首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Cristatella mucedo spermiogenesis occurs in a morula consisting of a large number of spermatids connected with a central cytophore. The mature sperm cell is filiform and consists of a head, a midpiece and a tail region, the latter two separated by a deep circular constriction. The comparatively short head contains a drop-shaped, bilaterally symmetrical and pointed nucleus capped by a minute acrosome. The single centriole is placed in a deep posterior invagination of the nucleus followed by the axoneme with the typical 9 + 2 pattern. The elongated midpiece is 0.9–1.1 μm thick and contains several helices of mitochondria surrounding the axoneme. The tail is thicker (1.3 μm) and richer in cytoplasm with many compact accumulations of an electron-dense substance lying peripherally and another less dense material wrapped around the axoneme. The course of the spermiogenesis and the fine structure of the sperm are very similar to that of Plumatella fungosa. Comparison with other species shows that the same sperm type is recognizable in four of the five families of Phylactolaemata and, provided it occurs also in the fifth family, the Stephanellidae, is a synapomorphy of the entire class.  相似文献   

2.
Testicular spermatozoa and sperm development in the archaeogastropod Calliotropis glyptus Watson (Trochoidae: Trochidae) are examined using transmission electron microscopy and formalin-fixed tissues. During spermiogenesis, the acrosome, formed evidently through fusion of Golgi-derived proacrosomal vesicles, becomes deeply embedded in the condensing spermatid nucleus. Two centrioles (proximal and distal), both showing triplet microtubular substructure, are present in spermatids—the distal centriole giving rise to the sperm tail and its associated rootlet. During formation of the basal invagination in the spermatid nucleus, centrioles, and rootlet move towards the nucleus and come to lie totally within the basal invagination. Mitochondria are initially positioned near the base of the nucleus but subsequently become laterally displaced. Morphology of the mature spermatozoon is modified from that of the classic primitive or ect-aquasperm type by having 1) the acrosome embedded in the nucleus (the only known example within the Mollusca), 2) a deep basai invagination in the nucleus containing proximal and distal centrioles and an enveloping matrix (derived from the rootlet), 3) laterally displaced periaxonemal mitochondria, and 4) a tail extending from the basal invagination of the nucleus. Implantation of the acrosomal complex and centrioles within imaginations of the nucleus and lateral displacement of mitochondria effectively minimize the length of the sperm head and midpiece. Such modifications may be associated with motility demands, but this remains to be established. The unusual features of C. glyptus spermatozoa, though easily derivable from ‘typical’ trochoid sperm architecture, may prove useful in delineating the genus Calliotropis or tracing its relationship to other genera within the trochid subfamily Margaritinae.  相似文献   

3.
This is the first study investigating spermatogenesis and spermatozoan ultrastructure in the polyclad flatworm Prosthiostomum siphunculus. The testes are numerous and scattered as follicles ventrally between the digestive ramifications. Each follicle contains the different stages of sperm differentiation. Spermatocytes and spermatids derive from a spermatogonium and the spermatids remain connected by intercellular bridges. Chromatoid bodies are present in the cytoplasm of spermatogonia up to spermatids. During early spermiogenesis, a differentiation zone appears in the distal part of spermatids. A ring of microtubules extends along the entire sperm shaft just beneath the cell membrane. An intercentriolar body is present and gives rise to two axonemes, each with a 9 + “1” micro‐tubular pattern. Development of the spermatid leads to cell elongation and formation of a filiform, mature spermatozoon with two free flagella and with cortical microtubules along the sperm shaft. The flagella exit the sperm shaft at different levels, a finding common for acotyleans, but so far unique for cotylean polyclads. The Golgi complex produces numerous electron‐dense bodies of two types and of different sizes. These bodies are located around a perinuclear row of mitochondria. The elongated nucleus extends almost along the entire sperm body. The nucleus is wide in the proximal part and becomes narrow going towards the distal end. Thread‐like chromatin mixed with electron‐dense intranuclear spindle‐shaped bodies are present throughout nucleus. The general sperm ultrastructure, the presence of intranuclear bodies and a second type of cytoplasmic electron‐dense bodies may provide characters useful for phylogenetic analysis.  相似文献   

4.
We have previously reported that Sak57 (for Spermatogenic cell/Sperm-associated keratin of molecular mass 57 kDa) is an acidic keratin found in rat spermatocytes, spermatids, and sperm. Sak57 displays conserved amino acid sequences found in the 1A and 2A regions of the α-helical rod domain of keratins in human, rat, and mouse. We now report indirect immunofluorescence, confocal laser scanning microscopy and immunogold electron microscopy data showing that Sak57 is associated with the microtubular mantle of the manchette, a transient microtubular structure largely regarded as formed by tubulin and microtubule-associated proteins. The immunocytochemical localization of Sak57 was detected with a polyclonal antiserum to a multiple antigenic peptide (MAP) containing an amino acid sequence known to be present in the 2A region of the α-helical rod domain. During spermiogenic steps 8–12, Sak57 immunoreactive sites were restricted to microtubular mantle of the manchette which encircles the spermatid nucleus during shaping and chromatin condensation. At later stages (spermiogenic steps 12–14), Sak57 immunoreactive sites in the spermatid head region disappeared gradually as specific immunoreactivity appeared along the already assembled axoneme of the developing spermatid tail. Immunogold electron microscopy confirmed the presence of Sak57 immunoreactivity among microtubules of the manchette and on outer dense fibers and the longitudinal columns linking the ribs of the fibrous sheath. Mature spermatids (spermiogenic step 19) displayed tails with an immunofluorescent banding pattern contrasting with the lack of Sak57 immunoreactivity in the head region. Results from this study suggest that, during early spermiogenesis, a microtubular-Sak57 scaffolding is associated with the spermatid nucleus during shaping and chromatin condensation. During late spermiogenesis, the dispersion of the manchette coincides with the progressive visualization of Sak57 in the paraaxonemal outer dense fibers and longitudinal columns of the fibrous sheath in the developing spermatid tail. © 1996 Wiley-Liss, Inc.  相似文献   

5.
 The process of sperm development in the sea urchin Anthocidaris crassispina was studied by light and electron microscopy. Similar to other echinoids studied, a single flagellum, striated rootlet and nuage-like materials were present in spermatogonia of A. crassispina. Spermatocytes near the diplotene stage showed intracellular localization of the axoneme which appeared to be a retracted flagellum prior to cell division. Fibrous filaments were associated with a proximal centriole in spermatocytes and spermatids and might be involved in movement of the proximal centriole. An acrosomal vesicle was developed and a residual body was formed in spermatids. The special development patterns in A. crassispina attributed to the presence of two patterns of tail development and two patterns of mitochondrial development during spermiogenesis. These four lines of spermiogenesis resulted in the formation of four morphological types of sperm cell, i.e. sperms with: (1) a symmetrical midpiece and posterior tail, (2) an asymmetrical midpiece and posterior tail, (3) a symmetrical midpiece and bent tail and (4) an asymmetrical midpiece and bent tail. Sperm cells with bent tails (type 3+4) were probably still at the late spermatid stage because results of scanning electron microscopy demonstrated gradual detachment and eventual straightening of the bent tail, and their percentage occurrence in the sperm population decreased significantly (P<0.05) towards the spawning season of A. crassispina. Spermatozoa with a symmetrical midpiece were dominant (averaging 70% occurrence in the sperm population) over those with an asymmetrical midpiece. The dimorphic spermatozoa in A. crassispina (types 1, 2) are both considered to be euspermatozoa as their morphology is typical for Echinoida. Accepted: 4 May 1998  相似文献   

6.
7.
Germinal cells or nuclei with attached cytoskeletal elements were prepared from the testes and epididymides of normal mice and mice homozygous for the recessive azh mutation, which results in abnormal sperm heads. To make observations, we utilized phase-contrast microscopy, immunofluorescence microscopy with antitubulin antibodies, and a direct-view stereo electron microscope system developed by A. Cole. Sperm nuclei, tails, manchettes, and other cytoskeletal structures were studied at various stages of development. The tail architectures were similar in the normal and mutant forms, but the shape of the heads at the attachment regions were markedly different. Normal sperm nuclei were very flat, whereas the posterior regions of mutant nuclei were tapered cylinders. The manchette, an organized microtubular structure that girdles the posterior region of the spermatid nucleus, differed in size and configuration between normal and mutant forms. In normal midstage spermatids, the manchette microtubules extended outward at a 45 degree angle from the long axis of the flattened head, whereas in mutant spermatids, the microtubules formed tapered cylinders around the long axis of the caudal part of the nucleus. Radical differences in head shapes between normal and mutant sperm could be related, in part, to the manner in which manchettes formed and matured on the spermatids.  相似文献   

8.
Purkinje cell degeneration (pcd) is a neurological mutation in the mouse that causes male sterility, but not female sterility. In order to assess the effects of this mutation on spermiogenesis, the structure of the testis and of epididymal spermatozoa was examined by transmission and scanning electron microscopy. In the mutant males, the sperm count was reduced, sperm were nonmotile, and 93% of the sperm were characterized by structural abnormalities of the head, the tail, or both. In the testes of mutant mice, Sertoli cell structure was normal, as were also the early stages of spermiogenesis. However, the elongating and maturing spermatids were characterized by abnormally shaped heads and tails with extraneous and ectopic outer dense fibers. These defects were common in the testes of the mutant mice and rare in the testes of the littermate control mice. It was concluded that the structural abnormalities of the pcd sperm occurred during spermiogenesis and were not due to degeneration of the sperm in the epididymis. These structural abnormalities are similar to those found in all other reported male sterile mutants of the mouse; therefore, although they are caused by the expression of the pcd gene, they are not unique to the expression of this gene.  相似文献   

9.
Background information. CRISP2 (cysteine‐rich secretory protein 2) is a sperm acrosome and tail protein with the ability to regulate Ca2+ flow through ryanodine receptors. Based on these properties, CRISP2 has a potential role in fertilization through the regulation of ion signalling in the acrosome reaction and sperm motility. The purpose of the present study was to determine the expression, subcellular localization and the role in spermatogenesis of a novel CRISP2‐binding partner, which we have designated SHTAP (sperm head and tail associated protein). Results. Using yeast two‐hybrid screens of an adult testis expression library, we identified SHTAP as a novel mouse CRISP2‐binding partner. Sequence analysis of all Shtap cDNA clones revealed that the mouse Shtap gene is embedded within a gene encoding the unrelated protein NSUN4 (NOL1/NOP2/Sun domain family member 4). Five orthologues of the Shtap gene have been annotated in public databases. SHTAP and its orthologues showed no significant sequence similarity to any known protein or functional motifs, including NSUN4. Using an SHTAP antiserum, multiple SHTAP isoforms (~20–87 kDa) were detected in the testis, sperm, and various somatic tissues. Interestingly, only the ~26 kDa isoform of SHTAP was able to interact with CRISP2. Furthermore, yeast two‐hybrid assays showed that both the CAP (CRISP/antigen 5/pathogenesis related‐1) and CRISP domains of CRISP2 were required for maximal binding to SHTAP. SHTAP protein was localized to the peri‐acrosomal region of round spermatids, and the head and tail of the elongated spermatids and sperm tail where it co‐localized with CRISP2. During sperm capacitation, SHTAP and the SHTAP—CRISP2 complex appeared to be redistributed within the head. Conclusions. The present study is the first report of the identification, annotation and expression analysis of the mouse Shtap gene. The redistribution observed during sperm capacitation raises the possibility that SHTAP and the SHTAP—CRISP2 complex play a role in the attainment of sperm functional competence.  相似文献   

10.
We have purified a 57 kDa protein (designated Sak57, for spermatogenic cell/sperm-associated keratin) from sodium dodecyl sulfate-β-mercaptoethanol(SDS-βME)-dissociated outer dense fibers isolated from rat sperm tails. Internal protein sequence analysis of Sak57 yielded two 15-mer and 10-mer fragments with 70–100% homology to human, rat, and mouse keratins and corresponding to the 1A and 2A regions of the α-helical rod domain of keratins. A multiple antigenic peptide (MAP) was constructed using the 10-mer amino acid sequence KAQYEDIAQK (corresponding to the 2A region) and used as antigen for the production of polyclonal antibodies in rabbit. Anti-MAP sera were used for further analysis of the biochemical characteristics of Sak57 in testis and sperm tails using chromatofocusing, immunobloting, and [32P]orthophosphate-labeling. We have found that rat testis displays two immunoreactive proteins: a soluble 83 kDa protein with pl range 5.9–6.3, regarded as a precursor, and both detergent-insoluble and soluble 57 kDa protein with pl range 5.0–5.9, corresponding to the mature form Sak57. The testicular soluble form was phosphorylated. Rat sperm tail samples displayed only the Sak57 detergent-insoluble form and its pl was more acidic (4.7–4.8). Whole-mount electron microscopy of negatively stained preparations of sperm-derived Sak57 resuspended in SDS-βME revealed a rod-shaped pattern. A decrease in the concentration of SDS-βME resulted in the side-by-side aggregation of rod-shaped Sak57 forming thick bundles. Indirect immunofluorescence was used to determine the localization of Sak57 in isolated outer dense fibers, epididymal sperm, spermatids, and pachytene spermatocytes. Confocal laser scanning microscopy was used to analyze the three-dimensional arrangement of Sak57 in pachytene spermatocytes. Isolated outer dense fiber and sperm tails displayed an immunoreactive product in the form of linear clusters. In elongating spermatids (steps 10–11), Sak57 immunoreactivity was predominant in the head region whereas pachytene spermatocytes displayed a cortical cytoplasmic distribution. Results of this study demonstrate that Sak57 has the characteristics of a keratin intermediate filament and is present during meiotic and postmeiotic stages of spermatogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

11.
E. R. Sakker 《Zoomorphology》1984,104(2):111-121
Summary Mature sperm of the three species, Onithochiton quercinus, Chiton pelliserpentis and Plaxiphora paeteliana are eupyrene and basically of the primitive type. The sperm are small, with a distinct head, midpiece with a few spherical to oval mitochondria and a long tail with a (2×9)+2 axoneme. They are unusual among primitive sperm in being bilaterally symmetrical, with a long anterior filament containing an extension of the nucleus and lacking an acrosome. Spermatogenesis occurs synchronously throughout the testis in inwardly folded tissue plates. Spermatogonia arise adjacent to the central blood sinus in each tissue plate. Cells in successive stages of spermatogenesis are displaced towards the luminal surface. The cytoplasm of all stages contains ribosomes, rough endoplasmic reticulum, lysosomes and mitochondria. A Golgi complex is present in secondary spermatocytes and spermatids but does not form an acrosome. During spermiogenesis Golgi complexes are confined to the posterior region of developing sperm and are eventually shed in the residual cytoplasm behind the midpiece. Preacrosomal vesicles are not formed. The long anterior filament of the sperm and lack of an acrosome are features associated with the fertilization of eggs surrounded by a chorion which may have pores or a micropyle. The exact method of fertilization in chitons remains to be elucidated.Abbreviations af anterior filament - bh body of the head - bn body of the nucleus - bs blood sinus - c collar - dc distal centriole - esg early spermatogonium - fc fibrous chromatin - gc granular chromatin - if implantation fossa - lsg later spermatogonium - m mitochondrion - mc muscle cell in blood sinus - mm midpiece mitochondrion - mt microtubule - mI primary spermatocyte undergoing first meiotic division - mII secondary spermatocyte undergoing second meiotic division - n nucleus - ncc nuclear condensing chromatin - ne nuclear envelope - pc proximal centriole - rc resorbing cell - s spermatozoon - 1°sc primary spermatocyte - 2°sc secondary spermatocyte - st spermatid - t tail - tc thinning cytoplasm - tf tail flagellum - tpec tissue plate epithelial cell  相似文献   

12.
The morphology of the spermatozoon of representative species of the subfamily Nesomyinae (Muroidea: Nesomyidae), a monophyletic group of rodents endemic to Madagascar, was examined by light and electron microscopy to determine the sperm head shape and tail length across the species. Marked interspecific differences were found to occur in both the form of the sperm head and length of the tail. The species that possess a sperm head with an apical hook, which largely contains acrosomal material, generally displayed longer sperm tails, and a species with a spatulate sperm head had the shortest tail. The association between sperm head shape and tail length mirrors that previously found in Eurasian and Australasian murine rodents. Thus, the repeated association between sperm head shape and tail length across these groups of muroid rodents clearly indicates a functional relationship between these two features. A comparison of sperm morphology of the nesomyines to that of related muroid rodents on the mainland of Africa suggests that the possession of an apical hook is the ancestral condition. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
The Ascidian Sperm Reaction   总被引:2,自引:0,他引:2  
SYNOPSIS. Ascidian sperm are simplified by omission of the midpieceand proximal centriole with the single mitochondrion locatednext to the nucleus in the head. Small acrosome- like vesiclesappear in some species but their distribution is unclear. Spermstructure correlates well with the location of fertilization;members of the orders Phlebobranchiata and Stolidobranchiatawith external fertilization have sperm with short heads andlong tails, while sperm from the exclusively internally fertilizingAplousobranchiata have relatively longer heads and shorter tails. The mitochondrion swells when the sperm contacts the chorion,then translocates along the tail as it enters the chorion tobe discarded when the tail disappears inside. Structural changesalso occur in the anterior sperm head that have been interpretedas an acrosome reaction. Proteolytic enzymes are involved inpenetration of the chorion. The mitochondrial transformationis under control of intracellular pH and Ca2+ levels with thesperm releasing H+ and taking up Ca2+ during the sperm reaction.Acid release is from inactivation of a Na+ requiring acidificationsystem and triggering of a Cl releasing HCO3 requiringacid release system. An increase in intracellular pH increasesthe permeability to Ca2+, resulting in increased intracellularCa2+, the proximal trigger to the mitochondrial reaction.  相似文献   

14.
The process of spermatogenesis and spermatozoon morphology was characterized from a deep‐sea bivalve, Calyptogena pacifica (Vesicomyidae, Pliocardiinae), a member of the superfamily Glossoidea, using light and electron microscopy. Spermatogenesis in C. pacifica is generally similar to that in shallow‐water bivalves but, the development of spermatogenic cells in this species has also some distinguishing features. First proacrosomal vesicles are observed in early spermatocytes I. Although, early appearance of proacrosomal vesicles is well known for bivalves, in C. pacifica, these vesicles are associated with electron‐dense material, which is located outside the limiting membrane of the proacrosomal vesicles and disappears in late spermatids. Another feature of spermatogenesis in C. pacifica is the localization of the axoneme and flagellum development. Early spermatogenic cells lack typical flagellum, while in spermatogonia, spermatocytes, and early spermatids, the axoneme is observed in the cytoplasm. In late spermatids, the axoneme is located along the nucleus, and the flagellum is oriented anteriorly. During sperm maturation, the bent flagellum is transformed into the typical posteriorly oriented tail. Spermatozoa of C. pacifica are of ect‐aqua sperm type with a bullet‐like head of about 5.8 μm in length and 1.8 μm in width, consisting of a well‐developed dome‐shaped acrosomal complex, an elongated barrel‐shaped nucleus filled with granular chromatin, and a midpiece with mainly four rounded mitochondria. A comparative analysis has shown a number of common traits in C. pacifica and Neotrapezium sublaevigatum.  相似文献   

15.
The sperm head morphology and tail length of two species of Australian rock rats, Zyzomys argurus and Zyzomys pedunculatus, are presented. In Z. argurus the sperm head has an apical hook together with two ventral processes extending from the upper concave surface that are largely composed of cytoskeletal material, and the sperm tail is about 135 µm in length. By contrast, in Z. pedunculatus the sperm head is paddle‐shaped with the nucleus capped by an acrosome that has a large apical segment and is surrounded by a thin layer of cytoskeletal material, and the sperm tail is only around 85 µm in length. Since the structure of the spermatozoon of Z. argurus is similar to that of most of the old endemic Australian rodents it is presumed to be the ancestral condition within the Zyzomys genus with that of Z. pedunculatus being highly derived and showing convergence with the sperm structure in some other orders of mammals.  相似文献   

16.
The morphology of the sperm of Isometra vivipara is markedly different from the spherical-headed sperm typical of crinoids in general. The sperm head of Isometra has a flattened, oval shape. In addition to a nucleus, the head includes a lateral acrosome on one flat surface and a lateral mitochondrion on the opposite flat surface. From the latter surface of the sperm head, a tail flagellum arises adjacent to the mitochondrion. The discussion considers the relationships between reproductive habits and sperm morphology in Isometra and other crinoids.  相似文献   

17.
W. G. Breed 《Acta zoologica》1998,79(4):277-285
The structural organisation of the spermatozoon from two species of bandicoot rats Bandicota bengalensis and Bandicota indica was investigated by light and electron microscopy together with the effect of incubation in Triton-X 100 and sodium dodecyl sulphate. The sperm head of B. bengalensis is invariably falciform, has a uniform electron-dense nucleus capped by an acrosome with a posteriolateral equatorial segment, a subacrosomal cytoskeleton with a large rostral perforatorium, and a sperm tail, attached to the lower concave surface of the sperm head, with typical coarse fibres and fibrous sheath. By contrast, the sperm head shapes of B. indica are generally conical or bulbous, the nucleus contains a few large vacuoles, the acrosome lacks an equatorial segment, no recognisable perforatorium occurs, and the sperm tail, which is attached basally, is very short with only modest development of coarse fibres and fibrous sheath. These results indicate that, within the genus Bandicota, huge interspecific differences in morphology of the spermatozoon have evolved. The spermatozoa of B. bengalensis are similar to those of Rattus and many other murids and thus presumably represent the ancestral condition, whereas those of B. indica (and B. savilei) are unlike spermatozoa from any other eutherian mammal so far described. © 1998 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd. All rights reserved  相似文献   

18.
19.
This paper investigates by scanning and transmission electron microscopy spermiogenesis and spermatozoon morphology of the gonochoristic eutardigrade Xerobiotus pseudohufelandi (Macrobiotidae). During spermiogenesis clusters of spermatids are connected by cytoplasmic bridges that persist up to an advanced stage of maturation. Spermiogenesis is characterized by distinctive modifications of the nucleus and by the differentiation of an acrosome, tail and substantial midpiece. Testicular spermatozoa are folded with the hinge located between the head and midpiece, thus resembling a nut-cracker. The head includes a rod-shaped, bilayered acrosome and an elongated, helicoidal nucleus with condensed chromatin. The large kidney-shaped midpiece has hemispherical swellings/ovoid elements surrounding the centriole and an incomplete mitochondrial sleeve. The flagellum contains a ‘9+2’ axoneme and terminates in a tuft of microtubules. Spermathecal spermatozoa always have linear profiles. The acrosome and nucleus have the same morphological pattern as in testicular spermatozoa, whereas the midpiece is thin and lacks the hemispherical swellings, and the tail is reduced to a short stub. Functional considerations are presented, based upon this different morphology. Moreover, phyletic comparisons are made on the basis of sperm morphology, both for the family Macrobiotidae and the class Eutardigrada. J. Morphol. 234:11–24, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The differentiation of the spermatids of Bufo arenarum has been described from a study of electron micrographs of thin sections of testis. The development of the acrosome from the Golgi complex takes place in much the same manner as in mammalian spermatogenesis but no acrosome granule is formed. A perforatorium is described for the first time in this species. It is formed by a convergence of dense filaments that arise between the nuclear membrane and the head cap. During maturation of the spermatid the chromatin undergoes striking physicochemical alterations. Fine chromatin granules uniformly dispersed in the karyoplasm are replaced by larger and larger aggregates and these ultimately coalesce to form a very dense sperm head. Two centrioles of cylindrical form are situated very near the base of the sperm head. The longitudinal fibrils of the tail flagellum take origin from one, and the dense fibrous substance of the undulating membrane is closely related to the other. Phase contrast cinematographic observations on the swimming movements of living toad sperm, when considered in relation to the fine structural components of the tail, suggest that there is a contractile component in the undulating membrane as well as in the axial fibrils. The differences in the structure of mammalian and amphibian sperm tails are discussed in relation to differences in the character of their movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号