首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of d-cystathionine ketimine (D-CK) and l-cystathionine ketimine (L-CK) on the stimulus-induced superoxide generation by human neutrophils were compared. When the cells were preincubated with D-CK, the superoxide generation induced by arachidonic acid (AA), phorbol 12-myristate 13-acetate (PMA), and N-formyl-methionyl-leucyl-phenylalanine (fMLP) were enhanced, showing a dependence on D-CK concentration. The rate of enhancement by D-CK was AA > PMA > fMLP. On the contrary, L-CK largely enhanced the fMLP-induced superoxide generation, whereas it showed no effect on those induced by AA and PMA. The superoxide generations induced by AA and PMA in the D-CK-treated cells were suppressed by staurosporine, while those in the L-CK-treated cells were not affected. Genistein suppressed the fMLP-induced superoxide generation in the L-CK-treated cells more efficiently than that in the D-CK-treated cells. D-CK enhanced seryl phosphorylation of 16. 5-kDa protein in human neutrophils, while L-CK enhanced tyrosyl phosphorylation of 45-kDa protein.  相似文献   

2.
The effect of six compounds isolated from rhizome of Anemone raddeana on the superoxide generation in human neutrophils was investigated. The six compounds examined were 3-acetyloleanolic acid (AOA), oleanolic acid (OA), eleutheroside K (EK), oleanolic acid-3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-glucopyranosyl-(1 --> 4)]-alpha-L-arabinopyranoside (Rd10), raddeanoside 12 (Rd12) and raddeanoside 13 (Rd13). AOA, OA, Rd12 and Rd13 suppressed the superoxide generation induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) in a concentration-dependent manner. EK and Rd10 significantly enhanced the fMLP-induced superoxide generation in a specific narrow range of low concentration (0.5-0.75 microM), while these compounds more efficiently suppressed the superoxide generation than the other four compounds in other concentrations. In the case of superoxide generation induced by phorbol 12-myristate 13-acetate (PMA), Rd12, OA, EK and Rd10 dose-dependently suppressed the superoxide generation but AOA and Rd13 gave no effect. Arachidonic acid-induced superoxide generation was suppressed by EK, Rd10, Rd12 and Rd13, but was weakly enhanced by AOA and OA. Rd12 dose-dependently inhibited fMLP-induced tyrosyl phosphorylation of 123.0, 79.4, 60.3, 56.2 and 50.1 kDa proteins in human neutrophil. On the other hand, RD10 and EK enhanced the tyrosyl phosphorylation of these proteins in a low concentration range. These phenomena were parallel to the suppression of the fMLP-induced superoxide generations.  相似文献   

3.
We examined the effects of okadaic acid, a protein phosphatase 1 and 2A inhibitor, on superoxide generation in human neutrophils. Superoxide generation induced by fMLP was inhibited by low-dose okadaic acid (10–100 nM), but it had no effect on superoxide synthesis by PMA, and the fMLP-induced rise of the intracellular Ca2+ concentration was not affected by low-dose okadaic acid. These findings suggested that the inhibitory mechanism of okadaic acid might involve PKC-independent and Ca2+-independent pathways in fMLP induced NADPH oxidase activation. Both fMLP-stimulated phosphorylation of serine residues in p47phox and its translocation to the plasma membrane were suppressed by low-dose okadaic acid. On the other hand, PMA-induced phosphorylation and translocation of p47phox were not affected by such a low dose of okadaic acid. These findings suggested that fMLP induced phosphorylation of serine residues in p47phox was regulated by protein phosphatase 2A, and its phosphorylation was necessary for translocation and superoxide generation in fMLP-activated human neutrophils. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Five triterpenoids; Congmuyanoside V, X, XI, XII, and XV (Cong. V, X, XI, XII, and XV) were isolated from the root bark of Aralia elata. The effect of these triterpenoids on stimulus-induced superoxide generation in human neutrophils was assayed by measuring the reduction of ferricytochrome c (cyt. c) using a dual-beam spectrophotometer. Translocation of p47(phox), p67(phox), and rac to the cell membrane and tyrosyl or serine/threonine phosphorylation of neutrophil proteins were investigated using specific monoclonal antibodies. The five triterpenoids used in the present experiment significantly suppressed N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced superoxide generation in concentration-dependent manner. Congmuyanoside V, XII, and XV also suppressed arachidonic acid (AA)-induced superoxide generation in high concentration. However, these triterpenoids showed no effect on phorbol 12-myristate 13-acetate (PMA)-induced superoxide generation. fMLP- and AA-induced tyrosyl phosphorylation and translocation of the cytosolic proteins p47(phox), p67(phox), and rac to the cell membrane were suppressed in parallel with the suppression of the stimulus-induced superoxide generation.  相似文献   

5.
Migration and superoxide anion (O2-) generation were studied in polymorphonuclear leukocytes (PMNs) from 14 athyreotic patients, previously treated by total thyroidectomy and radioiodine therapy for differentiated thyroid carcinoma, and from age- and sex-matched euthyroid healthy controls. Patients were studied twice: in hypothyroidism (visit 1) and after TSH-suppressive L-T4 replacement therapy (visit 2). Random migration and N-formyl-Met-Leu-Phe (fMLP) 0.1-microM induced chemotaxis were similar in cells from patients at both visit 1 and visit 2 and from healthy controls. On the contrary, resting O2- generation in cells from patients was significantly lower than control values, both at visit 1 and 2. At visit 1, fMLP 0.1 muM-induced O2- generation was significantly lower than control values, while phorbol-myristate acetate (PMA) 100-ng/ml induced O2- generation was similar in cells from patients and from controls. At visit 2 both responses increased, resulting in fMLP-induced O2- generation superimposable to control values and PMA-induced O2- generation significantly higher with respect to both visit 1 and cells from controls. In vitro exposure of PMNs from healthy subjects to L-T4 did not affect O2- generation in resting cells, and significantly increased that induced by fMLP or PMA only at high, supra-physiological concentrations. Neither TSH nor T3 had significant effects at any of the concentrations tested. The present results document the existence of a correlation between thyroid status and oxidative metabolism of human PMNs, which is however unlikely to depend upon a direct action of thyroid hormones on these cells.  相似文献   

6.
Pretreatment ("priming") of neutrophils with a non-activating concentration (2 nM) of phorbol myristate acetate (PMA) augments superoxide (O2-) production in response to the chemoattractant formylmethionylleucylphenylalanine (fMLP). We initially examined the effect of sphinganine, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), on activation of primed neutrophils. In both primed and unprimed cells activation by fMLP was blocked, and inhibition occurred at identical concentrations, supporting a common inhibited site. PMA also augmented (about 2-fold) fMLP-induced generation of sn-1,2-diglyceride (DG), the level of which correlated with O2- generation. In contrast to its effects on DG, PMA diminished by about 50% the magnitude of the fMLP-stimulated rise in cytosolic Ca2+. Thus, PMA priming dissociates the fMLP-stimulated Ca2+ increase from DG and O2- generation. The effect of PMA on Ca2+ levels appeared to be due in part to lowered levels of inositol trisphosphate. Lowering of inositol phosphate levels correlated with inhibition of fMLP-induced hydrolysis of inositol-containing phospholipids, particularly phosphatidylinositol 4,5-bisphosphate. PMA did not inhibit (and in fact augmented at early time points) formation of [32P] phosphatidic acid in response to fMLP, indicating that the increase in DG was not due to inhibition of cellular diglyceride kinase. Thus, the data suggest that PMA enhances fMLP-stimulated DG generation concomitant with switching the source of DG from phosphatidylinositol 4,5-bisphosphate to an alternative lipid(s). Increased DG and inhibition of activation by sphinganine are consistent with a role for protein kinase C in activation of the respiratory burst in PMA-primed neutrophils.  相似文献   

7.
Orie NN  Zidek W  Tepel M 《Life sciences》1999,65(20):2135-2142
This study examined the signaling mechanism involved in the generation of reactive oxygen species (ROS) in human lymphocytes activated by formyl-Met-Leu-Phenylalanine (fMLP; 200 nmol/L) or phorbol-myristate-acetate (PMA; 100 nmol/L). ROS were monitored spectrophotometrically using dichlorofluorescin diacetate. fMLP and PMA significantly increased ROS above the control levels (p<0.05 and 0.001, respectively). These increases were significantly inhibited by catalase, sodium azide, and dimethylsulfoxide but not by superoxide dismutase, suggesting that the ROS apparently included hydrogen peroxide, singlet oxygen and hydroxyl ion but not superoxide anion. PMA-induced responses were reduced by tyrphostin (p<0.01), ST-638 (p<0.05), KN-62 (p<0.001), bisindolylmaleimide (p<0.001), RO-31-8220 (p<0.001), and by LY-83583 (p<0.001), suggesting significant involvement of tyrosine kinase, calcium/calmodulin kinase II, protein kinase C and guanylyl cyclase. fMLP-induced responses were significantly reduced by only tyrphostin (p<0.001), ST-638 (p<0.05), and KN-62 (p<0.01). The results show that tyrosine kinase and calcium/calmodulin kinase II are common signalling components in the production of reactive oxygen species in activated lymphocytes.  相似文献   

8.
Human peripheral blood polymorphonuclear leukocytes were preincubated with cystathionine and cystathionine metabolites found in the urine of patients with cystathioninuria. Among the cystathionine metabolites, cystathionine ketimine and N-acetyl-S-(3-oxo-3-carboxy-n-propyl) cysteine (NAc-OCPC) significantly enhanced the N-formylmethionylleucylphenylalanine (fMLP)-induced superoxide generation, but cystathionine, NAc-cystathionine, and cyclothionine did not enhance the superoxide generation. Cystathionine ketimine and NAc-OCPC also enhanced superoxide generation induced by opsonized zymosan (OZ) but not that induced by arachidonic acid (AA) and phorbol 12-myristate 13-acetate (PMA). Superoxide generation induced by cystathionine ketimine and NAc-OCPC was inhibited by genistein, an inhibitor of tyrosine kinase, and was enhanced by 1-(5-isoquinoline sulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C. Cystathionine ketimine and NAc-OCPC markedly also increased phosphorylation of 45-kDa protein in human neutrophils and the phosphorylation depended on the concentrations of cystathionine ketimine and NAc-OCPC. The phosphorylation of 45-kDa protein induced by cystathionine ketimine and NAc-OCPC was inhibited by genistein and herbimycin A, inhibitors of tyrosine kinase, but was not inhibited by H-7 and staurosporine, inhibitors of protein kinase C. Cystathionine metabolites and l-cystathionine sulfoxides were separated into two diastereoisomers, CS-I and CS-II. CS-I enhanced the superoxide generation induced by AA and PMA but not that induced by fMLP and OZ. In contrast, CS-II enhanced the superoxide generation induced by fMLP and OZ, but not that induced by AA and PMA.  相似文献   

9.
Generation of superoxide anion by the multiprotein complex NADPH phagocyte oxidase is accompanied by extensive phosphorylation of its 47-kDa protein component, p47(phox), a major cytosolic component of this oxidase. Protein kinase C zeta (PKC zeta), an atypical PKC isoform expressed abundantly in human polymorphonuclear leukocytes (PMN), translocates to the PMN plasma membrane upon stimulation by the chemoattractant fMLP. We investigated the role of PKC zeta in p47(phox) phosphorylation and in superoxide anion production by human PMN. In vitro incubation of recombinant p47(phox) with recombinant PKC zeta induced a time- and concentration-dependent phosphorylation of p47(phox) with an apparent K(m) value of 2 microM. Phosphopeptide mapping analysis of p47(phox) showed that PKC zeta phosphorylated fewer selective sites in comparison to "conventional" PKCs. Serine 303/304 and serine 315 were identified as targets of PKC zeta by site-directed mutagenesis. Stimulation of PMN by fMLP induced a rapid and sustained plasma membrane translocation of PKC zeta that correlated to that of p47(phox). A cell-permeant-specific peptide antagonist of PKC zeta inhibited both fMLP-induced phosphorylation of p47(phox) and its membrane translocation. The antagonist also inhibited the fMLP-induced production of oxidant (IC(50) of 10 microM), but not that induced by PMA. The inhibition of PKC zeta expression in HL-60 neutrophil-like cells using antisense oligonucleotides (5 and 10 microM) inhibited fMLP-promoted oxidant production (27 and 50%, respectively), but not that induced by PMA. In conclusion, p47(phox) is a substrate for PKC zeta and participates in the signaling cascade between fMLP receptors and NADPH oxidase activation.  相似文献   

10.
The effect of three flavonoids, 5,7,3',4'-tetrahydoxy-3-methoxy flavone (THMF), luteolin, and quercetin, on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils were investigated. When the cells were preincubated with these flavonoids, the superoxide generation induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was significantly suppressed, showing a dependence on amounts of the flavonoid. The suppressing effect of the flavonoid was THMF > luteolin > quercetin. These flavonoids also suppressed the superoxide generation induced by phorbol 12-myristate 13-acetate. In this case also, THMF was more effective than luteolin and quercetin. On the other hand, the superoxide generation induced by arachidonic acid was markedly suppressed by quercetin. The suppressing effect was quercetin > THMF > luteolin. THMF, luteolin, and quercetin significantly suppressed tyrosyl phosphorylation of 80.1-, 58.0-, and 45.0-kDa proteins in fMLP-treated human neutrophils. The suppression depended on the concentration of the flavonoids, and the inhibition of tyrosyl phosphorylation was in parallel to that of the fMLP-induced superoxide generation, respectively. While luteolin and quercetin showed a weak hemolytic activity at 2.5 mM, THMF showed almost no hemolytic activity even at 5 mM, suggesting an advantage of THMF for its clinical use.  相似文献   

11.
Polymorphonuclear leukocytes from healthy volunteers (HPMN) generated superoxide (O2*-) following treatment with various stimuli, such as phorbol myristate acetate (PMA), opsonized zymozan (OZ) and arachidonic acid (AA). Other types of n-3 polyunsaturated fatty acids (PUFAS), such as docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and eicosapentaenoic acid (EPA), also stimulated O2*- generation. The free form of DHA enhanced the generation of O2*- induced by PMA but inhibited that induced by OZ. In contrast, the ethylester of DHA (DHA-E) inhibited O2*- generation induced by PMA but stimulated that induced by OZ. Similar effects were also observed with ethylesters of EPA (EPA-E), DPA (DPA-E) and AA (AA-E). High concentrations of DHA-E reduced the PMA-induced formation of superoxide without affecting the cellular activity of protein kinase C (PKC). Similar phenomena were also observed with oral neutrophils from healthy volunteers (OPMN). These results indicate that PUFAS and their esters affect 02*- generation in human PMN via different pathways, thereby modulating inflammatory reactions.  相似文献   

12.
Bioconversion of timosaponin A-III (TA-III), one of the major steroidal saponins isolated from the rhizomes of Anemarrhenae asphodeloides Bunge (Liliaceae), was investigated in Saccharomyces cerevisiae. Five bioconversion products, denoted compounds 2-6, were obtained. Biotransformation metabolite 2 was a stereoisomer of TAIII with a specific isotype F-ring and beta-ranged CH3-21, which rarely occurs in nature. The structure of 2 was elucidated by extensive spectroscopic analysis (H-H COSY, HSQC, HMBC), as well as by high-resolution mass spectral analysis. The growth inhibitory activity of compounds 1-6 was assayed against four human cancer cell lines, HepG2, H-1299, HT-29, and HCT-116. Compounds 1 and 2 obviously inhibited the growth of the four types of cancer cells with IC50 values being less than 19 micrometer. A structure-activity relationship is discussed, and the spirostane-ring F in compounds 1 and 2 appears to be the critical bioactive moiety for the cell growth inhibitory property.  相似文献   

13.
Norathyriol, aglycone of a xanthone C-glycoside mangiferin isolated from Tripterospermum lanceolatum, concentration dependently inhibited the formylmethionyl-leucyl-phenylalanine (fMLP)-induced superoxide anion (O2˙−) generation and O2 consumption in rat neutrophils. In cell-free oxygen radical generating system, norathyriol inhibited the O2˙− generation during dihydroxyfumaric acid (DHF) autoxidation and in hypoxanthine-xanthine oxidase system. fMLP-induced transient elevation of [Ca2+]i and the formation of inositol trisphosphate (IP3) were significantly inhibited by norathyriol (30 μM) (about 30 and 46% inhibition, respectively). Norathyriol concentration dependently suppressed the neutrophil cytosolic phospholipase C (PLC). In contrast with the marked attenuation of fMLP-induced protein tyrosine phosphorylation (about 70% inhibition at 10 μM norathyriol), norathyriol only slightly modulated the phospholipase D (PLD) activity as determined by the formation of phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt). Norathyriol did not modulate the intracellular cyclic AMP level. In the presence of NADPH, the phorbol 12-myristate 13-acetate (PMA)-activated particulate NADPH oxidase activity was suppressed by norathyriol in a concentration-dependent manner and the inhibition was noncompetitive with respect to NADPH. Norathyriol inhibited the iodonitrotetrazolium violet (INT) reduction in arachidonic acid (AA)-activated cell-free NADPH oxidase system at the same concentration range as those used in the suppression of PMA-activated particulate NADPH oxidase activity. Taken together, these results suggest that the scavenging ability of norathyriol contributes to the reduction of generated O2˙−, however, the inhibition of O2˙− generation from neutrophils by norathyriol is attributed to the blockade of PLC pathway, the attenuation of protein tyrosine phosphorylation, and to the suppression of NADPH oxidase through the interruption of electrons transport.  相似文献   

14.
We isolated myeloid precursors from human marrow and studied the effects of phorbol myristate acetate (PMA) and N-formyl-methionyl-leucyl-phenylalanine (fMLP) upon transmembrane potentials and cytosolic calcium ([Ca2+]i) as the cells matured. Using a panel of fluorescent probes, we found that membrane depolarization induced by PMA and fMLP in granulocytes, and elevation in [Ca2+]i stimulated by fMLP, were absent in myeloblasts. When we induced differentiation with granulocyte-macrophage colony-stimulating factors, we found that both ionic responses appeared at approximately the promyelocyte stage. By using di-O-C5(3), we detected an initial phase of fMLP-induced hyperpolarization which appeared ontogenetically earlier than depolarization and which could be evoked in mature granulocytes with lower concentrations of the ligand. Hyperpolarization was partially dependent on extracellular Na+, was abrogated by increasing the external K+ concentration, and was accompanied by mild acidification of the cytoplasm. Bordetella pertussis toxin abolished both hyperpolarization and depolarization. Our findings indicate that shifts in [Ca2+]i and membrane potential changes in response to PMA and fMLP evolve as granulocytes mature. In addition, transmembrane ionic fluxes induced by fMLP appear to be more complex than previously considered, involving at least two separable phases of membrane potential change.  相似文献   

15.
We have investigated the inhibitory effect of 2-hydroxymethyl-1-naphthol diacetate (TAC) on the respiratory burst of rat neutrophils and the underlying mechanism of action was also assessed in this study. TAC caused concentration-related inhibition of the formylmethionyl-leucyl-phenylalanine (fMLP) plus dihydrocytochalasin B (CB)- and phorbol 12-myristate 13-acetate (PMA)-induced superoxide anion (O2*-) generation (IC50 10.2+/-2.3 and 14.1+/-2.4 microM, respectively) and O2 consumption (IC50 9.6+/-2.9 and 13.3+/-2.7 microM, respectively) of neutrophils. TAC did not scavenge the generated O2*- during dihydroxyfumaric acid autoxidation. TAC inhibited both the transient elevation of [Ca2+]i in the presence or absence of [Ca2+]o (IC50 75.9+/-8.9 and 84.7+/-7.9 microM, respectively) and the generation of inositol trisphosphate (IP3) (IC50 72.0+/-9.7 microM) in response to fMLP. Cytosolic phospholipase C (PLC) activity was also reduced by TAC at a same range of concentrations. The PMA-induced PKC-beta associated to membrane was attenuated by TAC (about 80% inhibition at 30 microM). Upon exposure to fMLP, the cellular cyclic AMP level was decreased in neutrophils pretreated with TAC. TAC attenuated fMLP-induced phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 (IC50 17.4+/-1.7 microM), but not p38. The cellular formation of phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) induced by fMLP was inhibited by TAC in a concentration-dependent manner (IC50 25.4+/-2.4 and 25.9+/-1.4 microM, respectively). TAC had no effect on the O2*- generation of PMA-stimulated and arachidonic acid (AA)-stimulated NADPH oxidase preparations. However, TAC caused concentration-related decrease of the membrane associated p47phoX in PMA-stimulated neutrophils (about 80% inhibition at 30 microM). We conclude that inhibition by TAC of the neutrophil respiratory burst is probably attributable to the blockade of the p42/44 MAPK and phospholipase D (PLD) pathways, the membrane translocation of PKC, and to the failure in assembly of a functional NADPH oxidase complex. Blockade of the PLC pathway by TAC probably plays a minor role.  相似文献   

16.
Phosphorylation of p47 phagocyte oxidase, (p47(phox)), one of the NADPH oxidase components, is essential for the activation of this enzyme and for superoxide production. p47(phox) is phosphorylated on multiple serine residues, but the kinases involved in this process in vivo remain to be characterized. We examined the role of extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinase in p47(phox) phosphorylation. Inhibition of ERK1/2 activation by PD98059, a specific inhibitor of ERK kinase 1/2, inhibited the fMLP-induced phosphorylation of p47(phox). However, PD98059 weakly affected PMA-induced p47(phox) phosphorylation, even though ERK1/2 activation was abrogated. This effect was confirmed using U0126, a second ERK kinase inhibitor. Unlike PD98059 and U0126, the p38 mitogen-activated protein kinase inhibitor SB203580 did not inhibit the phosphorylation of p47(phox) induced either by fMLP or by PMA. Two-dimensional phosphopeptide mapping analysis showed that, in fMLP-induced p47(phox) phosphorylation, PD98059 affected the phosphorylation of all the major phosphopeptides, suggesting that ERK1/2 may regulate p47(phox) phosphorylation either directly or indirectly via other kinases. In PMA-induced p47(phox) phosphorylation, GF109203X, a protein kinase C inhibitor, strongly inhibits p47(phox) phosphorylation. However, in fMLP-induced p47(phox) phosphorylation, PD98059 and GF109203X partially inhibited the phosphorylation of p47(phox) when tested alone, and exerted additive inhibitory effects on p47(phox) phosphorylation when tested together. These results show for the first time that the ERK1/2 pathway participates in the phosphorylation of p47(phox). Furthermore, they strongly suggest that p47(phox) is targeted by several kinase cascades in intact neutrophils activated by fMLP and is therefore a converging point for ERK1/2 and protein kinase C.  相似文献   

17.
Intracellular Ca2+ mobilization in U937 cells was studied. Stimulation of immature U937 cells with leukotriene B4 (LTB4) increased intracellular Ca2+ levels, whereas stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP) failed to increase intracellular Ca2+ levels. U937 cells cultured with 1.5% dimethyl sulfoxide (DMSO) for 4 days (DMSO-U937 cells) responded to LTB4 and possessed the ability to respond to fMLP. U937 cells cultured with 1 ng/ml phorbol myristate acetate (PMA) for 4 days (PMA-U937 cells) lost the ability to respond to LTB4, although they responded to fMLP. Treatment of DMSO-U937 cells with 100 ng/ml PMA for 3 min suppressed intracellular Ca2+ increase induced by LTB4 and fMLP. The fMLP-induced Ca2+ rise in PMA-U937 cells was not suppressed by a further treatment with 100 ng/ml PMA. DMSO-U937 cells responded to inositol 1,4,5-trisphosphate (IP3), indicating that IP3 functions as a messenger of intracellular Ca2+ mobilization from endoplasmic reticulum in U937. The magnitude and duration of the rise in Ca2+ induced by IP3 in DMSO-U937 cells treated with 100 ng/ml PMA for 3 min were similar to those of the controls. When DMSO-U937 cells were Ca2+-depleted, addition of Ca2+ resulted in a transient overshoot of Ca2+ influx. However, the transient overshoot was not observed, when PMA-U937 cells were tested. These results indicate that Ca2+ efflux in PMA-U937 cells is increased by an activated exit pump, which may be directly or indirectly related to the functional state of PMA-U937 cells.  相似文献   

18.
Wang GJ  Lin LC  Chen CF  Cheng JS  Lo YK  Chou KJ  Lee KC  Liu CP  Wu YY  Su W  Chen WC  Jan CR 《Life sciences》2002,71(9):1081-1090
The effects of timosaponin A-III (TA-III), from Rhizoma Anemarrhenae, on Ca(2+) mobilization in vascular endothelial cells and smooth muscle cells and on vascular tension have been explored. TA-III increased intracellular Ca(2+) concentrations ([Ca(2+)](i)) in endothelials cells at a concentration larger than 5 microM with an EC(50) of 15 microM, and increased [Ca(2+)](i) in smooth muscle cells at a concentration larger than 1 microM with an EC(50) of 8 microM. Within 5 min, the [Ca(2+)](i) signal was composed of a gradual rise, and the speed of rising depended on the concentration of TA-III. The [Ca(2+)](i) signal was abolished by removing extracellular Ca(2+) and was recovered after reintroduction of Ca(2+). The TA-III-induced [Ca(2+)](i) increases in smooth muscle cells were partly inhibited by 10 microM nifedipine or 50 microM La(3+), but was insensitive to 10 microM verapamil and diltiazem. TA-III (10-100 microM) inhibited 0.3 microM phenylephrine-induced vascular contraction, which was abolished by pretreatment with 100 microM N(omega)-nitro-L-arginine (L-NNA) or by denuding the aorta. TA-III also increased [Ca(2+)](i) in renal tubular cells with an EC(50) of 8 microM. Collectively, the results show for the first time that TA-III causes [Ca(2+)](i) increases in the vascular system. TA-III acted by causing Ca(2+) influx without releasing intracellular Ca(2+). TA-III induced relaxation of phenylephrine-induced vascular contraction via inducing release of nitric oxide from endothelial cells.  相似文献   

19.
A chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP), induced an acidification of cytosol by about 0.05 pH units in 30 sec followed by an alkalinization in human neutrophils. The quantitative contribution of acid production to the acidification was studied. The superoxide (O2 ) production stimulated by fMLP was not involved in the acidification because the production of acids in neutrophils from patients with chronic granulomatous disease who do not produce O2 , was the same as that in normal neutrophils. The intracellular acidification was completely inhibited by deoxyglucose, suggesting that energy metabolism enhanced upon stimulation by fMLP might be the main source of the acidification. Although enhancement of the lactate formation by fMLP was 0.8 nmol/106 cells, which could lower intracellular pH by 0.08 pH units, the lactate production could not explain the initial acidification because the production of lactate started at 1 min after the stimulation while the intracellular acidification began immediately after the stimulation. Mitochondrial respiratory inhibitors such as KCN and rotenone had no effects on the fMLP-induced intracellular acidification. The fMLP-induced production of CO2 in 30 sec through the hexose monophosphate shunt was only 2.6 pmol/106 cells, which was calculated to decrease intracellular pH by only 0.0014. Thus, changes of energy metabolism induced by fMLP does not explain the acidification.Abbreviations fMLP N-formyl-methionyl-leucyl-phenylalanine - BCECF-AM 2,7-bis(carboxyethyl)carboxyfluorescein acetoxymethyl ester - PMA phorbol 12-myristate 13-acetate - CGD chronic granulomatous disease - HMP hexose monophosphate - pHi intracellular pH  相似文献   

20.
Platelet-activated factor (PAF) ( ), formyl-methionyl-leucyl-phenylalanine (fMPL) ( ), phorbol 12-myristate 13 acetate (PMA) ( ), opsonized zymosan (OPZ) (0.01–1 mg/ml) were potent stimuli to superoxide generated by guinea-pig peritoneal macrophages. Superoxide generation by low (≤ −8M) concentrations but not high (≥−7M) concentrations of PAF or fMLP were attenuated by rolipram (100 μM) in the presence of 1 μM prostaglandin E2 (PGE2). That stimulated by PMA or OPZ, however, was unaffected. At 1μM, staurosporine was a potent inhibitor of superoxide generation stimulated by both fMLP and PAF but was without effect on that stimulated by OPZ. Superoxide generation stimulated by fMLP, PAF and OPZ was inhibited by 100 μM mepacrine. We conclude that superoxide generation stimulated by the chemoattractants fMLP and PAF involves a cyclic AMP regulated and cyclic AMP independent process. The cyclic AMP independent process is mediated by protein kinase C. Although protein kinase C seems a central element in the respiratory burst stimulated by fMLP, PAF and PMA that stimulated by OPZ bypasses this mechanism. Phospholipase A2 however, represents a common stage in the signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号