首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD8(+) cytotoxic T lymphocytes (CTL) are strong mediators of human immunodeficiency virus type 1 (HIV-1) control, yet HIV-1 frequently mutates to escape CTL recognition. In an analysis of sequences in the Los Alamos HIV-1 database, we show that emerging CTL escape mutations were more often present at lower frequencies than the amino acid(s) that they replaced. Furthermore, epitopes that underwent escape contained amino acid sites of high variability, whereas epitopes persisting at high frequencies lacked highly variable sites. We therefore infer that escape mutations are likely to be associated with weak functional constraints on the viral protein. This was supported by an extensive analysis of one subject for whom all escape mutations within defined CTL epitopes were studied and by an analysis of all reported escape mutations of defined CTL epitopes in the HIV Immunology Database. In one of these defined epitopes, escape mutations involving the substitution of amino acids with lower database frequencies occurred, and the epitope soon reverted back to the sensitive form. We further show that this escape mutation substantially diminished viral fitness in in vitro competition assays. Coincident with the reversion in vivo, we observed the fixation of a mutation 3 amino acids C terminal to the epitope, coincident with the ablation of the corresponding CTL response. The C-terminal mutation did not restore replication fitness reduced by the escape mutation in the epitope and by itself had little effect on replication fitness. Therefore, this C-terminal mutation presumably impaired the processing and presentation of the epitope. Finally, for one persistent epitope, CTL cross-reactivity to a mutant form may have suppressed the mutant to undetected levels, whereas for two other persistent epitopes, each of two mutants showed poor cross-reactivity and appeared in the subject at later time points. Thus, a viral dynamic exists between the advantage of immune escape, peptide cross-reactivity, and the disadvantage of lost replication fitness, with the balance playing an important role in determining whether a CTL epitope will persist or decline during infection.  相似文献   

2.
To determine whether the persistent nature of hepatitis C infection is related to the emergence of antigenic variants driven by immune selection, we examined the sequence heterogeneity in a portion of the hepatitis C virus (HCV) nonstructural 3 (NS3) gene of a patient infected over the course of more than 2 years. By PCR amplification, cloning, and sequencing, we observed several variable and conserved regions in the NS3 segment of the HCV genome. All variable regions had higher ratios of nonsynonymous/synonymous mutations and encompassed immunodominant epitopes, and their locations were not essential to maintain the known function of HCV RNA helicase. In contrast, the regions that are critical for HCV RNA helicase activity were found to be conserved with lower heterogeneity or lower ratios of nonsynonymous/synonymous mutations, and none except one of these regions was encoded within immunodominant epitopes. Our results are consistent with immune selection of viral variants at the epitope and molecular levels that may enable HCV to evade host defenses over time. Plotting the relatedness of sequence variants revealed a star topology suggesting that a wild-type HCV sequence is maintained, unlike HIV. Received: 2 November 2000 / Accepted: 1 October 2001  相似文献   

3.
Cytotoxic T lymphocytes (CTL) target multiple epitopes in human immunodeficiency virus (HIV)-infected persons, and are thought to influence the viral set point. The extent to which HLA class I allele expression predicts the epitopes targeted has not been determined, nor have the relative contributions of responses restricted by different class I alleles within a given individual. In this study, we performed a detailed analysis of the CTL response to optimally defined CTL epitopes restricted by HLA class I A and B alleles in individuals who coexpressed HLA A2, A3, and B7. The eight HIV-1-infected subjects studied included two subjects with acute HIV infection, five subjects with chronic HIV infection, and one long-term nonprogressor. Responses were heterogeneous with respect to breadth and magnitude of CTL responses in individuals of the same HLA type. Of the 27 tested epitopes that are presented by A2, A3, and B7, 25 were targeted by at least one person. However, there was wide variation in the number of epitopes targeted, ranging from 2 to 17. The A2-restricted CTL response, which has been most extensively studied in infected persons, was found to be narrowly directed in most individuals, and in no cases was it the dominant contributor to the total HIV-1-specific CTL response. These results indicate that HLA type alone does not predict CTL responses and that numerous potential epitopes may not be targeted by CTL in a given individual. These data also provide a rationale for boosting both the breadth and the magnitude of HIV-1-specific CTL responses by immunotherapy in persons with chronic HIV-1 infection.  相似文献   

4.
Cellular immune responses during acute Hepatitis C virus (HCV) and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s) within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%). The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.  相似文献   

5.
After infection by hepatitis C virus (HCV), a minority of patients develop acute symptomatic disease and some of them are able to clear the virus. In this study, we analyzed peripheral blood mononuclear cells from nine patients with acute symptomatic disease with respect to their cytotoxic T lymphocyte (CTL) response using a panel of HCV-derived peptides in a semiquantitative secondary in vitro culture system. We could detect early CTL responses in 67% of these patients. The CTL responses were directed against multiple viral epitopes, in particular within the structural (core 2-9, core 35-44, core 131-140, and core 178-187) and nonstructural regions of the virus (NS3 1073-1081, NS3 1406-1415, NS4 1807-1816, NS5 2252-2260, and NS5B 2794-2802). We compared the CTL responses displayed by recently and chronically infected HLA-A2-positive patients. Virus-specific CTLs were detectable in chronic carriers but the percentage of positive peptide-specific CTL responses was significantly higher in recently infected patients (P = 0.002). Follow-up of recently infected patients during subsequent disease development showed a significant decrease in the values and proportions of positive peptide-specific CTL responses (P = 0.002 and 0.013, respectively). Patients with limited viral replication exhibited significantly more vigorous early responses (P = 0.024). These data suggest a protective role for the early antiviral CTL response in HCV infection.  相似文献   

6.
Compelling evidence now suggests that alphabeta CD8 cytotoxic T lymphocytes (CTL) have an important role in preventing human immunodeficiency virus (HIV) infection and/or slowing progression to AIDS. Here, we describe an HIV type 1 CTL polyepitope, or polytope, vaccine comprising seven contiguous minimal HLA A2-restricted CD8 CTL epitopes conjoined in a single artificial construct. Epitope-specific CTL lines derived from HIV-infected individuals were able to recognize every epitope within the construct, and HLA A2-transgenic mice immunized with a recombinant virus vaccine coding for the HIV polytope also generated CTL specific for different epitopes. Each epitope in the polytope construct was therefore processed and presented, illustrating the feasibility of the polytope approach for HIV vaccine design. By simultaneously inducing CTL specific for different epitopes, an HIV polytope vaccine might generate activity against multiple challenge isolates and/or preempt the formation of CTL escape mutants.  相似文献   

7.
Reversion of CTL escape-variant immunodeficiency viruses in vivo   总被引:17,自引:0,他引:17  
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.  相似文献   

8.
CTL play a critical role in the control of HIV and SIV. However, intrinsic genetic instability enables these immunodeficiency viruses to evade detection by CTL through mutation of targeted antigenic sites. These mutations can impair binding of viral epitopes to the presenting MHC class I molecule or disrupt TCR-mediated recognition. In certain regions of the virus, functional constraints are likely to limit the capacity for variation within epitopes. Mutations elsewhere in the protein, however, might still enable immune escape through effects on Ag processing. In this study, we describe the coincident emergence of three mutations in a highly conserved region of Nef during primary HIV-1 infection. These mutations (R69K, A81G, and H87R) flank the HLA B*35-restricted VY8 epitope and persisted to fixation as the early CTL response to this Ag waned. The variant form of Nef showed a reduced capacity to activate VY8-specific CTL, although protein stability and expression levels were unchanged. This effect was associated with altered processing by the proteasome that caused partial destruction of the VY8 epitope. Our data demonstrate that a variant HIV genotype can significantly impair proteasomal epitope processing and substantiate the concept of immune evasion through diminished Ag generation. These observations also indicate that the scale of viral escape may be significantly underestimated if only intraepitope variation is evaluated.  相似文献   

9.
Antiretroviral drug resistance and escape from CTL are major obstacles to effective control of HIV replication. To investigate the possibility of combining drug and immune-based selective pressures against HIV, we studied the effects of antiretroviral drug resistance mutations on CTL recognition of five HIV-1 Pol epitopes presented by common HLA molecules. We found that these common drug resistance mutations sustain or even enhance the antigenicity and immunogenicity of HIV-1 Pol CTL epitopes. Variable patterns of cross-reactive and selective recognition of wild-type and corresponding variant epitopes demonstrate a relatively diverse population of CD8(+) T cells reactive against these epitopes. Variant peptides with multiple drug resistance mutations still sustained CTL recognition, and some HIV-infected individuals demonstrated strong CD8(+) T cell responses against multiple CTL epitopes incorporating drug resistance mutations. Selective reactivity against variant peptides with drug resistance mutations reflected ongoing or previous exposure to the indicated drug, but was not dependent upon the predominance of the mutated sequence in endogenous virus. The frequency and diversity of CTL reactivity against the variant peptides incorporating drug resistance mutations and the ability of these peptides to activate and expand CTL precursors in vitro indicate a significant functional interface between the immune system and antiretroviral therapy. Thus, drug-resistant variants of HIV are susceptible to immune selective pressure that could be applied to combat transmission or emergence of antiretroviral drug-resistant HIV strains and to enhance the immune response against HIV.  相似文献   

10.
During acute human immunodeficiency virus type 1 (HIV-1) infection, early host cellular immune responses drive viral evolution. The rates and extent of these mutations, however, remain incompletely characterized. In a cohort of 98 individuals newly infected with HIV-1 subtype B, we longitudinally characterized the rates and extent of HLA-mediated escape and reversion in Gag, Pol, and Nef using a rational definition of HLA-attributable mutation based on the analysis of a large independent subtype B data set. We demonstrate rapid and dramatic HIV evolution in response to immune pressures that in general reflect established cytotoxic T-lymphocyte (CTL) response hierarchies in early infection. On a population level, HLA-driven evolution was observed in approximately 80% of published CTL epitopes. Five of the 10 most rapidly evolving epitopes were restricted by protective HLA alleles (HLA-B*13/B*51/B*57/B*5801; P = 0.01), supporting the importance of a strong early CTL response in HIV control. Consistent with known fitness costs of escape, B*57-associated mutations in Gag were among the most rapidly reverting positions upon transmission to non-B*57-expressing individuals, whereas many other HLA-associated polymorphisms displayed slow or negligible reversion. Overall, an estimated minimum of 30% of observed substitutions in Gag/Pol and 60% in Nef were attributable to HLA-associated escape and reversion events. Results underscore the dominant role of immune pressures in driving early within-host HIV evolution. Dramatic differences in escape and reversion rates across codons, genes, and HLA restrictions are observed, highlighting the complexity of viral adaptation to the host immune response.  相似文献   

11.
Due to constitutive expression in cells targeted by human immunodeficiency virus (HIV), and immediate mode of viral restriction upon HIV entry into the host cell, APOBEC3G (A3G) and APOBEC3F (A3F) have been considered primarily as agents of innate immunity. Recent bioinformatic and mouse model studies hint at the possibility that mutation of the HIV genome by these enzymes may also affect adaptive immunity but whether this occurs in HIV-infected individuals has not been examined. We evaluated whether APOBEC-mediated mutations within common HIV CD8+ T cell epitopes can potentially enhance or diminish activation of HIV-specific CD8+ T cells from infected individuals. We compared ex vivo activation of CD8+ T lymphocytes from HIV-infected individuals by wild type HIV peptide epitopes and synthetic variants bearing simulated A3G/F-induced mutations by measuring interferon-γ (IFN-γ) production. We found that A3G/F-induced mutations consistently diminished HIV-specific CD8+ T cell responses against the common epitopes we tested. If this reflects a significant trend in vivo, then adaptation by HIV to enrich sequences that are favored for mutation by A3G/F (A3G/F hotspots) in portions of its genome that encode immunogenic CD8+ T cell epitopes would favor CTL escape. Indeed, we found the most frequently mutated A3G motif (CCC) is enriched up to 6-fold within viral genomic sequences encoding immunodominant CD8+ T cell epitopes in Gag, Pol and Nef. Within each gene, A3G/F hotspots are more abundant in sequences encoding epitopes that are commonly recognized due to their HLA restriction. Thus, in our system, mutations of the HIV genome, mimicking A3G/F activity, appeared to abrogate or severely reduce CTL recognition. We suggest that the physiological significance of this potential effect in facilitating CTL escape is echoed in the adaptation of the HIV genome to enrich A3G/F hotspots in sequences encoding CTL epitopes that are more immunogenic at the population level.  相似文献   

12.
The error-prone replication of human immunodeficiency virus type 1 (HIV-1) enables it to continuously evade host CD8+ T-cell responses. The observed transmission, and potential accumulation, of CD8+ T-cell escape mutations in the population may suggest a gradual adaptation of HIV-1 to immune pressures. Recent reports, however, have highlighted the propensity of some escape mutations to revert upon transmission to a new host in order to restore efficient replication capacity. To more specifically address the role of reversions in early HIV-1 evolution, we examined sequence polymorphisms arising across the HIV-1 genome in seven subjects followed longitudinally 1 year from primary infection. As expected, numerous nonsynonymous mutations were associated with described CD8+ T-cell epitopes, supporting a prominent role for cellular immune responses in driving early HIV-1 evolution. Strikingly, however, a substantial proportion of substitutions (42%) reverted toward the clade B consensus sequence, with nearly one-quarter of them located within defined CD8 epitopes not restricted by the contemporary host's HLA. More importantly, these reversions arose significantly faster than forward mutations, with the most rapidly reverting mutations preferentially arising within structurally conserved residues. These data suggest that many transmitted mutations likely incur a fitness cost that is recovered through retrieval of an optimal, or ancestral, form of the virus. The propensity of mutations to revert may limit the accumulation of immune pressure-driven mutations in the population, thus preserving critical CD8+ T-cell epitopes as vaccine targets, and argue against an unremitting adaptation of HIV-1 to host immune pressures.  相似文献   

13.
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) play a major role in control of viral replication. To understand the contribution of this antiviral response, an initial step is to fully define the specific epitopes targeted by CTL. These studies focused on CTL responses restricted by HLA-A*3002, one of the HLA-A molecules most prominent in African populations. To avoid the time-consuming effort and expense involved in culturing CTL prior to defining epitopes and restricting alleles, we developed a method combining Elispot assays with intracellular gamma interferon staining of peripheral blood mononuclear cells to first map the optimal epitopes targeted and then define the HLA restriction of novel epitopes. In two A*3002-positive subjects whose CTL responses were characterized in detail, the strongest response in both cases was to an epitope in p17 Gag, RSLYNTVATLY (residues 76 to 86). Using this method, CTL epitopes for which there were no motif predictions were optimized and the HLA restriction was established within 48 to 72 h of receipt of blood. This simple and convenient approach should prove useful especially in the characterization of CTL responses specific to HIV and other viruses, particularly in localities where performing cytotoxicity assays would be problematic.  相似文献   

14.
While human leukocyte antigen B57 (HLA-B57) is associated with the spontaneous clearance of hepatitis C virus (HCV), the mechanisms behind this control remain unclear. Immunodominant CD8(+) T cell responses against the B57-restricted epitopes comprised of residues 2629 to 2637 of nonstructural protein 5B (NS5B(2629-2637)) (KSKKTPMGF) and E2(541-549) (NTRPPLGNW) were recently shown to be crucial in the control of HCV infection. Here, we investigated whether the selection of deleterious cytotoxic T lymphocyte (CTL) escape mutations in the NS5B KSKKTPMGF epitope might impair viral replication and contribute to the B57-mediated control of HCV. Common CTL escape mutations in this epitope were identified from a cohort of 374 HCV genotype 1a-infected subjects, and their impact on HCV replication assessed using a transient HCV replicon system. We demonstrate that while escape mutations at residue 2633 (position 5) of the epitope had little or no impact on HCV replication in vitro, mutations at residue 2629 (position 1) substantially impaired replication. Notably, the deleterious mutations at position 2629 were tightly linked in vivo to upstream mutations at residue 2626, which functioned to restore the replicative defects imparted by the deleterious escape mutations. These data suggest that the selection of costly escape mutations within the immunodominant NS5B KSKKTPMGF epitope may contribute in part to the control of HCV replication in B57-positive individuals and that persistence of HCV in B57-positive individuals may involve the development of specific secondary compensatory mutations. These findings are reminiscent of the selection of deleterious CTL escape and compensatory mutations by HLA-B57 in HIV-1 infection and, thus, may suggest a common mechanism by which alleles like HLA-B57 mediate protection against these highly variable pathogens.  相似文献   

15.
We present detailed studies of human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte (CTL) responses to clade A or C HIV type 1 in three donors infected in East Africa. We define several novel non-clade B CTL epitopes, including some restricted by HLA alleles common in Africans. Although cross-clade CTL recognition of these epitopes does occur, recognition can also be highly clade specific.  相似文献   

16.
Studies to date assessing HIV escape from CTL in vivo have yielded conflicting results. Previous studies have demonstrated that simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys expressing the MHC class I allele Mamu-A*01 reproducibly develop a gag-specific CTL response limited to a 9-amino acid epitope of the SIVmac gag protein (residues 182-190 within peptide 11C). To determine whether CTL have a role in selecting for AIDS virus mutants, we examined mutations in SIVmac proviral DNA encoding this gag CTL epitope in PBL of infected rhesus monkeys. Three Mamu-A*01+ rhesus monkeys were infected with SIVmac and assessed for gag- and peptide 11C-specific CTL responses. This specific CTL response was maintained in two monkeys, but lost in the third animal 2 yr after infection. The generation of proviral gag mutations was then determined by sequencing 500-bp proviral fragments amplified from fresh PBL obtained from the monkeys more than 2.5 yr after infection. Although numerous point mutations were characterized in 131 polymerase chain reaction-generated clones of SIVmac gag, only four mutations within the gag CTL epitope-coding region of the genome were identified. Comparison of synonymous and nonsynonymous nucleotide substitutions in the regions encoding peptide 11C (p11C) and the flanking gag protein indicated a lack of selective pressure for viral mutations in the CTL epitope coding region. Interestingly, a predominant gag mutant encoding a single amino acid change in p11C was found in a monkey which lost its CTL activity. However, even in this setting there was no evidence for selection of mutations in the CTL epitope coding region when compared with the flanking region. Furthermore, synthetic peptides corresponding to all naturally occurring variants in the gag epitope-coding region were recognized by cloned and bulk cultured effector cells of the infected monkeys with persistent CTL. These results indicate that SIVmac gag- and p11C-specific CTL do not select for mutations in the immunodominant epitope-coding region and that the naturally occurring mutants do not appear to escape CTL recognition.  相似文献   

17.
Human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an inflammatory neurological disease. Patients with HAM/TSP show high proviral load despite increased HTLV-I Tax-specific CTL. It is still unknown whether the CTL efficiently eliminate the virus in vivo and/or whether a naturally occurring variant virus becomes predominant by escaping from the CTL. To address these issues, we sequenced a large number of HTLV-I tax genes from HLA-A*02 HAM/TSP patients and estimated synonymous and nonsynonymous changes of the genes to detect positive selection pressure on the virus. We found the pressures in three of six CTL epitopes in HTLV-I Tax, where amino acid substitutions preferentially occurred. Although some of variant viruses were not recognized by the CTL, no variant viruses accumulated within 3-8 years, indicating genetic stability of HTLV-I tax gene. These results suggest that CTL eliminate the infected cells in vivo and naturally occurring variant viruses do not predominate. As Tax is a regulatory protein which controls viral replication, the amino acid substitutions in Tax may reduce viral fitness for replication. Viral fitness and host immune response may contribute to the viral evolution within the infected individuals. Furthermore, the genetic stability in the epitopes despite the antiviral pressures suggests that the three epitopes can be the candidate targets for HTLV-I vaccine development.  相似文献   

18.
The cytotoxic T-cell (CTL) response to human immunodeficiency virus Type 1 (HIV-1) is vigorous and sustained, but despite this, the virus persists. Natural variation arising within CTL epitopes may affect CTL recognition of infected targets and allow viral escape. Some of these variant epitopes appear to engage T-cell receptors but fail to activate the CTL normally. This can interfere with recognition of the unmutated epitope — a phenomenon known as T-cell antagonism. We discuss the evidence for this in HIV-1 using CTL and epitope variants derived from infected donors, and discuss its possible relevancein vivo.  相似文献   

19.
Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in CTL epitopes. Also for influenza A viruses a number of amino acid substitutions in the nucleoprotein (NP) have been associated with escape from CTL. However, other previously identified influenza A virus CTL epitopes are highly conserved, including the immunodominant HLA-A*0201-restricted epitope from the matrix protein, M1(58-66). We hypothesized that functional constraints were responsible for the conserved nature of influenza A virus CTL epitopes, limiting escape from CTL. To assess the impact of amino acid substitutions in conserved epitopes on viral fitness and recognition by specific CTL, we performed a mutational analysis of CTL epitopes. Both alanine replacements and more conservative substitutions were introduced at various positions of different influenza A virus CTL epitopes. Alanine replacements for each of the nine amino acids of the M1(58-66) epitope were tolerated to various extents, except for the anchor residue at the second position. Substitution of anchor residues in other influenza A virus CTL epitopes also affected viral fitness. Viable mutant viruses were used in CTL recognition experiments. The results are discussed in the light of the possibility of influenza viruses to escape from specific CTL. It was speculated that functional constraints limit variation in certain epitopes, especially at anchor residues, explaining the conserved nature of these epitopes.  相似文献   

20.
Cytotoxic T-lymphocyte (CTL) responses to human immunodeficiency virus arise early after infection, but ultimately fail to prevent progression to AIDS. Human immunodeficiency virus may evade the CTL response by accumulating amino-acid replacements within CTL epitopes. We studied 10 CTL epitopes during the course of simian immunodeficiency virus disease progression in three related macaques. All 10 of these CTL epitopes accumulated amino-acid replacements and showed evidence of positive selection by the time the macaques died. Many of the amino-acid replacements in these epitopes reduced or eliminated major histocompatibility complex class I binding and/or CTL recognition. These findings strongly support the CTL 'escape' hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号