首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shimojima M 《Uirusu》2007,57(1):75-82
Feline immunodeficiency virus (FIV) induces a disease similar to acquired immunodeficiency syndrome (AIDS) in cats, yet in contrast to human immunodeficiency virus (HIV), CD4 is not the viral receptor. We identified a primary receptor for FIV as CD134 (OX40), a T cell activation antigen and costimulatory molecule. CD134 expression promotes viral binding and renders cells permissive for viral entry, productive infection, and syncytium formation. Infection is CXCR4-dependent, analogous to infection with X4 strains of HIV. Thus, despite the evolutionary divergence of the feline and human lentiviruses, both viruses use receptors that target the virus to a subset of cells that are pivotal to the acquired immune response. Further, we applied the new method for FIV receptor to Ebola virus entry factors with some modifications, and identified receptor-type tyrosine kinases, Axl and Dtk (members of Tyro3 family). Distribution of the molecules matches well with the Ebola virus tropism.  相似文献   

2.
Feline immunodeficiency virus (FIV) induces a disease state in the domestic cat that is similar to AIDS in human immunodeficiency virus (HIV)-infected individuals. As with HIV, FIV can be divided into primary and cell culture-adapted isolates. Adaptation of FIV to replicate and form syncytia in the Crandell feline kidney (CrFK) cell line is accompanied by an increase in the net charge of the V3 loop of the envelope glycoprotein, mirroring the changes observed in the V3 loop of HIV gp120 with the switch from a non-syncytium-inducing phenotype to a syncytium-inducing phenotype. These data suggest a common mechanism of infection with FIV and HIV. In this study, we demonstrate that cell culture-adapted strains of FIV are able to use the alpha-chemokine receptor CXCR4 for cell fusion. Following ectopic expression of human CXCR4 on nonpermissive human cells, the cells are able to fuse with FIV-infected feline cells. Moreover, fusion between FIV-infected feline cells and CXCR4-transfected human cells is inhibited by both anti-CXCR4 and anti-FIV antibodies. cDNAs encoding the feline CXCR4 homolog were cloned from both T-lymphoblastoid and kidney cell lines. Feline CXCR4 displayed 94.9% amino acid sequence identity with human CXCR4 and was found to be expressed widely on cell lines susceptible to infection with cell culture-adapted strains FIV. Ectopic expression of feline CXCR4 on human cells rendered the cells susceptible to FIV-dependent fusion. Moreover, feline CXCR4 was found to be as efficient as human CXCR4 in supporting cell fusion between CD4-expressing murine fibroblast cells and either HIV type 1 (HIV-1) or HIV-2 Env-expressing human cells. Previous studies have demonstrated that feline cells expressing human CD4 are not susceptible to infection with HIV-1; therefore, further restrictions to HIV-1 Env-dependent fusion may exist in feline cells. As feline and human CXCR4 support both FIV- and HIV-dependent cell fusion, these results suggest a close evolutionary link between FIV and HIV and a common mechanism of infection involving an interaction between the virus and a member of the seven-transmembrane domain chemokine receptor family of molecules.  相似文献   

3.
Feline CXCR4 and CCR5 were expressed in feline cells as fusion proteins with enhanced green fluorescent protein (EGFP). Expression of the EGFP fusion proteins was localized to the cell membrane, and surface expression of CXCR4 was confirmed by using a cross-species-reactive anti-CXCR4 monoclonal antibody. Ectopic expression of feline CCR5 enhanced expression of either endogenous feline CXCR4 or exogenous feline or human CXCR4 expressed from a retrovirus vector, indicating that experiments investigating the effect of CCR5 expression on feline immunodeficiency virus (FIV) infection must be interpreted with caution. Susceptibility to infection with cell culture-adapted strains of FIV or to syncytium formation following transfection with a eukaryotic vector expressing an env gene from a cell culture-adapted strain of virus correlated with expression of either human or feline CXCR4, whereas feline CCR5 had no effect. In contrast, neither CXCR4 nor CCR5 rendered cells permissive to either productive infection with primary strains of FIV or syncytium formation following transfection with primary env gene expression vectors. Screening a panel of Ghost cell lines expressing diverse human chemokine receptors confirmed that CXCR4 alone supported fusion mediated by the FIV Env from cell culture-adapted viruses. CXCR4 expression was upregulated in Ghost cells coexpressing CXCR4 and CCR5 or CXCR4, CCR5, and CCR3, and susceptibility to FIV infection could be correlated with the level of CXCR4 expression. The data suggest that beta-chemokine receptors may influence FIV infection by modulating the expression of CXCR4.  相似文献   

4.
The use of chemokine receptors as cell recognition signals is a property common to several lentiviruses, including feline, human, and simian immunodeficiency viruses. Previously, two feline immunodeficiency virus (FIV) isolates, V1CSF and Petaluma, were shown to use chemokine receptors in a strain-dependent manner to infect human peripheral blood mononuclear cells (PBMC) (J. Johnston and C. Power, J. Virol. 73:2491-2498, 1999). Since the sequences of these viruses differed primarily in regions of the FIV envelope gene implicated in receptor use and cell tropism, envelope chimeras of V1CSF and Petaluma were constructed to investigate the role of envelope diversity in the profiles of chemokine receptors used by FIV to infect primate cells. By use of a receptor-blocking assay, all viruses were found to infect human and macaque PBMC through a mechanism involving the CXCR4 receptor. However, infection by viruses encoding the V3-to-V5 region of the V1CSF surface unit was also inhibited by blockade of the CCR3 or CCR5 receptor. Similar results were obtained with GHOST cells, human osteosarcoma cells expressing specific combinations of chemokine receptors. CXCR4 was required for infection by all FIV strains, but viruses expressing the V3-to-V5 region of V1CSF required the concurrent presence of either CCR3 or CCR5. In contrast, CXCR4 alone was sufficient to allow infection of GHOST cells by FIV strains possessing the V3-to-V5 region of Petaluma. To assess the role of primate chemokine receptors in productive infection, Crandell feline kidney (CrFK) cells that expressed human CXCR4, CCR3, or CCR5 in addition to feline CXCR4 were generated. Sustained infection by viruses encoding the V3-to-V5 region of V1CSF was detected in CrFK cells expressing human CCR3 or CCR5 but not in cells expressing CXCR4 alone, while all CrFK cell lines were permissive to viruses encoding the V3-to-V5 region of Petaluma. These results indicate that FIV uses chemokine receptors to infect both human and nonhuman primate cells and that the profiles of these receptors are dependent on envelope sequence, and they provide insights into the mechanism by which xenoinfections may occur.  相似文献   

5.
The process of feline immunodeficiency virus (FIV) cell entry was examined using assays for virus replication intermediates. FIV subtype B was found to utilize the chemokine receptor CXCR4, but not CCR5, as a cellular receptor. Zidovudine blocked formation of late viral replication products most effectively, including circular DNA genome intermediates. Our findings extend the role of CXCR4 as a primary receptor for CD4-independent cell entry by FIV.  相似文献   

6.
Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when evaluated in Crandell feline kidney (CRFK) cells. With a series of bicyclam derivatives, 50% inhibitory concentrations (IC50s) against FIV were obtained in this cell system that were comparable to those obtained for HIV-1 IIIB replication in the human CD4(+) MT-4 T-cell line. The bicyclams were also able to block FIV replication in feline thymocytes, albeit at higher concentrations than in the CRFK cells. The prototype bicyclam AMD3100, 1-1'-[1,4-phenylene-bis(methylene)]-bis(1,4,8, 11-tetraazacyclotetradecane), was only fourfold less active in feline thymocytes (IC50, 62 ng/ml) than in CRFK cells (IC50, 14 ng/ml). AMD2763, 1,1'-propylene-bis(1,4,8, 11-tetraazacyclotetradecane), which is a less potent CXCR4 antagonist, was virtually inactive against FIV in feline thymocytes (IC50, >66.5 microgram/ml), while it was clearly active in CRFK cells (IC50, 0.9 microgram/ml). The CXC chemokine stromal-cell-derived factor 1alpha had anti-FIV activity in CRFK cells (IC50, 200 ng/ml) but not in feline thymocytes (IC50, >2.5 microgram/ml). When primary FIV isolates were evaluated for their drug susceptibility in feline thymocytes, the bicyclams AMD3100 and its Zn2+ complex, AMD3479, inhibited all six primary isolates at equal potency. The marked susceptibility of FIV to the bicyclams suggests that FIV predominantly uses feline CXCR4 for entering its target cells.  相似文献   

7.
The feline homolog of the α-chemokine receptor CXCR4 has recently been shown to support cell-cell fusion mediated by CXCR4-dependent strains of human immunodeficiency virus (HIV) and strains of feline immunodeficiency virus (FIV) that have been selected for growth in the Crandell feline kidney (CrFK) cell line. In this report we demonstrate that expression of CXCR4 alone is sufficient to render cells from diverse species permissive for fusion with FIV-infected cells, suggesting that CXCR4 is the sole receptor for CrFK-tropic strains of FIV, analogous to CD4-independent strains of HIV-2. To identify the regions of CXCR4 involved in fusion mediated by FIV, we screened panels of chimeric CXCR4 molecules for the ability to support fusion with FIV-infected cells. Human CXCR4 supported fusion more efficiently than feline CXCR4 and feline/human CXCR4 chimeras, suggesting that the second and third extracellular loops of human CXCR4 contain a critical determinant for receptor function. Rat/human CXCR4 chimeras suggested that the second extracellular loop contained the principal determinant for receptor function; however, chimeras constructed between human CXCR2 and CXCR4 revealed that the first and third loops of CXCR4 contribute to the FIV Env binding site, as replacement of these domains with the corresponding domains of CXCR2 rendered the molecule nonfunctional in fusion assays. Mutation of the DRY motif and the C-terminal cytoplasmic tail of CXCR4 did not affect the ability of the molecule to support fusion, suggesting that neither signalling via G proteins nor receptor internalization was required for fusion mediated by FIV; similarly, truncation of the N terminus of CXCR4 did not affect the function of the molecule as a receptor for FIV. CXCR4-transfected feline cells were rendered permissive for infection with both the CrFK-tropic PET isolate of FIV and the CXCR4-dependent RF strain of HIV-1, and susceptibility to infection correlated well with ability to support fusion. The data suggest that the second extracellular loop of CXCR4 is the major determinant of CXCR4 usage by FIV.  相似文献   

8.
Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and "OrfA" proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread.  相似文献   

9.
The env open reading frames of African lion (Panthera leo) lentivirus (feline immunodeficiency virus [FIV(Ple)]) subtypes B and E from geographically distinct regions of Africa suggest two distinct ancestries, with FIV(Ple)-E sharing a common ancestor with the domestic cat (Felis catus) lentivirus (FIV(Fca)). Here we demonstrate that FIV(Ple)-E and FIV(Fca) share the use of CD134 (OX40) and CXCR4 as a primary receptor and coreceptor, respectively, and that both lion CD134 and CXCR4 are functional receptors for FIV(Ple)-E. The shared usage of CD134 and CXCR4 by FIV(Fca) and FIV(Ple)-E may have implications for in vivo cell tropism and the pathogenicity of the E subtype among free-ranging lion populations.  相似文献   

10.
Miyazawa T 《Uirusu》2005,55(1):27-34
Lentiviruses consist of primate lentiviruses, ungulate lentiviruses and feline immunodeficiency virus (FIV). The primate lentiviruses utilize CD4 and chemokine receptors as a primary receptor and coreceptors, respectively. Recently we found that FIV utilizes CD134 and CXCR4 as a primary receptor and a coreceptor, respectively. FIV utilizes feline CD134 but not human CD134, whereas it can utilize both feline and human CXCR4. Exceptionally an FIV laboratory strain can infect human cells via CXCR4 only by the CD134-independent manner. Similarly several strains of primate lentiviruses also infect cells by the CD4-independent manner. In this review, the evolution of the lentiviruses and possible mechanism for lentiviral cross-species transmission is discussed.  相似文献   

11.
12.
Strains of the feline immunodeficiency virus (FIV) presently under investigation exhibit distinct patterns of in vitro tropism. In particular, the adaptation of FIV for propagation in Crandell feline kidney (CrFK) cells results in the selection of strains capable of forming syncytia with cell lines of diverse species origin. The infection of CrFK cells by CrFK-adapted strains appears to require the chemokine receptor CXCR4 and is inhibited by its natural ligand, stromal cell-derived factor 1alpha (SDF-1alpha). Here we found that inhibitors of CXCR4-mediated infection by human immunodeficiency virus type I (HIV-1), such as the bicyclam AMD3100 and short peptides derived from the amino-terminal region of SDF-1alpha, also blocked infection of CrFK by FIV. Nevertheless, we observed differences in the ranking order of the peptides as inhibitors of FIV and HIV-1 and showed that such differences are related to the species origin of CXCR4 and not that of the viral envelope. These results suggest that, although the envelope glycoproteins of FIV and HIV-1 are substantially divergent, FIV and HIV-1 interact with CXCR4 in a highly similar manner. We have also addressed the role of CXCR4 in the life cycle of primary isolates of FIV. Various CXCR4 ligands inhibited infection of feline peripheral blood mononuclear cells (PBMC) by primary FIV isolates in a concentration-dependent manner. These ligands also blocked the viral transduction of feline PBMC by pseudotyped viral particles when infection was mediated by the envelope glycoprotein of a primary FIV isolate but not by the G protein of vesicular stomatitis virus, indicating that they act at an envelope-mediated step and presumably at viral entry. These findings strongly suggest that primary and CrFK-adapted strains of FIV, despite disparate in vitro tropisms, share usage of CXCR4.  相似文献   

13.
CD134 is a primary binding receptor for feline immunodeficiency virus (FIV), and with CXCR4 facilitates infection of CD4(+) T cells. Human CD134 fails to support FIV infection. To delineate the regions important for defining virus specificity of CD134, we exchanged domains between human and feline CD134. The binding site for FIV surface glycoprotein (SU) is located in domain 1, in a region distinct from the natural ligand (CD134L)-binding site. Mutagenesis showed that Asp60 and Asp62 are required for interaction with FIV, and modeling studies localized these two residues to the outer edge of domain 1. Substitutions S60D and N62D, in conjunction with H45S, R59G and V64K, imparted both FIV SU binding and receptor function to human CD134. Finally, we demonstrated that soluble CD134 facilitates infection of CD134(-) CXCR4(+) target cells in a manner analogous to CD4 augmentation of HIV infection.  相似文献   

14.
15.
Two interleukin-2-dependent feline CD4-positive and CD8-negative cell lines, MYA-1 and the newly established FeL-039, were used as host cells for infection with feline immunodeficiency virus (FIV). All FIV strains used, the Petaluma strain and several new isolates, were highly cytopathic to MYA-1. In contrast, the kinetics of FIV replication in FeL-039 differed greatly depending on the strain tested, i.e., noninfectious strain, highly cytopathic strain, and less cytopathic strain producing a persistent state for a long period. It appears, therefore, that cell tropism for FIV differed with each FIV strain tested even in T-cell lines showing similar cell surface phenotypes. Cytopathicity of FIV is evidently due to both the FIV strain and the host T cell.  相似文献   

16.
New viral infections in humans usually result from viruses that have been transmitted from other species as zoonoses. For example, it is accepted widely that human immunodeficiency virus (HIV) is the result of the propagation and adaptation of a simian immunodeficiency virus (SIV) from nonhuman primates to man [1]. Previously, we reported productive infection of primary human cells in vitro by feline immunodeficiency virus (FIV) [2], a lentivirus that causes an immunodeficiency syndrome in cats similar to HIV in humans [3]. The present study extends these findings by demonstrating that cynomolgus macaques (Macaca fasicularis) infected with FIV exhibited clinical signs, including depletion of CD4+ cells and weight loss, that are consistent with FIV infection. The development of an antibody response to FIV gag-encoded proteins and detection of virus-specific sequences in sera, blood-derived cells, and necropsied tissue accompanied these changes. Moreover, the reactivation of FIV replication from latently infected cells was observed after stimulation in vitro with phorbol esters and in vivo with tetanus toxoid. The proposed use of lentiviruses in human gene therapy [4, 5] and of nonhuman cells and organs in xenotransplantation [6] has raised concerns about zoonoses as potential sources of new human pathogens. Therefore, the study of FIV infection of primate cells may provide insight into the principles underlying retroviral xenoinfections.  相似文献   

17.
Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.  相似文献   

18.
Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus).  相似文献   

19.
Independent studies have demonstrated different cell tropisms for molecular clones of feline immunodeficiency virus (FIV). In this report, we examined three clones, FIV-pF34, FIV-14, and FIV-pPPR, for replication in Crandell feline kidney (CrFK) cells, feline peripheral blood mononuclear cells (PBMC), and feline macrophage cultures. Importantly, cell tropism for these three clones was also examined in vivo. FIV-pF34 replication was efficient in CrFK cells but severely restricted in PBMC, whereas replication of FIV-pPPR was vigorous in PBMC but severely restricted in CrFK cells. FIV-14 replication was productive in both CrFK cells and PBMC. Interestingly, all three molecular clones replicated with similar efficiencies in primary feline monocyte-derived macrophages. In vivo, FIV-pF34 proved least efficient for establishing persistent infection, and proviral DNA when detectable, was localized predominately to nonlymphoid cell populations (macrophages). FIV-pPPR proved most efficient for induction of a persistent viremia in vivo, and proviral DNA was localized predominately in CD4(+) and CD8(+) lymphocyte subsets. FIV-14 inoculation of cats resulted in an infection characterized by seroconversion and localization of proviral DNA in CD4(+) lymphocytes only. Results of this study on diverse FIV molecular clones revealed that in vitro replication efficiency of an FIV isolate in PBMC directly correlated with replication efficiency in vivo, whereas proficiency for replication in macrophages in vitro was not predictive for replication potential in vivo. Also, infection of both CD4(+) and CD8(+) lymphocyte subsets was associated with higher virus load in vivo. Results of the studies on these three FIV clones, which exhibited differential cell tropism, indicated a correlation between in vitro and in vivo cell tropism and virus replication.  相似文献   

20.
Feline immunodeficiency virus (FIV) shares with T-cell tropic strains of human immunodeficiency virus type 1 (HIV-1) the use of the chemokine receptor CXCR4 for cellular entry. In order to map the interaction of the FIV envelope surface unit (SU) with CXCR4, full-length FIV SU-Fc as well as constructs with deletions of extended loop L2, V3, V4, or V5 were produced in stable CHO cell lines. Binding studies were performed using these proteins on 3201 cells (CXCR4(hi) CD134(-)), with or without the CXCR4 inhibitor AMD3100. The findings established that SU binding to CXCR4 specifically requires the V3 region of SU. Synthetic peptides spanning the V3 region as well as a panel of monoclonal antibodies (MAbs) to SU were used to further map the site of CXCR4 interaction. Both the SU V3-specific antibodies and the full-length V3 peptide potently blocked binding of SU to CXCR4 and virus entry. By using a set of nested peptides overlapping a region of SU specifically recognized by CD134-dependent neutralizing V3 MAbs, we showed that the neutralizing epitope and the region required for CXCR4 binding are within the same contiguous nine-amino-acid sequence of V3. Site-directed mutagenesis was used to reveal that serine 393 and tryptophan 394 at the predicted tip of V3 are required to facilitate entry into the target cell via CXCR4. Although the amino acid sequences are not identical between FIV and HIV, the ability of FIV to bind and utilize both feline and human CXCR4 makes the feline model an attractive venue for development of broad-based entry antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号