首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioligand binding studies were performed to characterize serotonin 5-HT1D receptors in postmortem human prefrontal cortex and caudate homogenates. [3H]5-HT binding, in the presence of pindolol (to block 5-HT1A and 5-HT1B receptors) and mesulergine (to block 5-HT1C receptors), was specific, saturable, reversible, and of high affinity. Scatchard analyses of [3H]5-HT-labeled 5-HT1D sites in human prefrontal cortex produced a KD value of 4.2 nM and Bmax of 126 fmol/mg protein. In competition experiments, 8-hydroxydipropylaminotetralin, trifluoromethylphenylpiperazine, mesulergine, 4-bromo-2,5-dimethoxyphenylisopropylamine, and ICS 205-930 had low affinity for [3H]5-HT-labeled 5-HT1D sites, indicating that the pharmacology of the 5-HT1D site is distinct from that of previously identified 5-HT1A, 5-HT1B, 5-HT1C, 5-HT2, and 5-HT3 sites. 5-HT1D sites in human brain have a similar pharmacology to the 5-HT1D sites previously identified in rat, porcine and bovine brains. Guanyl nucleotides, guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and guanosine 5'-(beta, gamma-imido)-triphosphate (Gpp(NH)p), modulated the binding of [3H]5-HT to 5-HT1D sites, whereas adenyl nucleotides had no effect. These findings are supportive of the presence of serotonin 5-HT1D receptors in human prefrontal cortex and caudate which appear to be coupled to a GTP binding protein.  相似文献   

2.
Drug interactions with 5-HT1 (5-hydroxytryptamine type 1) binding site subtypes were analyzed in rat frontal cortex. 8-Hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) displays high affinity (Ki 3.3 +/- 1 nM) for 29 +/- 3% of total [3H]5-HT binding in rat frontal cortex and low affinity (Ki 9,300 +/- 1,000) for 71 +/- 4% of the remaining 5-HT1 sites. Therefore, non-5-HT1A binding in rat frontal cortex was defined as specific [3H]5-HT binding observed in the presence of 100 nM 8-OH-DPAT. 5-Methoxy 3-(1,2,3,6-tetrahydro-4-pyridinyl) 1 H indole (RU 24969), 1-(m-trifluoromethylphenyl)piperazine (TFMPP), mianserin, and methysergide produce shallow competition curves of [3H]5-HT binding from non-5-HT1A sites. Addition of 10(-3) M GTP does not increase the apparent Hill slopes of these competition curves. Computer-assisted iterative curve fitting suggests that these drugs can discriminate two distinct subpopulations of non-5-HT1A binding sites, each representing approximately 35% of the total [3H]5-HT binding in the rat frontal cortex. All three 5-HT1 binding site subtypes display nanomolar affinity for 5-HT and 5-methoxytryptamine. A homogeneous population of 5-HT1A sites can be directly labeled using [3H]8-OH-DPAT. These sites display nanomolar affinity for 8-OH-DPAT, WB 4101, RU 24969, 2-(4-[4-(2-pyrimidinyl)-1-piperazinyl] butyl)-1,2-benzisothiazol-3-(2H)one-1, 1-dioxidehydrochloride (TVX Q 7821), 5-methoxydimethyltryptamine, and d-lysergic acid diethylamide. The potencies of RU 24969, TFMPP, and quipazine for [3H]5-HT binding are increased by addition of 100 nM 8-OH-DPAT and 3,000 nM mianserin to the [3H]5-HT binding assay. Moreover, the drugs have apparent Hill slopes near 1 under these conditions. This subpopulation of total [3H]5-HT binding is designated 5-HT1B. By contrast, methysergide and mianserin become more potent inhibitors of residual [3H]5-HT binding to non-5-HT1A sites in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969. The drug competition curves under these conditions have apparent Hill slopes of near unity and these sites are designated 5-HT1C. Drug competition studies using a series of 24 agents reveals that each 5-HT1 subtype site has a unique pharmacological profile. These results suggest that radioligand studies can be used to differentiate three distinct subpopulations of 5-HT1 binding sites labeled by [3H]5-HT in rat frontal cortex.  相似文献   

3.
In Chinese Hamster Ovary (CHO) cells expressing cloned human 5-hydroxytryptamine1A A (5-HT1A) receptors, (R)-3-N,N-dicyclobutylamino-8-fluoro-[6-3H]-3,4-dihydro-2H-1-benzopyan-5-carboxamide ([3H]NAD-299) exhibited high affinity (Kd = 0.16 nM) and labeled 34% more receptors than 8-hydroxy-2-([2,3-3H]di-n-propylamino)tetralin ([3H]8-OH-DPAT). NAD-299 behaved as a silent antagonist in [35S]GTPgammaS binding similar to N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide (WAY-100635) and (S)-5-fluoro-8-hydroxy-2-(di-n-propylamino)tetralin ((S)UH-301). 5-HT and 5-carboxamidotryptamine (5-CT) stimulated [35S]GTPgammaS binding 2.5-fold while spiperone and methiothepin inhibited [35S]GTPgammaS binding 1.4-fold. Furthermore, NAD-299 antagonised both the 5-HT stimulated and the spiperone inhibited [35S]GTPgammaS binding to basal levels. The KiL/KiH ratios for spiperone (0.66), methiothepin (0.39), WAY-100635 (0.32), (S)UH-301 (0.94), NAD-299 (1.29), NAN-190 (1.23), (S)pindolol (5.85), ipsapirone (13.1), buspirone (24.6), (+/-)8-OH-DPAT (47.3), flesinoxan (55.8), 5-HT (200) and 5-CT (389) correlated highly significantly with the intrinsic activity obtained with [35S] GTPgammaS (r = 0.97).  相似文献   

4.
The displacement characteristics of [3H]5-hydroxytryptamine (5-HT1) binding by several serotonergic ligands were studied in the chick embryo brain. Although most of ligands tested displaced [3H]5-HT in a manner suggestive of a single site, displacement curves for (+/-)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT), 5-methoxytryptamine, 5-methyltryptamine and 5-methoxy-N,N-dimethyltryptamine displayed non-unity Hill plots, suggesting multiple site interactions. However, if spiperone (2 microM) was included in the assays, the Hill coefficients of these compounds were all similarly increased toward unity, suggesting that 8-OH-DPAT as well as 5-methoxy and 5-methyl substituted tryptamines, have a high affinity for and can discriminate 5-HT1A binding sites in the chick embryo brain.  相似文献   

5.
Previous studies on central 5-hydroxytryptamine1A (5-HT1A) receptors have consistently shown the existence of a GTP-insensitive component of agonist binding, i.e., binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) that persists in the presence of 0.1 mM GTP or guanylylimidodiphosphate (GppNHp). The molecular basis for this apparent heterogeneity was investigated pharmacologically and biochemically in the present study. The GppNHp-insensitive component of [3H]8-OH-DPAT binding increased spontaneously by exposure of rat hippocampal membranes or their 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate-soluble extracts to air; it was reduced by preincubation of solubilized 5-HT1A binding sites in the presence of dithiothreitol and, in contrast, reversibly increased by preincubation in the presence of various oxidizing reagents like sodium tetrathionate or hydrogen peroxide. In addition, exposure of hippocampal soluble extracts to short-cross-linking reagents specific for thiols produced an irreversible increase in the proportion of GppNHp-insensitive over total [3H]8-OH-DPAT binding. The pharmacological properties of this GppNHp-insensitive component of [3H]8-OH-DPAT binding were similar to those of 5-HT1A sites in the absence of nucleotide. Sucrose gradient sedimentation of solubilized 5-HT1A binding sites treated by dithiothreitol or sodium tetrathionate showed that oxidation prevented the dissociation by GTP of the complex formed by the 5-HT1A receptor binding subunit (R[5-HT1A]) and a guanine nucleotide-binding protein (G protein). Moreover, the oxidation of -SH groups by sodium tetrathionate did not prevent the inactivation of [3H]8-OH-DPAT specific binding by N-ethylmaleimide, in contrast to that expected from an interaction of both reagents with the same -SH groups on the R[5-HT1A]-G protein complex. These data suggest that the appearance of GTP-insensitive [3H]8-OH-DPAT specific binding occurs as a result of the (spontaneous) oxidation of essential -SH groups (different from those preferentially inactivated by N-ethylmaleimide) on the R[5-HT1A]-G protein complex.  相似文献   

6.
Co-incubation of rat cortical membranes with 10(-4) M GTP results in a competitive inhibition of 5-hydroxytryptamine1A (5-HT1A) receptor binding sites labeled by [3H]8-hydroxy-2-(di-n-propylamino)tetralin [( 3H]8-OH-DPAT). Preincubation of cortical membranes with 10(-4) M GTP does not significantly change either KD or Bmax values, indicating that the effect of GTP is reversible. By contrast, GTP gamma S and 5'-guanylylimidodiphosphate (GppNHp) are nonhydrolyzable analogues of GTP which lengthen the time course of guanine nucleotide activation of guanine nucleotide binding proteins (G proteins) and thereby alter G protein-receptor interactions. These nonhydrolyzable GTP analogues were used to characterize the effects of persistent alterations in G proteins on [3H]8-OH-DPAT binding to 5-HT1A receptors. Co-incubation of rat cortical membranes with either 10(-4) M GTP gamma S or GppNHp results in a decrease in both the affinity and apparent density of 5-HT1A binding sites. Co-incubation with the nonhydrolyzable nucleotides reduces the affinity of [3H]8-OH-DPAT binding by 65-70% and lowers the density of the binding site by 53-61%. Similarly, preincubation of membranes with a 10(-4) M concentration of either GTP gamma S or GppNHp significantly increases the KD value and reduces the Bmax value of [3H]8-OH-DPAT binding. These results indicate that GTP gamma S and GppNHp induce persistent changes in 5-HT1A receptor-G protein interactions that are reflected as a decrease in the density of binding sites labeled by [3H]8-OH-DPAT.  相似文献   

7.
Anti-idiotypic antibodies were generated by immunizing rabbits with affinity-purified antibodies to serotonin (5-hydroxytryptamine; 5-HT). Anti-5-HT activity was removed from the resulting antisera by chromatography through a 5-HT affinity column. The anti-idiotypic antibodies were demonstrated by enzyme-linked immunosorbent assay to bind to affinity-purified whole anti-5-HT antibodies and their Fab fragments. Anti-idiotypic antibodies, purified by affinity chromatography on columns to which antibodies to 5-HT were coupled, competed with 5-HT (covalently bound to protein) for the binding sites on anti-5-HT antibodies and serotonin binding protein. The anti-idiotypic antibodies antagonized the binding of [3H]5-HT to membranes isolated from the cerebral cortex, striatum, and raphe area more than to membranes from hippocampus or cerebellum. The anti-idiotypic antibodies also blocked the binding of the 5-HT1B-selective ligand (-)-[125I]iodocyanopindolol (in the presence of 30 microM isoproterenol) to cortical membranes. In contrast, anti-idiotypic antibodies failed to inhibit binding of the 5-HT1A-selective ligand 8-hydroxy-2-(di-n-[3H]propylamino)-tetralin [( 3H]8-OH-DPAT) to raphe area membranes or hippocampal membranes. These observations suggested that the anti-idiotypic antibodies may recognize some 5-HT receptor subtypes but not others. This hypothesis was tested by ascertaining the ability of anti-idiotypic antibodies to immunostain cells transfected in vitro with cDNA encoding the 5-HT1C or 5-HT2 receptor or with a genomic clone encoding the 5-HT1A receptor. Punctate sites of immunofluorescence were found on the surfaces of fibroblasts that expressed 5-HT1C and 5-HT2 receptors, but not on the surfaces of HeLa cells that expressed 5-HT1A receptors. Immunostaining of cells by the anti-idiotypic antibodies was inhibited by appropriate pharmacological agents: immunostaining of cells expressing 5-HT1C receptors was blocked by mesulergine (but not ketanserin, 8-OH-DPAT, or spiperone), whereas that of cells expressing 5-HT2 receptors was blocked by ketanserin or spiperone (but not mesulergine or 8-OH-DPAT). The anti-idiotypic antibodies failed to inhibit the uptake of [3H]5-HT by serotonergic neurons. It is concluded that the anti-idiotypic antibodies generated with anti-5-HT serum recognize the 5-HT1B, 5-HT1C, and 5-HT2 receptor subtypes; however, neither 5-HT1A receptors nor 5-HT uptake sites appear to react with these antibodies.  相似文献   

8.
Three pharmacologically distinct high-affinity [3H]serotonin ([3H]5-HT) binding sites were identified in spinal cord synaptosomes. [3H]5-HT competition studies using selective 5-HT1A receptor ligands indicated that approximately 25% of high-affinity synaptosomal [3H]5-HT binding was inhibited by 5-HT1A-selective compounds, an estimate consistent with [3H](+-)-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) saturation experiments in which 5-HT1A receptors were directly labeled. [3H]5-HT competition studies using high-affinity 5-HT1B compounds performed in the presence of 100 nM 8-OH-DPAT (to block 5-HT1A receptors) indicated that approximately 26% of all specific, high-affinity [3H]5-HT binding to spinal cord synaptosomes was to 5-HT1B receptors. [3H]5-HT competition studies performed in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969 (to block 5-HT1A and 5-HT1B receptors, respectively) indicated that the remaining 49% of [3H]5-HT binding did not possess the pharmacologic profile previous reported for 5-HT1C, 5-HT1D, 5-HT1E, 5-HT2, or 5-HT3 receptors. This residual 49% of [3H]5-HT binding to spinal cord synaptosomes observed in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969 (subsequently referred to as "5-HT1S") displayed high affinity and saturability (KD = 4.7 nM) in association/dissociation and saturation experiments. Addition of 300 microM GTP or the nonhydrolyzable form of GTP, 5'-guanylylimidodiphosphate, inhibited [3H]5-HT binding to 5-HT1S receptors in saturation experiments by 35 and 57%, respectively, whereas ATP was without effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
[(3)H]8-OH-DPAT is a selective ligand for labeling 5-HT(1A) receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [(3)H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [(125)I]RTI-55 and [(3)H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [(3)H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [(3)H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [(125)I]cyanopindolol, [(3)H]ketanserin/[(3)H]mesulergine, [(3)H]GR-65630, [(3)H]GR-113808 and [(3)H]LSD) that specifically labeled 5-HT(1), 5-HT(2), 5-HT(3), 5-HT(4) and 5-HT(5-7) receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

10.
[3H]Serotonin (5-hydroxytryptamine, [3H]5-HT) was used as a radioligand probe of brain 5-HT receptors in homogenates of human cortical tissue. Two binding sites were detected in the presence of 1 microM pindolol (to block 5-HT1A and 5-HT1B receptors), and 100 nM mesulergine (to block 5-HT1C and 5-HT2 receptors). One of these sites demonstrated high affinity for 5-carboxyamidotryptamine (5-CT) and ergotamine, consistent with the known pharmacology of the 5-HT1D receptor; the second site demonstrated low affinity for 5-CT and ergotamine. Computer-assisted analyses indicated that both drugs displayed high affinities (Ki values of 1.1 nM and 0.3 nM for 5-CT and ergotamine, respectively) for 55% of the sites and low affinities (Ki values of 910 nM and 155 nM for 5-CT and ergotamine, respectively) for 45% of the sites. To investigate the non-5-HT1D component of the binding, 100 nM 5-CT (to block 5-HT1A, 5-HT1B, and 5-HT1D receptors) was coincubated with [3H]5-HT, membranes, and mesulergine. The remaining [3H]5-HT binding (hereafter referred to as "5-HT1E") displayed high affinity and saturability (KD, 5.3 nM; Bmax, 83 fmol/mg) in human cortical tissue. Competition studies with nonradioactive drugs indicated that, of the drugs tested, 5-CT and ergotamine displayed the highest selectivity for the 5-HT1D site versus the 5-HT1E site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In the presence of 1 microM ( +/- )-pindolol [to block 5-hydroxytryptamine (5-HT, serotonin) 5-HT 1A and 5-HT 1B receptors] and 100 nM mesulergine (to block 5-HT 1C receptors), 2.0 nM [3H]5-HT binding to rat cortical homogenates is specific, saturable, and reversible. Scatchard analysis of [3H]5-HT binding, in the presence of 1 microM ( +/- )-pindolol and 100 nM mesulergine, produced a KD of 3.2 nM and Bmax of 43 fmol/mg protein. Distribution studies show this site to be present in most rat brain regions. This site is also detectable in human caudate. The pharmacological profile of this site is distinct from the previously identified 5-HT receptor subtypes. Compounds with high affinity for 5-HT 1A (8-hydroxydipropylaminotetralin), 5-HT 1B (trifluoromethylphenylpiperazine), 5-HT 1C (mesulergine), 5-HT 2 (4-bromo-2,5-dimethoxyphenylisopropylamine), and 5-HT3 (ICS 205-930) receptors have low affinity for this site. These data suggest the presence of an additional, previously unidentified, 5-HT binding site in rat and human brain tissue. This putative novel 5-HT receptor has a similar pharmacology to the "5-HT 1D" site detected in bovine brain by Heuring and Peroutka.  相似文献   

12.
The inhibition of [3H]5-hydroxytryptamine [( 3H]5-HT) binding in rat brain by 1-[2-(3-bromoacetamidophenyl)ethyl]-4-(3-trifluoromethylphenyl) piperazine (BrAcTFMPP) and that by spiperone were compared. Spiperone inhibition of [3H]5-HT binding in cortex was consistent with displacement from two sites with dissociation constants (KD) of 24 nM (5-HT-1A site) and 19 microM (5-HT-1B site) for spiperone. BrAcTFMPP also discriminated two subpopulations of [3H]5-HT binding sites with dissociation constants of 0.5 nM and 146 nM for the compound. The proportion of high-affinity sites for each compound represented about 35% of the specific [3H]5-HT binding. In the presence of 1 microM spiperone, a concentration that saturates the 5-HT-1A sites while having a minimal effect on 5-HT-1B sites, BrAcTFMPP displaced [3H]5-HT from a single site with a KD for BrAcTFMPP of 145 nM. The inhibition of [3H]5-HT binding by spiperone in the presence of 30 nM BrAcTFMPP was best fit by a single-site model with a KD of 21 microM for spiperone. In corpus striatum, 5-HT-1A sites, as defined with spiperone, represented 15% of the specific [3H]5-HT binding and 30 nM BrAcTFMPP also blocked about 15% of the binding. A significant difference between spiperone and BrAcTFMPP was their affinity for 5-HT-2 receptors. BrAcTFMPP (KD = 41 nM) had an 80-fold lower affinity for these sites than spiperone (KD = 0.5 nM). Thus, BrAcTFMPP and spiperone discriminate the same two subpopulations of [3H]5-HT binding sites and BrAcTFMPP displays a high affinity and a selectivity for 5-HT-1A sites versus both 5-HT-1B and 5-HT-2 sites.  相似文献   

13.
[3H]8-OH-DPAT is a selective ligand for labeling 5-HT1A receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [3H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [125I]RTI-55 and [3H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [3H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [3H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [125I]cyanopindolol, [3H]ketanserin/[3H]mesulergine, [3H]GR-65630, [3H]GR-113808 and [3H]LSD) that specifically labeled 5-HT1, 5-HT2, 5-HT3, 5-HT4 and 5-HT5–7 receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

14.
Recent studies indicate that there may be multiple subtypes of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites. Mianserin and spiperone inhibited the specific binding of [3H]5-HT (2-3 nM) to rat brain cortical membranes with shallow displacement curves. The displacement data for spiperone were best described by the presence of three independent binding sites, for which spiperone had high, medium, and low affinities. The displacement data for mianserin were best fitted by two independent, high- and low-affinity sites. The inclusion of mianserin (250 nM) to inhibit [3H]5-HT binding to the mianserin-sensitive site selectively blocked one of the sites discriminated by spiperone. These results suggest the presence of three binding sites for [3H]5-HT, one blocked by low concentrations of spiperone (5-HT1A), one blocked by low concentrations of mianserin (5-HT1C), and one blocked only by high concentrations of both mianserin and spiperone (5-HT1B). Regional differences in the relative densities of the three sites were observed. The hippocampus was rich in 5-HT1A sites, whereas the striatum contained mainly 5-HT1B and 5-HT1C sites. Selective degeneration of 5-HT-containing nerve terminals induced by the neurotoxin 5,7-dihydroxytryptamine increased binding to all three sites in the cerebral cortex. Binding of [3H]5-HT to the three sites was differentially modulated by CaCl2 and guanylimidodiphosphate. The present data suggest the presence of three independent 5-HT1 binding sites having different affinities for mianserin and spiperone and having different regional distributions.  相似文献   

15.
Binding studies with [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT), a specific serotonin1A (5-HT1A) receptor agonist, were done on the autopsied brains from control subjects and from patients with chronic schizophrenia. All the patients and controls were of the Japanese race. In the controls, representative Scatchard plots for the specific [3H]8-OH-DPAT bindings in the prefrontal cortex and hippocampus revealed a single component of high affinity binding site (Kd value = 5.7 and 5.9 nM, Bmax value = 80.1 and 101.0 fmol/mg protein, respectively). The [3H]8-OH-DPAT bindings to the prefrontal cortex and hippocampus were potently inhibited by serotonin (IC50 = 6.3 x 10(-9) M) and 5-HT1A agonists (IC50 = 5.0 x 10(-9) - 2.3 x 10(-7) M), while other neurotransmitters, 5-HT2 and 5-HT3 related compounds did not inhibit the binding (IC50 greater than 10(-5) M). The bindings were decreased in the presence of 0.1mM GTP and 0.1mM GppNHp but not in the presence of 0.1mM GMP. In the prefrontal and temporal cortices of schizophrenics, there was a significant increase in the specific [3H]8-OH-DPAT binding, by 40% and 60%, respectively, with no change in the hippocampus, amygdala, cingulum, motor cortex, parietal or occipital cortex, as compared to findings in the controls. Scatchard analysis showed that this increased binding reflects changes in the number of sites but not in the affinity. The effect of 0.1mM GppNHp on the binding to prefrontal cortex was observed in both controls and schizophrenic patients. The bindings were significantly greater in the schizophrenic patients than in controls, in the presence of 0.1mM GppNHp. Our findings suggest that there are GTP-sensitive 5-HT1A sites in the human brain and that selective increases in GTP-sensitive 5-HT1A sites in the prefrontal and temporal cortices of schizophrenics relate to the pathophysiology of schizophrenia.  相似文献   

16.
The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using [3H]8-OH-DPAT as the radioligand. [3H]8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average KD of 43 nM and Bmax of 1078 fmol/mg protein. Determinations of IC50 values for various serotonergic characterizing agents in platelets for displacement of [3H]8-OH-DPAT were performed. For example, 8-OH-DPAT 5HT1A had an IC50 of 117 nM; TFMPP 5HT1B (2.3 microM0 and PAPP 1A + 5HT2 (9 microM); ipsapirone 5HT1A (21.1 microM) and buspirone 5HT1A (greater than 100 microM); ketanserin 5HT2 (greater than 100 microM); 5-HT uptake inhibitors: paroxetine (13 nM); chlorimipramine (73 nM) and fluoxetine (653 nM). The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit [3H]imipramine binding, however, it does inhibit [3H]5-HT uptake in human platelets near 5-HT's Km value (IC50 = 2-4 microM). These results suggest that the human platelet site labeled by [3H]8-OH-DPAT is pharmacologically different from the neuronal site and probably is a component of the 5-HT transporter.  相似文献   

17.
Autoregulatory mechanisms affecting serotonin [5-hydroxytryptamine (5-HT)] release and synthesis during the early period of development were investigated in dissociated cell cultures raised from embryonic rostral rat rhombencephalon. The presence of 5-HT1A and 5-HT1B receptors in serotoninergic neurons was assessed using binding assays. The involvement of 5-HT1A and 5-HT1B receptors in the control of the synthesis and release of [3H]5-HT was studied using biochemical approaches with several serotoninergic receptor ligands. A mean decrease of 30% in [3H]5-HT synthesis and release was observed in the presence of 5-HT (10(-8) M), the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), the 5HT1B/1A agonist 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), the 5-HT1B agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP-93,129), and the 5-HT(1D/1B) agonist sumatriptan. Inhibition of 5-HT synthesis and release induced by 8-OH-DPAT was blocked by chiral N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropionam ide dihydrochloride quaternary-hydrate (WAY 100135) (10(7) M) or methyl 4-[4-[4-(1,1,3-trioxo-2H-1,2-benzoisothiazol-2-yl)butyl]-1-p iperazinyl]-1Hindole-2-carboxylate (SDZ 216-525) (10(-7)M), and that of CP-93,129 was blocked by methiothepin (10(-7) M). Paradoxically, extracellular levels of [3H]5-HT increased in the presence of 8-OH-DPAT and RU 24969 at 10(-6) M. 5-HT uptake experiments showed that these two agonists interacted with the 5-HT transporter. 5-HT1 binding sites (620 fmol/mg of protein) and 5-HT1A (482 fmol/mg of protein) and 5-HT1B (127 fmol/mg of protein) receptors were detected in 12-day in vitro cell cultures. Experiments carried out with tetrodotoxin suggested that 5-HT1A receptors are located on nerve cell bodies, whereas 5-HT1B receptors are located on the nerve terminals. We concluded that autoregulatory mechanisms involving 5-HT1A and 5-HT1B autoreceptors are functionally mature in cells from rostral raphe nuclei during the early period of development.  相似文献   

18.
Mohanan VV  Khan R  Paulose CS 《Life sciences》2006,78(14):1603-1609
5-HT receptors are predominantly located in the brain and are involved in pancreatic function and cell proliferation through sympathetic nervous system. The objective of this study was to investigate the role of hypothalamic 5-HT, 5-HT1A and 5-HT2C receptor binding and gene expression in rat model of pancreatic regeneration using 60% pancreatectomy. The pancreatic regeneration was evaluated by 5-HT content, 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus of sham operated, 72 h and 7 days pancreatectomised rats. 5-HT content was quantified by HPLC. 5-HT1A receptor assay was done by using specific agonist [3H]8-OH DPAT. 5-HT2C receptor assay was done by using specific antagonist [3H]mesulergine. The expression of 5-HT1A and 5-HT2C receptor gene was analyzed by RT-PCR. 5-HT content was higher in the hypothalamus of 72 h pancreatectomised rats. 5-HT1A and 5-HT2C receptors were down-regulated in the hypothalamus. RT-PCR analysis revealed decreased 5-HT1A and 5-HT2C receptor mRNA expression. The 5-HT1A and 5-HT2C receptors gene expression in the 7 days pancreatectomised rats reversed to near sham level. This study is the first to identify 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus during pancreatic regeneration in rats. Our results suggest the hypothalamic serotonergic receptor functional regulation during pancreatic regeneration.  相似文献   

19.
[3H]Spiroxatrine: A 5-HT1A Radioligand with Agonist Binding Properties   总被引:1,自引:0,他引:1  
Spiroxatrine has been reported to be a 5-HT1A serotonin receptor antagonist. Therefore [3H]spiroxatrine was synthesized and its 5-HT1A receptor binding properties in homogenates of rat hippocampal membranes were characterized with the expectation that it would be the first 5-HT1A antagonist radioligand. [3H]8-Hydroxydipropylaminotetralin [( 3H]8-OH-DPAT), a well-characterized 5-HT1A agonist radioligand, was studied in parallel for comparative purposes. Scatchard analyses of saturation studies of [3H]spiroxatrine and [3H]8-OH-DPAT binding produced KD values of 0.9 nM and 1.8 nM, with Bmax values of 424 and 360 fmol/mg protein, respectively. A highly significant correlation (r = 0.98; p less than 0.001) exists between Ki values obtained for a series of drugs in competing for [3H]-spiroxatrine and [3H]8-OH-DPAT binding. Of special interest was the observation that 5-HT1A agonists such as serotonin, 8-OH-DPAT, and ipsapirone competed with equal high affinities for [3H]spiroxatrine or [3H]8-OH-DPAT-labelled 5-HT1A receptors. [3H]Spiroxatrine and [3H]8-OH-DPAT binding to 5-HT1A receptors was inhibited by guanosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of GTP) in a concentration-dependent manner whereas adenosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of ATP) had no effect. The similarities in the 5-HT1A receptor radiolabelling properties of [3H]spiroxatrine and [3H]8-OH-DPAT, i.e., the high affinities of agonists and the guanyl nucleotide sensitivity, indicate that [3H]spiroxatrine has "agonist-like" binding properties in its interaction with the 5-HT1A receptor.  相似文献   

20.
We describe here the synthesis of a new serotonin conjugate, S-CM-GTNH2, and its radioiodinated derivative. Quantitative autoradiographic studies on rat and guinea pig brain sections incubated with 2 nM [3H]5-HT showed a preferential affinity of S-CM-GTNH2 for 5-HT1B and 5-HT1D sites. Autoradiograms from brain sections incubated with 0.02 nM S-CM-G[125I]TNH2 showed a heterogeneous anatomical distribution of the labelling with high densities in regions rich in 5-HT1B or 5-HT1D binding sites, and with no labelling of those rich in 5-HT1A or 5-HT1C sites. The pharmacological profiles of the binding sites corresponded to those of 5-HT1B and 5-HT1D receptor subtypes. The radioligand S-CM-G[125I]TNH2 is a good probe for the study of these sites and will be used for their subcellular localization in electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号