首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of the tripeptide t-Boc-L-Pro-D-Ala-D-Ala-NHCH3, monohydrate, (C17H30N4O5.H2O, molecular weight = 404.44) has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P2(1), a = 9.2585(4), b = 9.3541(5), c = 12.4529(4)A, beta = 96.449(3) degrees, Z = 2. The peptide units are in the trans and the tBoc-Pro bond in the cis orientation. The first and third peptide units show significant deviations from planarity (delta omega = 5.2 degrees and delta omega = 3.7 degrees, respectively). The backbone torsion angles are: phi 1 = -60 degrees, psi 1 = 143.3 degrees, omega 1 = -174.8 degrees, phi 2 = 148.4 degrees, psi 2 = -143.1 degrees, omega 2 = -179.7 degrees, phi 3 = 151.4 degrees, psi 3 = -151.9 degrees, omega 3 = -176.3 degrees. The pyrrolidine ring of the proline residue adopts the C2-C gamma conformation. The molecular packing gives rise to an antiparallel beta-sheet structure formed of dimeric repeating units of the peptide. The surface of the dimeric beta-sheet is hydrophobic. Water molecules are found systematically at the edges of the sheets interacting with the urethane oxygen and terminal amino groups. Surface catalysis of an L-Ala to D-Ala epimerization process by water molecules adsorbed on to an incipient beta-sheet is suggested as a mechanism whereby crystals of the title peptide were obtained from a solution of tBoc-Pro-D-Ala-Ala-NHCH3.  相似文献   

2.
The tripeptide, L-prolyl-glycyl-glycine, crystallizes in the trigonal space group P3(2), with a = b = 8.682(2) A, c = 12.008(2) and Z = 3. The structure was solved by direct methods and refined to an R-value of 0.07 for 727 reflections (I greater than 1.0 sigma). The molecule exists as a zwitterion in the crystal. The peptide units are trans and show significant deviations from planarity (omega 1 = 169.7 degrees, omega 2 = -170.1 degrees). The peptide backbone adopts a left-handed helical conformation similar to that of polyglycine II and polyproline II.  相似文献   

3.
The structure of a dihydrated form of glycyl-L-tyrosyl-L-alanine (GYA) has been determined as part of a series of peptide structural investigations and development of microscale vapor diffusion experiments for peptide crystal growth. Crystals were grown by the hanging-drop method against sodium acetate. The tripeptide is a zwitterion in the crystal, adopting an extended conformation through glycine, a nearly perpendicular bend at tyrosine and a reverse turn for the C-terminal carboxylate. Principal backbone torsion angles are psi 1 175(1) degrees, omega 2 173(1) degrees, phi 2 -119(1) degrees, psi 2 120(1) degrees, omega 3 172(1) degrees, phi 3 -73(1) degrees, psi 31 -9(1) degrees, psi 32 171(1) degrees. The tyrosyl side chain adopts an unusual orientation (chi 1/2 = -86(1) degrees). The relationship of the GYA.2H2O structure to GYA sequences in proteins is examined, particularly as regards its helix-forming potential. Crystal data: C14H19N3O4.2H2O, M(r) = 345.36, orthorhombic, P2(1)2(1)2(1), a = 4.810 (4), b = 11.400(7), c = 30.162(23)A, V = 1653.8(24)A-3, Z = 4, Dx = 1.387 Mgm-3, lambda(CuK- alpha) = 1.540 A, mu = 9.053 mm-1, F(000) = 736, T = 199 K, R = 0.041 for 1458 observations with I greater than or equal to 3 sigma(I).  相似文献   

4.
In our attempts to design crystalline alpha-helical peptides, we synthesized and crystallized GAI (C11H21N3O4) in two crystal forms, GAI1 and GAI2. Form 1 (GAI1) Gly-L-Ala-L-Ile (C11H21N3O4.3H2O) crystals are monoclinic, space group P2(1) with a = 8.171(2), b = 6.072(4), c = 16.443(4) A, beta = 101.24(2) degrees, V = 800 A3, Dc = 1.300 g cm-3 and Z = 2, R = 0.081 for 482 reflections. Form 2 (GAI2) Gly-L-Ala-L-Ile (C11H21N3O4.1/2H2O) is triclinic, space group P1 with a = 5.830(1), b = 8.832(2), c = 15.008(2) A, alpha = 102.88(1), beta = 101.16(2), gamma = 70.72(2) degrees, V = 705 A3, Z = 2, Dc = 1.264 g cm-3, R = 0.04 for 2582 reflections. GAI1 is isomorphous with GAV and forms a helix, whereas GAI2 does not. In GAI1, the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an incipient alpha-helix. GAI2 imitates a cyclic peptide and traps a water molecule. The conformation angles chi 11 and chi 12 for the side chain are (-63.7 degrees, 171.1 degrees) for the helical GAI1, and (-65.1 degrees, 58.6 degrees) and (-65.0 degrees, 58.9 degrees) for the two independent nonhelical molecules in GAI2; in GAI1, both the C gamma atoms point away from the helix, whereas in GAI2 the C gamma atom with the g+ conformation points inward to the helix and causes sterical interaction with atoms in the adjacent peptide plane. From these results, it is clear that the helix-forming tendencies of amino acids correlate with the restrictions of side-chain rotamer conformations. Both the peptide units in GAI1 are trans and show significant deviation from planarity [omega 1 = -168(1) degrees; omega 2 = -171(1) degrees] whereas both the peptide units in both the molecules A and B in GAI2 do not show significant deviation from planarity [omega 1 = 179.3(3) degrees; omega 2 = -179.3(3) degrees for molecule A and omega 1 = 179.5(3) degrees; omega 2 = -179.4(3) degrees for molecule B], indicating that the peptide planes in these incipient alpha-helical peptides are considerably bent.  相似文献   

5.
The crystal structure of a tripeptide, tryptophanyl-glycyl-glycine dihydrate (C15H18N4O4.2H2O, molecular weight = 354) has been determined. The crystals are orthorhombic, space group P2(1)2(1)2(1), with a = 7.875 (1) A, b = 9.009(1), c = 24.307(1) and Z = 4. The final R-index is 0.058 for 1488 reflections [sin theta)/lambda less than or equal to 0.6 A-1) with I greater than 2 sigma (I). The molecule exists as a zwitterion, with terminal NH3+ and COO- groups. The peptide units are trans and nearly perpendicular to the plane of the carboxyl group. The backbone torsion angles are: psi 1 = 132.7 degrees, omega 1 = 174.2 degrees, phi 2 = 88.2 degrees, psi 2 = 8.6 degrees, omega 2 = -179.8 degrees, phi 3 = -85.2 degrees, psi 31 = -178.1 degrees, psi 32 = 5.0 degrees. For the sidechain of tryptophan, chi 1 = -171.6 degrees, chi 2 = 101.0 degrees.  相似文献   

6.
Crystals of L-leucylglycylglycylglycine, LGGG (C12H22N4O5), grown from an ethanol-water solution, are orthorhombic, space groups P2(1)2(1)2(1), with unit cell dimensions (at 22 +/- 3 degrees) a = 9.337(1), b = 10.995(1), c = 15.235(1)A, v = 1563.4 A3, Z = 4 with a density of Dobs = 1.29 g.cm-3 and Dcalc = 1.279 g.cm-3. The crystal structure was solved by the application of direct methods and refined to an R value of 0.029 for 1018 reflections with I greater than or equal to 2 sigma. The molecule exists as a zwitterion in the crystal. The trans peptide backbone takes up a folded conformation at the middle glycylglycyl link accompanied by a significant nonplanarity up to delta omega of 8 degrees at the middle peptide and is relatively more extended at the two ends. The molecules are linked together intermolecularly in an infinite sequence of head to tail 1-4' hydrogen bonds, as is typical of charged peptides. It is interesting to note that while glycylglycylglycine takes up an extended beta-sheet conformation, addition of Leu to the N-terminal results in a bent conformation.  相似文献   

7.
The synthetic peptide Gly-L-Ala-L-Val (C10H19N3O4.3H2O; GAV) crystallizes in the monoclinic space group P21, with a = 8.052(2), b = 6.032(2), c = 15.779(7) A, beta = 98.520(1) degree, V = 757.8 A3, Dx = 1.312 g cm-3, and Z = 2. The peptide Gly-L-Ala-L-Leu (C11H21N3O4.3H2O; GAL) crystallizes in the orthorhombic space group P212121, with a = 6.024(1), b = 8.171(1), c = 32.791(1) A, V = 1614 A3, Dx = 1.289 g cm-3, and Z = 4. Their crystal structures were solved by direct methods using the program SHELXS-86, and refined to an R index of 0.05 for 1489 reflections for GAV and to an R index of 0.05 for 1563 reflections for GAL. The tripeptides exist as a zwitterion in the crystal and assume a near alpha-helical backbone conformation with the following torsion angles: psi 1 = -150.7 degrees; phi 2, psi 2 = -68.7 degrees, -38.1 degrees; phi 3, psi 32 = -74.8 degrees, -44.9 degrees, 135.9 degrees for GAV; psi 1 = -150.3 degrees; phi 2, psi 2 = -67.7 degrees, -38.9 degrees; phi 3, psi 31, psi 32 = -72.2 degrees, -45.3 degrees, 137.5 degrees for GAL. Both the peptide units in both of the tripeptides show significant deviation from planarity [omega 1 = -171.3(6) degrees and omega 2 = -172.0(6) degrees for GAV; omega 1 = -171.9(5) degrees and omega 2 = -173.2(6) degrees for GAL]. The side-chain conformational angles chi 21 and chi 22 are -61.7(5) degrees and 175.7(5) degrees, respectively, for valine, and the side-chain conformations chi 12 and chi 23's are -68.5(5) degrees and (-78.4(6) degrees, 159.10(5) degrees) respectively, for leucine. Each of the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an alpha-helix.  相似文献   

8.
The crystal structure of a tripeptide, L-phenylalanyl-glycyl-glycine (C13H17N3O4), molecular weight = 279.3, has been determined. The crystals are orthorhombic, space group P2(1)2(1)2(1), with a = 5.462(1) A, b = 15.285(5), c = 16.056(4), Z = 4, and P (calc) = 1.384 g.cm-3. The final R-index is 0.052 for 866 reflections with sin theta/lambda less than or equal to 0.55 A-1 and I greater than 1 sigma. The molecule exists as a zwitterion, with the N-terminus protonated and the C-terminus in an ionized form. Both the peptide units are in the trans configuration and planar, though one of them shows significant deviations from planarity ([delta w[ = 5.1 degrees). The peptide backbone is folded, with the torsion angles of: psi 1 = 116.2(5) degrees, omega 1 = 178.8(4), phi 2 = -89.7(5). psi 2 = -28.9(6), omega 2 = -174.9(4), phi 3 = 134.9(5), psi 31 = 7.8(6), psi 32 = -172.6(4). The terminal glycine adopts a "D-residue" conformation. For the sidechain of phenylalanine, chi 1 = 175.5(4), chi 2 = -127.0(6).  相似文献   

9.
The tripeptide N-formyl-L-Met-L-Leu-L-Phe-OMe (FMLP-OMe) crystallizes in the orthorhombic system, space group P 2(1)2(1)2(1), with the following unit-cell parameters: a = 21.727, b = 21.836, c = 5.133 A, Z = 4. The structure has been solved and refined to a final R of 0.068 for 1838 independent reflexions with I greater than 2 omega (I). The peptide backbone is folded at the Leu residue (phi L = -67.7, psi L = -49.1 degrees) without intramolecular hydrogen bonds. Considering each peptide plane, the Leu side-chain is oriented on the same side of that of the Phe residue and on the opposite side of that of the Met residue, respectively. The crystal conformation differs from all the other conformations proposed for FMLP-OMe and the anionic form of N-formyl-L-Met-L-Leu-L-Phe-OH (FMLP) in solution accounts for the amphiphilic character of the peptide, giving rise, through intermolecular hydrogen bonds, to a stacking of molecules which could be maintained in the aggregation states experimentally observed in solvents of low polarity. Intramolecular potential energy calculations have been carried out in order to compare the energies of the various backbone conformers.  相似文献   

10.
All the peptide bonds in cyclic(Gly-L-Pro-D-Phe-Gly-L-Ala) are in the trans conformation; however, the peptide bond C'5-N1 is twisted by 19 degrees from planarity (omega 5 = -161 degrees). A Type II beta-turn encompasses the L-Pro-D-Phe residues. Carbonyl oxygens O2, O4 and O5 are directed to the same side of the average plane through the backbone ring and they form hydrogen bonds with N3, N5 and N1, respectively, in adjacent molecules in a stacked column where the adjacent molecules are related by one translational unit. The conformation of the backbone is different from that established in other molecules with the DLDDL chirality sequence. The P21 cell contains two molecules of C21H26N5O5 with a = 4.836(2) A, b = 18.346(8) A, c = 12.464(5) A and beta = 100.05(4) degrees. The R factor for 1382 data with [F0[ greater than 1 sigma is 7.0%.  相似文献   

11.
Crystals of the dipeptide, pyroglutamyl-alanine (C8H12N2O4) grown from aqueous methanol are monoclinic, space group P2(1) with the following cell parameters: a = 4.863(2), b = 16.069(1), c = 6.534(2)A and beta = 109.9(2) degrees, V = 480.0A3, Mr = 200.2, Dc = 1.385 g cm-3, and Z = 2. The crystal structure was solved by the application of direct methods and refined to an R value of 0.044 for 699 reflections with I greater than 2 sigma. The amide of the pyroglutamyl side chain is cis, omega 1 = 2.6(7) degrees; the peptide unit is trans and appreciably non-planar (omega 2 = 167.4(5) degrees). The backbone torsional angles are: psi 1 = 166.1(5), phi 2 = -90.3(6), and psi 2 = -22.4(6) degrees. This structure contains a short (2.551(5)A) intermolecular hydrogen bond between the carboxyl OH and the N-acyl oxygen, a feature common to most acyl amino acids and acyl peptides.  相似文献   

12.
The synthetic peptide Gly-L-Ala-L-Phe (C14H19N3O4.2H2O; GAF) crystallizes in the monoclinic space group P2I1), with a = 5.879(1), b = 7.966(1), c = 17.754(2) A, beta = 95.14(2) degrees, Dx = 1.321 g cm-3, and Z = 2. The crystal structure was solved by direct methods using the program SHELXS-86 and refined to an R value of 0.031 for 1425 reflections (greater than 3 sigma). The tripeptide exists as a zwitterion in the crystal and assumes a near alpha-helical backbone conformation with the following torsion angles: psi 1 = -147.8 degrees; phi 2, psi 2 = -71.2 degrees, 33.4 degrees; phi 3, psi 3 = -78.3 degrees, -43.3 degrees. In this structure, one water molecule bridges the COO- and NH3+ terminii to complete a turn of an alpha-helix and another water molecule participates in head-to-tail intermolecular hydrogen bonding, so that the end result is a column of molecules that looks like an alpha-helix. Thus, the two water molecules of crystallization play a major role in stabilizing the near alpha-helical conformation of each tripeptide molecule and in elongating the helix throughout the crystal. An analysis of all protein sequences around regions containing a GAF fragment by Chou-Fasman's secondary structure prediction method showed that those regions are likely to assume an alpha-helical conformation with twice the probability they are likely to adopt a beta-sheet conformation. It is conceivable that a GAF fragment may be a good part of the nucleation site for forming alpha-helical fragments in a polypeptide, with the aqueous medium playing a crucial role in maintaining such transient species.  相似文献   

13.
We examined the binding capacity of anti-metastatic polypeptide containing repetitive Arg-Gly-Asp(RGD) sequence derived from cell binding site of fibronectin, poly(RGD), to the surface of tumor cells. Poly(RGD) competitively inhibited the binding of radiolabeled fibronectin to the cell surface more potently than oligo(RGD) or RGD tripeptide on a molar basis. Compared on a weight basis to oligo(RGD) or RGD peptide, poly(RGD) was more active than the oligo- and monomeric peptide at inhibiting tumor cell adhesion to immobilized fibronectin. The secondary structure of poly(RGD) was predicted to be a beta-turn from the data of CD spectra and its amino acid sequence. These findings suggest that poly(RGD)-mediated inhibition of cell adhesion is due to its potent binding capacity to fibronectin receptors on cell surface probably through its conformational properties.  相似文献   

14.
The anionic oxygen atoms of the phosphodiester backbone of RNA and DNA are particularly susceptible to esterification by many mutagenic and carcinogenic alkylating agents. To better understand the geometric, electronic and conformational properties of the alkylated sugar phosphate moiety, the X-ray structure of the phosphotriesterified nucleotide, cytidine-5'-O-dimethylphosphate (C11H18N3O8P), was undertaken. The compound crystallizes in the monoclinic space group P2, with unit cell parameters of a = 5.741(2), b = 11.625(1), c = 11.425(1)A, beta = 94.43(2) degrees. The structure was solved by direct methods and refined by block-diagonal least-squares technique to an R index of 0.034 (Rw = 0.046). The D-ribofuranosyl ring is in the 3T2 twist conformation (P = 13.1(2) degrees, tau m = 36.7(2) degrees) and the conformation about the C(1')-N(1) glycosyl bond is anti (XCN = 8.3(2) degrees). The four P-O bond lengths are significantly shorter than those of the nonalkylated nucleotides. The three sets of phosphodiester linkages, (omega 'A, omega A), (omega 'B, omega B) and (omega 'C, omega C), take the (g-,t), (t,g) and (g-,t) conformations, respectively. There is no base-base or alkyl-base stacking, however, a novel intermolecular stacking is found between the ribosyl O(2') hydroxyl oxygen atom and a neighboring pyrimidine ring. This hydroxyl-base stacking interaction may have implications in the stabilization of the tertiary and quarternary structure of ribonucleic acids and nucleic acid-protein complexes.  相似文献   

15.
ABSTRACT. Developmental processes in multicellular organisms require structural elements, such as adhesion molecules, to stabilize cells at functional positions. In vertebrates, a series of extracellular matrix proteins, e.g. fibronectin and laminin are involved in cell adhesion. These proteins contain Arg-Gly-Asp [RGD] at their binding sites. Here we show that at concentrations above 2 mM the peptide GRG D SPK, comprising the tripeptide RGD (Arg-Gly-Asp), prevents the adhesiveness of cells of the marine amoeba Neopar-amoeba aestuarina. In addition, elevated levels of GRG D SPK cause cells to alter their shapes from those with digitiform subpseudopodia to rounded cells with small lobed pseudopodia. These cells detach from the substratum. These results are specific for the RGD sequence, because incubation in GRG E SPK solution at the same concentrations had no effect on cell attachment or structure. From these data we suggest that the structural adhesion molecules identified in vertebrates shows amino acid homologies with those found in unicellular protozoa.  相似文献   

16.
Crystals of N-formyl-L-alanyl-L-aspartic acid (C8H11N2O6) grown from aqueous methanol solution are orthorhombic, space group, P2(1)2(1)2(1) with cell parameters at 294K of a = 13.619(2), b = 8.567(2), c = 9.583(3)A, V = 1118.1A3, M.W. = 232.2, Z = 4, Dm = 1.38 g/cm3 and Dx = 1.378 g/cm3. The crystal structure was solved by the application of direct methods and refined to an R value of 0.075 for 1244 reflections with I greater than or equal to 3 sigma collected on a CAD-4 diffractometer. The structure contains two short intermolecular hydrogen bonds: (i) between the C-terminal carboxyl OH and the N-acyl oxygen (2.624(3)A), a characteristic feature found in many N-acyl peptides and (ii) between the aspartic carboxyl OH. and the peptide oxygen OP1 (2.623(3)A). The peptide is nonplanar (omega = 165.5(6) degrees). The molecule takes up a folded conformation in contrast to N-formyl peptides which form extended beta-sheets; the values of phi 1, psi 1, phi 2, psi 2(1), and psi 2(2) are, respectively -65.7(6), 152.0(5), -107.2(5), 30.9(5), and -150.3(6). The aspartic acid side chain conformation is g- with chi 1 = 73.1(5). The formyl group, as expected, is transplanar [OF-CF-N1-CA1 = -4.0(8) degrees]. The presence of the short O-H ... O hydrogen bond emerges as a structural feature common to this peptide and several other N-formyl peptides. There are no C-H ... O hydrogen bonds in this structure.  相似文献   

17.
The peptide N-Boc-L-Pro-dehydro-Phe-L-Gly-OH was synthesized by the usual workup procedure and finally coupling the N-Boc-L-Pro-dehydro-Phe to glycine. The peptide crystallizes in monoclinic space group P2(1) with a = 8.951(4) A, b = 5.677(6) A, c = 21.192(11) A, beta = 96.97(4) degrees, V = 1069(1) A3, Z = 2, dm = 1.295(5) Mgm-3, and dc = 1.297(4) Mgm-3. The structure was determined by direct methods using SHELXS86. The structure was refined by the block-diagonal least-squares procedure to an R value of 0.074 for 1002 observed reflections. The C alpha 2-C beta 2 distance of 1.33(2) A is an appropriate double bond length. The angle C alpha 2-C beta 2-C gamma 2 is 133(1) degrees. The peptide backbone torsion angles are theta 1 = -167(1) degrees, omega 0 = 179(1) degrees, phi 1 = -48(1) degrees, psi 1 = 137(1) degrees, omega 1 = 175(1) degrees, phi 2 = 65(2) degrees, psi 2 = 15(2) degrees, omega 2 = -179(1) degrees, and phi 3 = -166(1) degrees. These values show that the Boc group has a trans-trans conformation while the peptide backbone adopts a beta-turn II conformation, which is stabilized by an intramolecular hydrogen bond of length of 3.05(1) A. The structures of dehydro-Phe containing peptides suggest that the dehydro-Phe promotes the beta-turn II conformation. The five-membered pyrrolidine ring of the Pro residue adopts an ideal C gamma-exo conformation with torsion angles chi 1(1) = -24(1) degrees, chi 2(1) = 34(1) degrees, chi 3(1) = -30(1) degrees, chi 4(1) = 15(1) degrees, and theta 0(1) = 6(1) degrees. The side-chain torsion angles in dehydro-Phe are chi 1(2) = -1(2) degrees, chi 2,1(2) = -176(1) degrees, and chi 2,2(2) = 8(2) degrees. The plane of C alpha 2-C beta 2-C gamma 2 is rotated with respect to the plane of the phenyl ring at 7(1) degrees, which indicates that the atoms of the side chain of dehydro-Phe are essentially coplanar. The molecules form a 2(1) screw axis related hydrogen-bonded rows along the b axis.  相似文献   

18.
The crystal structure of t-Boc-glycyl-L-phenylalanine (C14H22N2O5, molecular weight = 298) has been determined. Crystals are monoclinic, space group P2(1), with a = 7.599(1) A, b = 9.576(2), c = 12.841(2), beta = 97.21(1) degrees, Z = 2, Dm = 1.149, Dc = 1.168 g X cm-3. Trial structure was obtained by direct methods and refined to a final R-index of 0.064 for 1465 reflections with I greater than 1 sigma. The peptide unit is trans planar and is nearly perpendicular to the plane containing the urethane moiety. The plane of the carboxyl group makes a dihedral angle of 16.0 degrees with the peptide unit. The backbone torsion angles are omega 0 = -176.9 degrees, phi 1 = -88.0 degrees, psi 1 = -14.5 degrees, omega 1 = 176.4 degrees, phi 2 = -164.7 degrees and psi 2 = 170.3 degrees. The phenylalanine side chain conformation is represented by the torsion angles chi 1 = 52.0 degrees, chi 2 = 85.8 degrees.  相似文献   

19.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

20.
The tripeptide L-alanyl-L-alanyl-L-alanine has been crystallized from a water/dimethylformamide solution in an unhydrated form, with cell dimensions a = 11.849, b = 10.004, c = 9.862 A, beta = 101.30 degrees, monoclinic space group P21 with 4 molecules per cell (2 independent molecules in the asymmetric unit). The structure was determined by direct methods and refined to a discrepancy index R = 0.057. The tri-L-alanine molecules are packed in a parallel pleated sheet arrangement with unusually long amide nitrogen-carbonyl oxygen contacts within sheets. Comparisons are made with the antiparallel pleated sheet structure of tri-L-alanine hemihydrate, previously crystallized from the same solvent system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号