyperoxia. The retinal layer containing the outer plexiform layer/deep retinal capillaries, switches from a net source to a net consumer of oxygen, and the oxygen consumption of the outer region of the inner plexiform layer increases significantly. The model provides a useful tool for examining oxygen consumption and supply in all retinal layers, including for the first time, those layers within the normally perfused inner retina.  相似文献   

18.
19.
采用组织学方法观察了胭脂鱼(Myxocyprinus asiaticus) 眼的发生过程, 结果显示: 胭脂鱼眼的发育经历了眼原基形成期、眼囊形成期、视杯形成期、晶体板形成期、晶体囊形成期、角膜原基形成期、角膜上皮形成期、视网膜细胞增殖期、晶状体成熟期、眼色素形成期以及眼成型期等11个时期。视网膜发育最早, 起始于眼原基的形成, 直至眼成型期分化完成, 形成了厚度不一的8层细胞, 由内向外依次为神经纤维层、神经细胞层、内网层、内核层、外网层、外核层、视杆视锥层和色素上皮层, 且发育历时最长, 约264h。晶状体的发育在视网膜之后, 始于晶体板的形成, 于出膜前期成熟, 发育历时最短, 约74h。角膜发育最晚, 始于角膜原基的形成, 出膜1 d分化为透明的成熟角膜, 发育历时约96h。出膜4 d仔鱼眼色素沉积明显, 视网膜各层分化明显, 晶状体内部完全纤维化, 眼的形态结构基本发育完全。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号