首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用向硫化矿培养基中补加FeSO4的方式以维持Fe2+ 浓度为4~8 g/L,可使嗜酸氧化亚铁硫杆菌菌浓在培养39 h时达到6.25×108 cells/mL,并在比生长速率几乎不降低的前提下提高了转化率和生产强度.然后对低氧化还原电位下低品位黄铜矿的浸出进行初步研究,结果表明经过30 d浸出,铜的浸出率可达28.5%...  相似文献   

2.
目的:通过物理诱变提高氧化亚铁硫杆菌(T.f)的活性。方法:利用紫外线对高氧化亚铁硫杆菌进行诱变,对比紫外线辐照120s、240s和300s后培养的氧化亚铁硫杆菌的活性,得到最佳的辐照时间。结果:紫外线诱变氧化亚铁硫杆菌的最佳时间为240s,超过该值后T.f菌很难培养。结论:经过240s的紫外线辐照后,利用Leathen培养基培养的氧化亚铁硫杆菌与对照组相比,浓度为对照组的1.21倍,pH值低0.28,氧化还原电位的绝对值比值为1.13,在同样时间条件下,培养液中Fe2+浓度的曲线变化斜率分别为0.683和0.236。  相似文献   

3.
以碱性果胶酸裂解酶产生菌芽孢杆菌WZ008为出发菌株,经形态鉴定和16S鉴定为类芽孢杆菌,命名为Paenibacillus sp.WZ008,通过N~+注入诱变、紫外线诱变、~(60)Co-γ射线诱变等多次反复诱变,选育得到一株产碱性果胶酸裂解酶性能稳定且酶活明显提高的突变株,其酶活为97.8U/mL,比出发菌株产碱性果胶酸裂解酶能力提高了1.04倍。  相似文献   

4.
在生物脱硫过程中,以焦碳为填料作为固定化载体,进行了氧化亚硫杆菌的固定化技术研究。在初始pH2、温度为30℃左右、通气量0.5m3/h、喷淋量1.0L/h条件下,挂膜后只需12h,Fe2 氧化率可达95.28%,其Fe2 平均氧化速率是游离细胞时的8倍。氧化亚铁硫杆菌固定化细胞经长期低pH值驯化后,仍能保持对Fe2 具有较高的氧化活性;只需20hFe2 氧化率就达95.05%,Fe2 平均氧化速率达0.38g/(L/h)。  相似文献   

5.
采用两种嗜酸硫杆菌(嗜酸氧化亚铁硫杆菌和喜温硫杆菌)对铜蓝进行生物浸出,实验在有或没有4 g/L硫酸亚铁pH 2.0、150转/分、35℃的三角瓶中进行。实验结果表明:用两种菌混合浸出的铜几乎等于嗜酸氧化亚铁硫杆菌单独浸出的铜;另外,亚铁的加入能提高铜的浸出。  相似文献   

6.
从我国三大铜矿的酸性矿坑水中富集分离出9个具有较强活性的嗜酸氧化亚铁硫杆菌菌株,经过Cu~(2 )的系列浓度梯度的培养,选出其中天然抗铜能力最强的菌株26~#,在Cu~(2 )浓度为0.20mol/L的9K培养基中能在72h内完全氧化培养基中的Fe~(2 ),在含0.22mol/L Cu2~(2 )的9K培养基中能在192h内完全氧化培养基中的Fe~(2 )。以CuSO_4·5H_2O为单变量驯化介质驯化该26~#抗铜菌株,26~#驯化菌株的Fe~(2 )氧化能力明显增强:在含0.25mol/LCu~(2 )的9K培养基中能在84h内完全氧化其中的Fe~(2 )。为了提高驯化菌的稳定性,将驯化后的26~#菌株用紫外线进行诱变。研究结果表明:驯化诱变对菌种的改良有重要的作用,诱变后菌株的生长性能稳定,氧化活性进一步提高,26~#驯化诱变菌在0.25mol/LCu~(2 )存在的条件下完全氧化9K培养基中Fe~(2 )的时间约为60h,对Fe~(2 )氧化能力明显强于驯化菌及野生菌。  相似文献   

7.
氧化亚铁硫杆菌固定化技术研究   总被引:9,自引:1,他引:9  
在生物脱硫过程中 ,以H - 2软性填料作为氧化亚铁硫杆菌 (Thiobacillusferrooxidans)的固定化载体 ,构建了固定床生化反应器。考察了不同稀释率固定下床生化反应器氧化Fe2 + 的情况 ,在通气量为 330L/h ,稀释率为 0 6h-1条件下 ,Fe2 + 最大氧化速率达 7 6 7g[Fe2 + ]/L·h。该反应器连续运行 10 0d,固定化细胞稳定性良好  相似文献   

8.
采用非稳态法测定了FeSO4在未包埋氧化亚铁硫杆菌的凝胶中的有效扩散系数,分析包埋细菌的氧化情况.结果表明,FeSO4在凝胶中的有效扩散系数De随着海藻酸钠浓度的升高而降低,当海藻酸钠浓度为2%时最优;凝胶剂CaCl2的浓度对扩散系数的影响较小.包埋的氧化亚铁硫杆菌在10h达到增殖平衡,而FeSO4在包埋细菌的凝胶内扩散系数明显减少.包埋的氧化亚铁硫杆菌在初始铁浓度为5g/L时,完全氧化所需时间最短但氧化速率变化较快,当初始铁浓度为8g/L和10g/L时,完全氧化所需时间相同.  相似文献   

9.
氧化亚铁硫杆菌分离复壮及固定化的研究   总被引:6,自引:0,他引:6  
用稀释涂布平板法从已退化的氧化亚铁硫杆菌(Thiobacillus ferrooxidans)菌液中分离出氧化活性较高、生命力强的氧化亚铁硫杆菌T1。以H2软性填料作为氧化亚铁硫杆菌的固定化载体,构建了固定床生物反应器。考察了固定床生物反应器氧化Fe2+的情况:Fe2+最大氧化速率达7.67g/(L·h)。并对固定床生物反应器运行过程中在载体表面形成的沉淀物进行了研究,通过X衍射证明此沉淀物为黄钾铁矾[Kfe3(SO4)2(OH)6]。  相似文献   

10.
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidan,A.ferrooxidans)广泛存在于酸性矿物废水中,与生物冶金和环境净化紧密相关。不同来源嗜酸氧化亚铁硫杆菌全基因组的测序,为我们利用比较基因组学和功能基因组学的方法去洞察嗜酸氧化亚铁硫杆菌功能基因,提供了坚实的研究基础和丰富的科研信息。简述了嗜酸氧化亚铁硫杆菌基因组学的基本特征;从比较基因组学和功能基因组学发现了嗜酸氧化亚铁硫杆菌菌株基因组水平的差异;通过生物信息学概述了该菌的铁和硫代谢机制,并从细菌的功能基因组学对其在生物冶金与环境治理等应用进行了展望。  相似文献   

11.
不同培养基中氧化亚铁硫杆菌生长及沉淀研究   总被引:8,自引:0,他引:8  
为减缓氧化亚铁硫杆菌在9K培养基中培养时产生的沉淀,通过改变9K液体培养基的组成成分,研究了培养基成分的改变对细菌生长特性的影响及沉淀产生情况,并利用X射线衍射仪对沉淀进行了物相鉴定。结果表明,最佳培养基组成为(NH4)2HPO43.00g,KCl 0.10g,MgSO4.7H2O 0.50g,FeSO4.7H2O 44.3g,蒸馏水1 000ml,pH 2.0。在该培养基中,氧化亚铁硫杆菌不仅能保持其较高的氧化活性(其Fe2 氧化速率最高为0.3376 g/L.h-1),而且生长过程中沉淀出现的时间最迟,产生的沉淀量最少,且沉淀为非晶型物质。  相似文献   

12.
聚γ-谷氨酸高产菌的选育与培养基优化   总被引:1,自引:0,他引:1  
利用合成培养基为筛选培养基,以枯草芽孢杆菌(Bacillus subtilis)B6-1为出发菌株,经过三轮紫外线诱变和一轮硫酸二乙酯诱变得到了聚γ-谷氨酸高产突变株枯草芽孢杆菌W003,摇瓶液体发酵的聚γ-谷氨酸产量由出发菌株的10.9 g/L提高到20.5 g/L.单因素实验结果表明,该菌产聚γ-谷氨酸的合适碳源为葡萄糖,氮源为硫酸铵.通过正交实验得到了优化的培养基配方,经36h液体发酵,聚γ-谷氨酸产量可达到45.3 g/L.  相似文献   

13.
氧化亚铁硫杆菌的分离及其培养条件优化   总被引:1,自引:0,他引:1  
苑璞  苑琳  邵静  戴旭东 《生物技术》2010,20(2):47-50
目的:获得可应用于烟气脱硫的菌株,并对其培养条件进行优化.方法:从化工厂取土样分离氧化亚铁硫杆菌,分析分离菌株的形态学特征、培养特征及16S rDNA序列,确定菌株的分类地位.通过单因子实验,对培养基中主要成分硫酸亚铁和硫酸铵的浓度进行优化.利用SAS软件中的Box-Behnken法设计实验,通过响应面分析对初始pH、温度、接种量、装液量4个因素进行优化.结果:获得菌株N16,经鉴定为嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans).确定FeSO_4·7H_2O和(NH_4)_2SO_4的最适添加量分别为60/L和1g/L.确定菌株最适培养条件为:初始pH 1.8,温度28℃,转速150r/min,接种量15%,装液量30mL.在最适培养墓及培养条件下,菌株N16的亚铁氧化率可达99.78%.结论:分离得到的菌株适合于微生物法烟气脱硫的应用.  相似文献   

14.
透明质酸生产菌的诱变选育   总被引:2,自引:0,他引:2  
陈永浩  王强 《微生物学通报》2009,36(2):0205-0210
以马链球菌为出发菌株, 通过紫外线和60Co-γ射线辐照诱变, 得到一株无溶血性菌株NC1150, 并在此基础上继续用60Co-γ射线辐照诱变得到产量较高的菌株NC168, 使透明质酸产量与出发菌株NC1150相比提高了101%, 相对分子量为0.55×106 D, 突变株经过多次传代, 透明质酸产量和相对分子量保持稳定, 溶血性无回复突变现象。  相似文献   

15.
以聚乙烯醇-海藻酸钠复合材料为载体,Ca(NO3)2为交联剂对氧化亚铁硫杆菌进行包埋固定化。该固定化细胞的连续培养技术可以用于处理H2S、SO2,为了减少减少固定化细胞培养过程中带来许多不利效应的黄铁矾沉淀 (NH4Fe3(SO4)2(OH)6),采取了改变初始pH值和目前普遍采用的9K培养基中的(NH4)2SO4浓度,K2HPO4浓度三种方法。结果显示:在三种方法中,降低(NH4)2SO4浓度是比较可行的一种方法,当(NH4)2SO4从3.0 g/L降低到0.5g/L,Fe2+氧化速率几乎没有受到影响,沉淀形成速率却减少了45%。在固定化细胞连续运行时,降低9K培养基中(NH4)2SO4的含量,当稀释率为0.4 h-1,运行时间为96 h,Fe2+氧化速率高达3.75 g/L.H,结果显示反应柱内沉淀明显减少,同时Fe2+氧化速率并没有明显变化。  相似文献   

16.
原生质体诱变选育乳糖酶高产菌株   总被引:8,自引:0,他引:8  
采用紫外线诱变和^60Co-γ射线协同诱变的方法,对出发菌株Uco-3的原生质体进行诱变处理,通过正突变率与诱变剂量的相互关系,确定最佳诱变剂量。采用4min的紫外线照射和剂量为500Gy的γ射线对黑曲霉Uco-3的原生质体进行诱变,软得一株产高温乳糖酶的高产突变株,突变株产乳糖酶能力显著提高,产酶活力达44.37U/mL,是出发菌株Uco-3的2.73倍。  相似文献   

17.
采用紫外线诱变和60Co-γ射线协同诱变的方法,对出发菌株Uco-3的原生质体进行诱变处理,通过正突变率与诱变剂量的相互关系,确定最佳诱变剂量。采用4min的紫外线照射和剂量为500Gy的γ射线对黑曲霉Uco-3的原生质体进行诱变,获得一株产高温乳糖酶的高产突变株,突变株产乳糖酶能力显著提高,产酶活力达44.37U/mL,是出发菌株Uco-3的2.73倍。  相似文献   

18.
本文探讨了利用紫外线诱变结合恒化器富集筛选耐高温高产乳酸菌的方法。首先以一株鼠李糖乳杆菌为出发菌种,并用紫外线的方法进行诱变,然后通过恒化器培养的方法在55oC下进行了耐高温高产菌株的富集。最终获得了9株耐高温菌株,其在高温下的产酸能力较出发菌株有了较大提高,其中一株突变株HT1发酵48h后L-乳酸产量达到了62.9g/L,比出发菌株提高了18.1g/L。本方法比一般平板筛选方法的效率高,大大减轻了复筛的工作量。  相似文献   

19.
以嗜乙酰乙酸棒杆菌(Corynebacterium acetoacidophilum)LG-3为出发菌株,经紫外线(UV)和硫酸二乙酯(DES)诱变处理,磺胺胍(SG)、高浓度(NH4)2SO4定向筛选,获得1株谷氨酰胺高产菌株LG-65,在未经优化的条件下摇瓶发酵72 h可产谷氨酰胺43.5 g/L,比出发菌株的产量32.4 g/L提高了34.3%.在此基础上,对其发酵条件进行优化,经72 h摇瓶发酵产量可达47~48 g/L,7 L发酵罐补料分批发酵40 h可达55 g/L.  相似文献   

20.
氧化亚铁硫杆菌培养过程中沉淀的研究   总被引:13,自引:1,他引:13  
为了减少氧化亚铁硫杆菌培养过程中产生的沉淀,对氧化亚铁硫杆菌培养过程中产生的沉淀物进行了研究,确定了在pH为1.5,K2HPO4用量为0.25g/l,KH2PO4为0.195g/l时菌体可以保持其最高氧化活性,同时产生最少量沉淀物的培养条件,并发现沉淀物对菌体的生长和氧化Fe^2 没有影响。利用饥饿状态的氧化亚铁硫杆菌证明了菌体在一定条件下可以利用黄铁钒沉淀中的部分离子进行生长繁殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号