共查询到20条相似文献,搜索用时 15 毫秒
1.
Bicyclams, Selective Antagonists of the Human Chemokine Receptor CXCR4, Potently Inhibit Feline Immunodeficiency Virus Replication 下载免费PDF全文
Herman F. Egberink Erik De Clercq Arno L. W. Van Vliet Jan Balzarini Gary J. Bridger Geoffrey Henson Marian C. Horzinek Dominique Schols 《Journal of virology》1999,73(8):6346-6352
Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when evaluated in Crandell feline kidney (CRFK) cells. With a series of bicyclam derivatives, 50% inhibitory concentrations (IC50s) against FIV were obtained in this cell system that were comparable to those obtained for HIV-1 IIIB replication in the human CD4(+) MT-4 T-cell line. The bicyclams were also able to block FIV replication in feline thymocytes, albeit at higher concentrations than in the CRFK cells. The prototype bicyclam AMD3100, 1-1'-[1,4-phenylene-bis(methylene)]-bis(1,4,8, 11-tetraazacyclotetradecane), was only fourfold less active in feline thymocytes (IC50, 62 ng/ml) than in CRFK cells (IC50, 14 ng/ml). AMD2763, 1,1'-propylene-bis(1,4,8, 11-tetraazacyclotetradecane), which is a less potent CXCR4 antagonist, was virtually inactive against FIV in feline thymocytes (IC50, >66.5 microgram/ml), while it was clearly active in CRFK cells (IC50, 0.9 microgram/ml). The CXC chemokine stromal-cell-derived factor 1alpha had anti-FIV activity in CRFK cells (IC50, 200 ng/ml) but not in feline thymocytes (IC50, >2.5 microgram/ml). When primary FIV isolates were evaluated for their drug susceptibility in feline thymocytes, the bicyclams AMD3100 and its Zn2+ complex, AMD3479, inhibited all six primary isolates at equal potency. The marked susceptibility of FIV to the bicyclams suggests that FIV predominantly uses feline CXCR4 for entering its target cells. 相似文献
2.
Daniela del Mauro Donatella Matteucci Simone Giannecchini Fabrizio Maggi Mauro Pistello Mauro Bendinelli 《Journal of virology》1998,72(3):2199-2207
Feline immunodeficiency virus (FIV) provides a model system with which the significance of neutralizing antibody (NA) in immunosuppressive lentivirus infections may be studied. To date, no detailed analysis of the neutralization properties of primary FIV isolates has been reported. In this study, we have conducted the first comprehensive study of the sensitivity to autologous and heterologous neutralization in a lymphoid cell-based assay of 15 primary FIV isolates and, for comparison, of one tissue culture-adapted strain. Primary isolates in general proved highly NA resistant, although there was considerable individual variation. Variation was also observed in the capacity of immune sera to neutralize heterologous FIV isolates. The ability of sera to neutralize isolates or for isolates to be neutralized by sera did not correlate with epidemiological and genetic relatedness or with the quasispecies complexity of the isolates. From the study of specific-pathogen-free cats experimentally infected with viral isolates associated with NA of different breadths, it appears that the development of FIV vaccines cannot rely on the existence of viral strains inherently capable of inducing especially broad NA responses.Feline immunodeficiency virus (FIV) is a lentivirus that is regarded as the feline counterpart of human immunodeficiency virus (HIV) because it produces persistent infections of domestic cats which, after an incubation period of several years, progress to clinical manifestations of immunodeficiency and neurological damage that closely resemble those observed in HIV-infected humans. FIV is therefore a valuable model for investigating many aspects of AIDS pathobiology and control, including vaccination (4, 11, 39, 56).Based on DNA phylogenesis, FIV isolates worldwide have been classified into at least five distinct genetic subtypes, designated A to E, with uneven geographical distributions (2). While there is little hope of developing a monovalent vaccine capable of protecting across different FIV subtypes, a more reasonable goal is the development of one or several protective immunogens for each subtype and subsequent selection of the immunogens on the basis of the subtypes prevalent in the area where the vaccine is to be used (56). However, because genetic diversity is also high within a subtype, especially in the env region (2, 42), successful vaccines will have to induce immune responses effective against a wide range of antigenically diverse strains. Mapping the immunological relatedness of FIV strains belonging to the same genetic subtype therefore represents a prerequisite for identifying shared critical protective epitopes and an essential step for ongoing vaccine development efforts. Similar problems exist for HIV vaccine development (33).Although the humoral and cell-mediated immune responses that will eventually prove important for vaccine-induced protection against lentiviruses are unresolved (3, 7, 17), the ability to evoke a broadly reactive neutralizing-antibody (NA) response would seem to be an advantageous feature of candidate immunogens because it would at least contrast the dissemination of the initial viral inoculum from the site of entry (8, 9). In previous studies, we found that cats immunized with a fixed-cell vaccine were protected against FIV challenge in the apparent absence of NA (27, 28), but it is possible that a detectable NA response could be elicited with improved vaccines, adjuvants, and immunization regimens.FIV vaccines must be designed to protect against strains of FIV as they circulate in nature. For this reason, it is important to learn more about the immunobiological properties of fresh clinical isolates, including their ability to evoke and interact with NA and their neutralizing determinant(s). Here we report on the sensitivity of 15 FIV isolates subjected to minimal passage in culture to neutralization by autologous and heterologous immune sera. Primary FIV isolates proved only slightly prone to inhibition by immune sera. However, certain isolates were more neutralizable by heterologous sera than others and certain infected cat sera neutralized fairly large numbers of primary isolates. A relationship was also sought between neutralization properties of the isolates and immune sera and a number of factors that theoretically might influence the induction or the activity of cross-reactive NA, including epidemiological and genetic relatedness and quasispecies complexity of the isolates. Finally, to ascertain whether the cross-neutralizing potency of anti-FIV antibody was dependent on properties of the viruses that had induced their formation, we studied the NA response of specific-pathogen-free (SPF) cats inoculated with selected FIV isolates. 相似文献
3.
Functional importance of Vpx protein of human immunodeficiency virus type 2 was evaluated in various types of cells. In 8 lymphocytic or monocytic cell lines tested, vpx mutant virus grew as well as wild-type virus. Only in primary peripheral blood mononuclear cell cultures, severely retarded growth of mutant virus was observed. No replication of vpx-minus virus was detected in primary macrophage cells. A highly sensitive single-round replication assay system was used to determine the defective replication phase in primary mononuclear cells of vpx mutant virus. In all cell lines examined, vpx mutant displayed no abnormality. In contrast, the vpx mutant was demonstrated to be defective at an early stage of the infection cycle in primary cell cultures. No evidence of a replication-defect at a late phase in primary cells of the vpx mutant was obtained by a transfection-coculture method. These results indicate that the virion-associated Vpx protein is essential for early viral replication process in natural target cells such as primary macrophages. 相似文献
4.
Vaccine Protection against a Heterologous, Non-Syncytium-Inducing, Primary Human Immunodeficiency Virus 下载免费PDF全文
Marjorie Robert-Guroff Harvinder Kaur L. Jean Patterson Michel Leno Anthony J. Conley Philip M. McKenna Phillip D. Markham Ersell Richardson Kristine Aldrich Kamalpreet Arora Lalita Murty Lucretia Carter Susan Zolla-Pazner Faruk Sinangil 《Journal of virology》1998,72(12):10275-10280
Vaccine-induced protection of chimpanzees against laboratory-adapted and syncytium-inducing, multiply passaged primary human immunodeficiency virus type 1 (HIV-1) isolates, but not against non-syncytium-inducing, minimally passaged ones, has been demonstrated. Following challenge with such an isolate, HIV-15016, we obtained complete protection in one of three chimpanzees previously protected against low- and high-dose HIV-1SF2 exposures after immunization with an adenovirus-HIV-1MN gp160 priming–HIV-1SF2 gp120 boosting regimen. At challenge, the protected chimpanzee exhibited broad humoral immunity, including neutralizing antibody activity. These results demonstrate the potential of this combination vaccine strategy and suggest that vaccine protection against an HIV isolate relevant to infection of people is feasible. 相似文献
5.
In Vivo Distribution of the Human Immunodeficiency Virus/Simian Immunodeficiency Virus Coreceptors: CXCR4, CCR3, and CCR5 总被引:6,自引:3,他引:6 下载免费PDF全文
Linqi Zhang Tian He Andrew Talal Gloria Wang Sarah S. Frankel David D. Ho 《Journal of virology》1998,72(6):5035-5045
We have evaluated the in vivo distribution of the major human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) coreceptors, CXCR4, CCR3, and CCR5, in both rhesus macaques and humans. T lymphocytes and macrophages in both lymphoid and nonlymphoid tissues are the major cell populations expressing HIV/SIV coreceptors, reaffirming that these cells are the major targets of HIV/SIV infection in vivo. In lymphoid tissues such as the lymph node and the thymus, approximately 1 to 10% of the T lymphocytes and macrophages are coreceptor positive. However, coreceptor expression was not detected on follicular dendritic cells (FDC) in lymph nodes, suggesting that the ability of FDC to trap extracellular virions is unlikely to be mediated by a coreceptor-specific mechanism. In the thymus, a large number of immature and mature T lymphocytes express CXCR4, which may render these cells susceptible to infection by syncytium-inducing viral variants that use this coreceptor for entry. In addition, various degrees of coreceptor expression are found among different tissues and also among different cells within the same tissues. Coreceptor-positive cells are more frequently identified in the colon than in the rectum and more frequently identified in the cervix than in the vagina, suggesting that the expression levels of coreceptors are differentially regulated at different anatomic sites. Furthermore, extremely high levels of CXCR4 and CCR3 expression are found on the neurons from both the central and peripheral nervous systems. These findings may be helpful in understanding certain aspects of HIV and SIV pathogenesis and transmission. 相似文献
6.
7.
The Second Extracellular Loop of CXCR4 Determines Its Function as a Receptor for Feline Immunodeficiency Virus 总被引:4,自引:3,他引:4 下载免费PDF全文
Brian J. Willett Karen Adema Nikolaus Heveker Anne Brelot Laurent Picard Marc Alizon Julie D. Turner James A. Hoxie Stephen Peiper James C. Neil Margaret J. Hosie 《Journal of virology》1998,72(8):6475-6481
The feline homolog of the α-chemokine receptor CXCR4 has recently been shown to support cell-cell fusion mediated by CXCR4-dependent strains of human immunodeficiency virus (HIV) and strains of feline immunodeficiency virus (FIV) that have been selected for growth in the Crandell feline kidney (CrFK) cell line. In this report we demonstrate that expression of CXCR4 alone is sufficient to render cells from diverse species permissive for fusion with FIV-infected cells, suggesting that CXCR4 is the sole receptor for CrFK-tropic strains of FIV, analogous to CD4-independent strains of HIV-2. To identify the regions of CXCR4 involved in fusion mediated by FIV, we screened panels of chimeric CXCR4 molecules for the ability to support fusion with FIV-infected cells. Human CXCR4 supported fusion more efficiently than feline CXCR4 and feline/human CXCR4 chimeras, suggesting that the second and third extracellular loops of human CXCR4 contain a critical determinant for receptor function. Rat/human CXCR4 chimeras suggested that the second extracellular loop contained the principal determinant for receptor function; however, chimeras constructed between human CXCR2 and CXCR4 revealed that the first and third loops of CXCR4 contribute to the FIV Env binding site, as replacement of these domains with the corresponding domains of CXCR2 rendered the molecule nonfunctional in fusion assays. Mutation of the DRY motif and the C-terminal cytoplasmic tail of CXCR4 did not affect the ability of the molecule to support fusion, suggesting that neither signalling via G proteins nor receptor internalization was required for fusion mediated by FIV; similarly, truncation of the N terminus of CXCR4 did not affect the function of the molecule as a receptor for FIV. CXCR4-transfected feline cells were rendered permissive for infection with both the CrFK-tropic PET isolate of FIV and the CXCR4-dependent RF strain of HIV-1, and susceptibility to infection correlated well with ability to support fusion. The data suggest that the second extracellular loop of CXCR4 is the major determinant of CXCR4 usage by FIV. 相似文献
8.
Jia Weng Dimitry N. Krementsov Sandhya Khurana Nathan H. Roy Markus Thali 《Journal of virology》2009,83(15):7467-7474
In vitro propagation studies have established that human immunodeficiency virus type 1 (HIV-1) is most efficiently transmitted at the virological synapse that forms between producer and target cells. Despite the presence of the viral envelope glycoprotein (Env) and CD4 and chemokine receptors at the respective surfaces, producer and target cells usually do not fuse with each other but disengage after the viral particles have been delivered, consistent with the idea that syncytia, at least in vitro, are not required for HIV-1 spread. Here, we tested whether tetraspanins, which are well known regulators of cellular membrane fusion processes that are enriched at HIV-1 exit sites, regulate syncytium formation. We found that overexpression of tetraspanins in producer cells leads to reduced syncytium formation, while downregulation has the opposite effect. Further, we document that repression of Env-induced cell-cell fusion by tetraspanins depends on the presence of viral Gag, and we demonstrate that fusion repression requires the recruitment of Env by Gag to tetraspanin-enriched microdomains (TEMs). However, sensitivity to fusion repression by tetraspanins varied for different viral strains, despite comparable recruitment of their Envs to TEMs. Overall, these data establish tetraspanins as negative regulators of HIV-1-induced cell-cell fusion, and they start delineating the requirements for this regulation.The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is incorporated into released virus particles and enables the virus to attach to and fuse with target cells in order to initiate the infectious cycle. Before Env mediates the fusion of viral and cellular membranes, i.e., while it is still incorporated in the plasma membrane of the infected cell, it drives the adhesion between virus producer cell and target cells, which gives rise to the formation of the so-called virological synapse (VS) (21, 24, 35, 36). The VS shares certain characteristics with the immunological synapse, including an accumulation of specific cellular membrane proteins and lipids (see, e.g., reference 5), and it provides efficient and secure transfer of virus particles from infected to uninfected cells (8). Importantly, the two adhering cells, like the pre- and postsynaptic cells that form an immunological synapse, typically do not fuse during such cell-to-cell transfer events. At first glance this seems surprising, as HIV-1 Env, unlike many other viral envelope proteins, can induce membrane fusion at physiological pH. Also, adhesion of producer and target cell, which can be initiated when the uropod of the infected cell contacts the uninfected cell (8), followed by reorganization of the cytoskeleton (25) and formation of full-fledged synapses, can extend over minutes (see, e.g., reference 20). This process should allow enough time to trigger cell-cell fusion. However, it is now well established that newly synthesized Env is efficiently internalized upon its arrival at the host cell plasma membrane, unless it is recruited into budding structures by viral Gag (see, e.g., reference 11; also discussed in references 3 and 6). Further, and likely also contributing to the prevention of producer-target cell fusion, immature Gag at the host cell plasma membrane represses Env-driven fusion, and this repression is lost only once Gag is processed in released virions (9, 22, 23, 31, 50). Finally, because syncytia are clearly not required for the transmission of virus from cell to cell in vitro and are possibly detrimental to virus spread in vivo, we hypothesize that HIV-1 cooperates with cellular membrane proteins to prevent cell-cell fusion.Members of a group of cellular proteins known as tetraspanins play an important role as regulators of cellular fusion processes, including myotube formation and fertilization (28, 30, 44; reviewed in, e.g., reference 17). As membrane organizers, these proteins homo- and heteromultimerize and associate with other cellular proteins to form variably sized but discrete microdomains, the so-called tetraspanin-enriched microdomains (TEMs) (29) (also called TERMs [1] or TEAs [12]). Knowledge of the molecular mechanisms through which tetraspanins regulate the fusion of cellular membranes is still lacking, though the available evidence strongly suggests (i) that these proteins are not themselves fusogens but rather that they coordinate the fusion activity of other cellular proteins and (ii) that they can act both as positive and negative regulators of cellular fusion processes. For instance, several in vivo studies unequivocally showed that CD9 expression in oocytes is essential for sperm-egg fusion (27, 28, 30), but CD9 and CD81 ablation in monocytes enhances the formation of multinucleated phagocytes that are involved in immune defense against certain microbes (45). Interestingly, the same two tetraspanins are also known to regulate virus-induced fusion processes. CD9 is involved in regulating cell-cell fusion driven by canine distemper virus, as the anti-CD9 antibody K41 inhibits syncytium formation by this virus (42), and CD81 is a necessary cofactor for infection of cells by hepatitis C virus (see, e.g., references 2 and 52). Finally, tetraspanins on uninfected (target) cells inhibit HIV-1-induced cell-cell fusion (14). This fusion regulation is likely due to interactions of CD9 and CD81 with CD4 and coreceptors at the surface of target cells, though the tetraspanin CD63 has also been implicated in the trafficking of CXCR4 to the plasma membrane (51).Because tetraspanins in HIV-1-producing cells are enriched at budding sites (4, 10, 13, 15, 33, 46, 49) and at the VS (26), we hypothesized that they regulate Env-driven fusion at the VS. Here, we document that tetraspanins in HIV-1-producing cells can indeed restrict syncytium formation. We also define some of the requirements for this fusion inhibition, thus laying the necessary groundwork for future mechanistic analyses. In addition, the characterization of cell-cell fusion regulation parameters in this study will allow the fusion-inhibitory activities to be distinguished from other regulatory functions exerted by tetraspanins, such as the modulation of virion infectivity and the regulation of cell-to-cell transmission of HIV-1. 相似文献
9.
PITALRE, the Catalytic Subunit of TAK, Is Required for Human Immunodeficiency Virus Tat Transactivation In Vivo 总被引:10,自引:2,他引:10 下载免费PDF全文
Moses O. Gold Xinzhen Yang Christine H. Herrmann Andrew P. Rice 《Journal of virology》1998,72(5):4448-4453
The human cdc2-related kinase PITALRE is the catalytic component of TAK, the Tat-associated kinase. Previously, we have proposed that TAK is a cellular factor that mediates Tat transactivation function. Here we demonstrate that transient overexpression of PITALRE specifically squelches Tat-1 activation of both a transfected and an integrated human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR), suggesting that PITALRE mediates Tat function as a multiprotein complex. A catalytic mutant of PITALRE, D167N, was found to be more efficient than wild-type PITALRE in squelching Tat transactivation. Neither wild-type PITALRE nor D167N was able to squelch transactivation of the human T-cell leukemia type 1 LTR by the Tax protein. Additionally, we show that artificial targeting of PITALRE to a nascent RNA element, in the absence of Tat, activated HIV-1 LTR expression. These results indicate that a PITALRE-containing complex mediates transactivation by Tat and suggest that Tat proteins function by localizing such a PITALRE-containing complex to the site of the transcribing provirus. 相似文献
10.
Human Immunodeficiency Virus Type 1 Replication Is Modulated by Host Cyclophilin A Expression Levels 总被引:4,自引:9,他引:4 下载免费PDF全文
Human immunodeficiency virus type 1 (HIV-1) Gag and the cellular protein cyclophilin A form an essential complex in the virion core: virions produced by proviruses encoding Gag mutants with decreased cyclophilin A affinity exhibit attenuated infectivity, as do virions produced in the presence of the competitive inhibitor cyclosporine. The A224E Gag mutant has no effect on cyclophilin A affinity but renders HIV-1 replication cyclosporine resistant in Jurkat T cells. In contrast, A224E mutant virus is dead in H9 T cells, although replication is rescued by cyclosporine or by expression in cis of a Gag mutant that decreases cyclophilin A-affinity. The observation that disruption of the Gag-cyclophilin A interaction rescues A224E mutant replication in H9 cells prompted experiments which revealed that, relative to Jurkat cells, H9 cells express greater quantities of cyclophilin A. The resulting larger quantity of cyclophilin A shown to be packaged into virions produced by H9 cells is presumably disruptive to the A224E mutant virion core. Further evidence that increased cyclophilin A expression in H9 cells is of functional relevance was provided by the finding that Gag mutants with decreased cyclophilin A affinity are dead in Jurkat cells but capable of replication in H9 cells. Similarly, cyclosporine concentrations which inhibit wild-type HIV-1 replication in Jurkat cells stimulate HIV-1 replication in H9 cells. These results suggest that HIV-1 virion infectivity imposes narrow constraints upon cyclophilin A stoichiometry in virions and that infectivity is finely tuned by host cyclophilin A expression levels. 相似文献
11.
12.
Noriyuki Otsuki Yuichiro Nakatsu Toru Kubota Tsuyoshi Sekizuka Fumio Seki Kouji Sakai Makoto Kuroda Ryoji Yamaguchi Makoto Takeda 《PloS one》2013,8(12)
Canine distemper virus (CDV) becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells. 相似文献
13.
ROBERT M. MCALLISTER JEAN E. FILBERT MARGERY O. NICOLSON ROBERT W. RONGEY MURRAY B. GARDNER RAYMOND V. GILDEN ROBERT J. HUEBNER 《Nature: New biology》1971,230(17):279-282
FELINE sarcoma virus (FSV) transforms human embryo cells in vitro1; it therefore seemed interesting to determine whether this virus could transform human osteosarcoma cells. Defective Moloney sarcoma virus genome can be rescued from non-producer hamster tumour cells by feline leukaemia virus (FeLV)2 and because FSV stocks also contain excess FeLV (ref. 1 and unpublished observations of R. V. G.), it was hoped that human osteosarcoma cells transformed by FSV and co-infected with FeLV might yield a human sarcoma virus. 相似文献
14.
Identification of a Human Immunodeficiency Virus Type 2 (HIV-2) Encapsidation Determinant and Transduction of Nondividing Human Cells by HIV-2-Based Lentivirus Vectors 总被引:2,自引:3,他引:2 下载免费PDF全文
Eric Poeschla James Gilbert Xinqiang Li Shiang Huang Anthony Ho Flossie Wong-Staal 《Journal of virology》1998,72(8):6527-6536
Although previous lentivirus vector systems have used human immunodeficiency virus type 1 (HIV-1), HIV-2 is less pathogenic in humans and is amenable to pathogenicity testing in a primate model. In this study, an HIV-2 molecular clone that is infectious but apathogenic in macaques was used to first define cis-acting regions that can be deleted to prevent HIV-2 genomic encapsidation and replication without inhibiting viral gene expression. Lentivirus encapsidation determinants are complex and incompletely defined; for HIV-2, some deletions between the major 5′ splice donor and the gag open reading frame have been shown to minimally affect encapsidation and replication. We find that a larger deletion (61 to 75 nucleotides) abrogates encapsidation and replication but does not diminish mRNA expression. This deletion was incorporated into a replication-defective, envelope-pseudotyped, three-plasmid HIV-2 lentivirus vector system that supplies HIV-2 Gag/Pol and accessory proteins in trans from an HIV-2 packaging plasmid. The HIV-2 vectors efficiently transduced marker genes into human T and monocytoid cell lines and, in contrast to a murine leukemia virus-based vector, into growth-arrested HeLa cells and terminally differentiated human macrophages and NTN2 neurons. Vector DNA could be detected in HIV-2 vector-transduced nondividing CD34+ CD38− human hematopoietic progenitor cells but not in those cells transduced with murine vectors. However, stable integration and expression of the reporter gene could not be detected in these hematopoietic progenitors, leaving open the question of the accessibility of these cells to stable lentivirus transduction. 相似文献
15.
CXCR4 as a Functional Coreceptor for Human Immunodeficiency Virus Type 1 Infection of Primary Macrophages 总被引:4,自引:6,他引:4 下载免费PDF全文
Graham Simmons Jacqueline D. Reeves ine McKnight Nathalie Dejucq Sam Hibbitts Christine A. Power Emma Aarons Dominique Schols Erik De Clercq Amanda E. I. Proudfoot Paul R. Clapham 《Journal of virology》1998,72(10):8453-8457
The coreceptors used by primary syncytium-inducing (SI) human immunodeficiency virus type 1 isolates for infection of primary macrophages were investigated. SI strains using only CXCR4 replicated equally well in macrophages with or without CCR5 and were inhibited by several different ligands for CXCR4 including SDF-1 and bicyclam derivative AMD3100. SI strains that used a broad range of coreceptors including CCR3, CCR5, CCR8, CXCR4, and BONZO infected CCR5-deficient macrophages about 10-fold less efficiently than CCR5+ macrophages. Moreover, AMD3100 blocked infection of CCR5-negative macrophages by these strains. Our results therefore demonstrate that CXCR4, as well as CCR5, is used for infection of primary macrophages but provide no evidence for the use of alternative coreceptors. 相似文献
16.
Molecular Basis for Cell Tropism of CXCR4-Dependent Human Immunodeficiency Virus Type 1 Isolates 下载免费PDF全文
Kenzo Tokunaga Michael L. Greenberg Michael A. Morse R. Ian Cumming H. Kim Lyerly Bryan R. Cullen 《Journal of virology》2001,75(15):6776-6785
Laboratory isolates of human immunodeficiency virus type 1 (HIV-1) that utilize CXCR4 as a coreceptor infect primary human macrophages inefficiently even though these express a low but detectable level of cell surface CXCR4. In contrast, infection of primary macrophages by primary CXCR4-tropic HIV-1 isolates is readily detectable. Here, we provide evidence suggesting that this difference in cell tropism results from a higher requirement for cell surface CXCR4 for infection by laboratory HIV-1 isolates. Transfected COS7 cells that express a high level of CD4 but a low level of CXCR4 were infected significantly more efficiently by two primary CXCR4-tropic HIV-1 isolates compared to the prototypic laboratory HIV-1 isolate IIIB. More importantly, overexpression of either wild-type or signaling-defective CXCR4 on primary macrophages dramatically enhanced the efficiency of infection by the laboratory HIV-1 isolate yet only modestly enhanced infection by either primary CXCR4-tropic virus. Overexpression of CD4 had, in contrast, only a limited effect on macrophage infection by the laboratory HIV-1, although infection by the primary isolates was markedly enhanced. We therefore conclude that the laboratory CXCR4-tropic HIV-1 isolate exhibits a significantly higher CXCR4 requirement for efficient infection than do the primary CXCR4-tropic isolates and that this difference can explain the poor ability of the laboratory HIV-1 isolate to replicate in primary macrophages. More generally, we propose that the cell tropisms displayed by different strains of HIV-1 in culture can largely be explained on the basis of differential requirements for cell surface CD4 and/or coreceptor expression levels. 相似文献
17.
Determinants for Sensitivity of Human Immunodeficiency Virus Coreceptor CXCR4 to the Bicyclam AMD3100 总被引:9,自引:7,他引:9 下载免费PDF全文
Batrice Labrosse Anne Brelot Nikolaus Heveker Nathalie Sol Dominique Schols Erik De Clercq Marc Alizon 《Journal of virology》1998,72(8):6381-6388
The bicyclam AMD3100 is a potent and selective inhibitor of the replication of human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2). It was recently demonstrated that the compound inhibited HIV entry through CXCR4 but not through CCR5. Selectivity of AMD3100 for CXCR4 was further indicated by its lack of effect on HIV-1 and HIV-2 infection mediated by the CCR5, CCR3, Bonzo, BOB, and US28, coreceptors. AMD3100 completely blocked HIV-1 infection mediated by a mutant CXCR4 bearing a deletion of most of the amino-terminal extracellular domain. In contrast, relative resistance to AMD3100 was conferred by different single amino acid substitutions in the second extracellular loop (ECL2) or in the adjacent membrane-spanning domain, TM4. Only substitutions of a neutral residue for aspartic acid and of a nonaromatic residue for phenylalanine (Phe) were associated with drug resistance. This suggests a direct interaction of AMD3100 with these amino acids rather than indirect effects of their mutation on the CXCR4 structure. The interaction of aspartic acids of ECL2 and TM4 with AMD3100 is consistent with the positive charge of bicyclams, which might block HIV-1 entry by preventing electrostatic interactions between CXCR4 and the HIV-1 envelope protein gp120. Other features of AMD3100 must account for its high antiviral activity, in particular the presence of an aromatic linker between the cyclam units. This aromatic group might engage in hydrophobic interactions with the Phe-X-Phe motifs of ECL2 or TM4. These results confirm the importance of ECL2 for the HIV coreceptor activity of CXCR4. 相似文献
18.
Segregation of CD4 and CXCR4 into Distinct Lipid Microdomains in T Lymphocytes Suggests a Mechanism for Membrane Destabilization by Human Immunodeficiency Virus 下载免费PDF全文
Recent evidence has suggested that plasma membrane sphingolipids and cholesterol spontaneously coalesce into raft-like microdomains and that specific proteins, including CD4 and some other T-cell signaling molecules, sequester into these rafts. In agreement with these results, we found that CD4 and the associated Lck tyrosine kinase of peripheral blood mononuclear cells and H9 leukemic T cells were selectively and highly enriched in a low-density lipid fraction that was resistant at 0 degrees C to the neutral detergent Triton X-100 but was disrupted by extraction of cholesterol with filipin or methyl-beta-cyclodextrin. In contrast, the CXCR4 chemokine receptor, a coreceptor for X4 strains of human immunodeficiency virus type 1 (HIV-1), was almost completely excluded from the detergent-resistant raft fraction. Accordingly, as determined by immunofluorescence with confocal microscopy, CD4 and CXCR4 did not coaggregate into antibody-induced cell surface patches or into patches of CXCR4 that formed naturally at the ruffled edges of adherent cells. The CXCR4 fluorescent patches were extracted with cold 1% Triton X-100, whereas the CD4 patches were resistant. In stringent support of these data, CD4 colocalized with patches of cholera toxin bound to the raft-associated sphingoglycolipid GM1, whereas CXCR4 did not. Addition of the CXCR4-activating chemokine SDF-1 alpha did not induce CXCR4 movement into rafts. Moreover, binding of purified monomeric gp120 envelope glycoproteins from strains of HIV-1 that use this coreceptor did not stimulate detectable redistributions of CD4 or CXCR4 between their separate membrane domains. However, adsorption of multivalent gp120-containing HIV-1 virion particles appeared to destabilize the local CD4-containing rafts. Indeed, adsorbed HIV-1 virions were detected by immunofluorescence microscopy and were almost all situated in nonraft regions of the cell surface. We conclude that HIV-1 initially binds to CD4 in a raft domain and that its secondary associations with CXCR4 require shifts of proteins and associated lipids away from their preferred lipid microenvironments. Our evidence suggests that these changes in protein-lipid interactions destabilize the plasma membrane microenvironment underlying the virus by at least several kilocalories per mole, and we propose that this makes an important contribution to fusion of the viral and cellular membranes during infection. Thus, binding of HIV-1 may be favored by the presence of CD4 in rafts, but the rafts may then disperse prior to the membrane fusion reaction. 相似文献
19.
Nonstructural C Protein Is Required for Efficient Measles Virus Replication in Human Peripheral Blood Cells 总被引:2,自引:2,他引:2 下载免费PDF全文
Carine Escoffier Serge Mani Sverine Vincent Claude P. Muller Martin Billeter Denis Gerlier 《Journal of virology》1999,73(2):1695-1698
The P gene of measles virus (MV) encodes the phosphoprotein, a component of the virus ribonucleoprotein complex, and two nonstructural proteins, C and V, with unknown functions. Growth of recombinant MV, defective in C or V expression, was explored in human peripheral blood mononuclear cells (PBMC). The production of infectious recombinant MV V− was comparable to that of parental MV tag in simian Vero fibroblasts and in PBMC. In contrast, MV C− progeny was strongly reduced in PBMC but not in Vero cells. Consistently, the expression of both hemagglutinin and fusion proteins, as well as that of nucleoprotein mRNA, was lower in MV C−-infected PBMC. Thus, efficient replication of MV in natural host cells requires the expression of the nonstructural C protein. The immunosuppression that accompanies MV infection is associated with a decrease in the in vitro lymphoproliferative response to mitogens. MV C− was as potent as MV tag or MV V− in inhibiting the phytohemagglutinin-induced proliferation of PBMC, indicating that neither the C protein nor the V protein is directly involved in this effect. 相似文献
20.
Patterns of CCR5, CXCR4, and CCR3 Usage by Envelope Glycoproteins from Human Immunodeficiency Virus Type 1 Primary Isolates 总被引:6,自引:2,他引:4 下载免费PDF全文
Hernan A. Bazan Ghalib Alkhatib Christopher C. Broder Edward A. Berger 《Journal of virology》1998,72(5):4485-4491
Coreceptor usage by Envs from diverse primary human immunodeficiency virus type 1 isolates was analyzed by a vaccinia virus-based expression and assay system. Usage of recombinant CCR5 and CXCR4 correlated closely with fusogenicity toward macrophages and T-cell lines expressing endogenous coreceptors. Surprisingly, recombinant CCR3 was utilized by most primary and T-cell-line-adapted Envs. Endogenous CXCR4 in macrophages was functional as a coreceptor. 相似文献