首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The salt-induced H+-ATPase activity and osmotic adjustment responses of Catharanthus roseus (L.) G. Don suspension cultures were studied. Cells were treated with 0, 50 or 100mM NaCl for 7days or were maintained for 8 months with 50 mM NaCl (50T cells). Growth, osmotic potential (), ions content, soluble sugars, proline and total amino acids were determined in the sap of control and salt-treated cells. Salinity reduced cell growth and . The higher decrease in the in salt-treated cells was due to higher accumulation of Na+ and Cl. The levels of organic solutes, such as soluble sugars, free proline and total amino acids, increased with salt treatment. These results suggest that salt-tolerant cells are able to osmotically adjust. Salinity treatments stimulated H+-ATPase activity. Immunodetection of the enzyme showed that the increased activity was due to an increased amount of protein in the plasmalemma. The induction by NaCl, especially at 100 mM NaCl and for 50T cells, could account for the K+ and Cl uptake but not for higher or lower tolerance.  相似文献   

2.
Summary The chemical activities, (a), of Na+ and K+ were determined in large mature and in small immature frog oocytes, using open-tipped micropipettes and ionselective microelectrodes. The average chemical concentrations,c, of Na+ and K+ were determined by spectrophotometry and by electron probe X-ray microanalysis. The apparent activity coefficient (app) was calculated for each ion as the ratio,a/c.With development, (a Na/a K) decreased four to fivefold and (c Na/c K) increased six to sevenfold. In the large mature oocytes, Na app was measured to be 0.08±0.02 and K app lay within the range 1.15±0.03 to 1.29±0.04, constituting the smallest value for Na+ and largest value for K+, respectively, thus far reported. This intracellular value of K app was substantially greater than the activity coefficient of K+ in the external medium (0.76). The data suggest that the inequality of Na app and K app in this and probably other cells reflects the development of subcellular compartmentalization of ions. Possible intracellular sites of ionic compartmentalization are considered.  相似文献   

3.
Summary The effect of the concentration of the central vacuolar sap on water permeability previously demonstrated onNitella internode (Tazawa and Kamiya 1966), has been further studied. By using a technique of vacuole perfusion the ionic concentration of the cell sap has been modified independently of its tonicity. Transcellular water permeability has been measured by means of a double-chamber osmometer.When the tonicities of artificial saps were adjusted to that of the natural cell sap, wide variations in the concentration of K+, Na+, or Ca++ in the vacuole did not bring about any change in the magnitude of water permeability. On the other hand, water permeability was strongly influenced by varying the tonicity of the vacuolar medium by addition of mannitol. It increased when the tonicity was lowered from the normal level, while it decreased when tonicity was heightened. Water permeability was also decreased by increase in the tonicity of the external medium.Analysis of the results showed that the specific resistance to water flow across the plasmalemma and the tonoplast in series (the reciprocal of the water permeability kp) was related to the osmotic pressures of the intracellular ( i) and the extracellular ( 0) medium by the empirical formula, l/kp=0.088 + 0.015 . + 0.0074 0. Thus, intra- and extracellular tonicities influence the water permeability of theNitella internode independently of each other. The decrease in water permeability by increase in tonicity of the intra- or extracellular medium may be explained in terms of the effect of these tonicities on hydration of the cell membranes.The water permeability ofLamprothamnium, a brackish water Characeae was only one fourth that ofNitella, a fresh water Characeae. The lower permeability inLamprothamnium may be accounted for in terms of the high tonicities of its cell sap and external medium.  相似文献   

4.
Functionally active preparations of Na+,K+-ATPase isozymes from calf brain that contain catalytic subunits of three types (1, 2, and 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of their membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K+-ATPase of the 11 type and minor amounts of isozymes of the 22(1) and the 31(2) type. The axolemma contains 21 and 31 isozymes. A carbohydrate analysis indicated that 11 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the 1 isoform. An enhanced sensitivity of the 3 catalytic subunit of Na+,K+-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 Y493 was localized (residue numbering is that of the human 3 subunit). This sequence corresponds to one of the regions of the greatest variability in 1-, 2-, 3-, and 4-subunits, but at the same time, it is characteristic of the 3 isoforms of various species. The presence of the 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K+-ATPase 31 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the 3 catalytic subunit was shown.  相似文献   

5.
Summary Transepithelial electrogenic Na+ transport (INa) was investigated in the coprodeum of 20-days-old chicken embryos in Ussing chambers. Short circuit current (Isc) and transepithelial resistance (Rt) were 14.7±4.8 A · cm-2 (n=12) and 0.53±0.09 k · cm-2 (n=12), respectively. INa was calculated from changes in Isc by substitution of mucosal Na+ by (N-methyl-d-glucamine) (NMDG). Isc inversed during Na+ removal, and INa was found to be 27.8±4.7 A · cm-2 (n=12). Amiloride (100 mol · l-1) inhibited only about 60% of INa. Analysis of Isc fluctuations revealed a Lorentzian component in the power density spectrum with a corner frequency of about 57 Hz. This component was not correlated to INa, and its origin is still unclear. Removal of mucosal Ca2+ increased INa about 2.5-fold due to an increase of the amiloride-insensitive component of INa in additionally investigated adult tissues. The results clearly show that this is due to a non-selective cation channel with an apparent order of selectivity Cs+>Na+=K+>Rb+>Li+. The Ca2+ concentration required to block 50% of the Isc was about 18 mol · l-1. The I sc Ca could also be supressed by other divalent cations such as Mg2+ and Ba2+. Additionally, an INa-linked Lorentzian component occurred which dominated the control spectrum with a significantly higher corner frequency (about 88 Hz). The results indicate that Na+ absorption in the coprodeum of the chicken embryo is more complex than in adult hens. However, the Ca2+ sensitivity of INa is similar to comparable effects described for other epithelia. This possibly reflects the existence of two types of amiloride-insensitive apical cation channels as pathways for Na+ absorption, which may be involved to differing degrees in ontogenetic developments of nonselective channels to Na+-specific ion channels.Abbreviations DPL direct-linear-plot method - slope of the back-ground noise component - EGTA ethylene glycol-bi(2-amino-ethylether)-N,N,N,N-tetraacetic acid - f frequency - f c corner frequency of the Lorentzian noise component - G t transepithelial conductance - HEPES N-hydroxyethylpiperazine-N-ethanesulfonic acid - I sc short-circuit current - I Na transepithelial sodium current - I sc Ca Ca2+-sensitive short-circuit current - K m Ca Michaelis-Menten constant for Ca2+ - K B power density of the background noise component at f=1Hz - m mucosal - NMDG N-methyl-D-glucamine - R t transepithelial resistance - s serosal - SEM standard error of mean - S(f) power density of the Lorentzian noise component - S o plateau value of the Lorentzian noise component  相似文献   

6.
The respiratory chain of marine and moderately halophilic bacteria requires Na+ for maximum activity, and the site of Na+-dependent activation is located in the NADH-quinone reductase segment. The Na+-dependent NADH-quinone reductase purified from marine bacteriumVibrio alginolyticus is composed of three subunits, , , and , with apparentM r of 52, 46, and 32kDa, respectively. The FAD-containing -subunit reacts with NADH and reduces ubiquinone-1 (Q-1) by a one-electron transfer pathway to produce ubisemiquinones. In the presence of the FMN-containing -subunit and the -subunit, Q-1 is converted to ubiquinol-1 without the accumulation of free radicals. The reaction catalyzed by the -subunit is strictly dependent on Na+ and is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), which is tightly coupled to the electrogenic extrusion of Na+. A similar type of Na+-translocating NADH-quinone reductase is widely distributed among marine and moderately halophilic bacteria. The respiratory chain ofV. alginolyticus contains another NADH-quinone reductase which is Na+ independent and has no energy-transducing capacity. These two types of NADH-quinone reductase are quite different with respect to their mode of quinone reduction and their sensitivity toward NADH preincubation.  相似文献   

7.
Summary The countertransport of Ca2+ and Na+ across the membranes of the unicellular fresh-water algaChlamydomonas reinhardtii CW-15 and twoDunaliella species differing in salt tolerance was studied. All algae used are devoid of cell walls. The calcium uptake by twoDunaliella species depended markedly on the intracellular sodium concentration. This calcium uptake was accompanied by Na+ release. For 15 and 30 s after artificial gradient formation (Naint + greater than Naext +) the ratio of released Na+ to absorbed Ca2+ was 31 and 41, respectively. For the extremely halotolerantD. salina, the apparent Michaelis constant of the Ca2+ uptake was 33 M, and for the marine halotolerant algaD. maritima, it was equal to 400 M, presuming more efficient Na+-for-Ca2+ exchange inD. salina cells. Ouabain, an inhibitor of Na+/K+-ATPase, suppressed Na+ transfer by 25%, whereas the agents blocking Ca2+-channels did not affect the transport of Ca2+ and Na+. The oppositely directed transmembrane Ca2+ and Na+ transfer was shown to depend on the external concentrations of Na+ and H+. In the fresh-water algaC. reinhardtii CW-15 (Naext + greater than Naint +), the direction of Ca2+ and Na+ fluxes across the plasma membrane was opposite to those described for Dunaliella cells. The results obtained point to the ability of the Na+-Ca2+ exchanger function in plasma membranes of algal cells.  相似文献   

8.
D. M. J. Dickson  G. O. Kirst 《Planta》1986,167(4):536-543
The tertiary sulphonium compound, -dimethylsulphoniopropionate (DMSP) and the quaternary ammonium compounds glycine betaine and homarine are important osmotica in Platymonas subcordiformis cells. Following hypersaline stresses the compounds were accumulated after a lag period of 3 h and equilibrium concentrations were reached 6 h later. In contrast to these organic solutes, mannitol was synthesised immediately and equilibrium concentrations were reached within 90 min. Hyposaline stresses induced losses of the organic solutes from the cells. The ions K+, Na+, Cl- and the above organic solutes can account for the osmotic balance of the cells.Abbreviations DMSP -dimethylsulphoniopropionate - i intracellular osmolality - o extracellular osmolality  相似文献   

9.
The physiologically important 3-keto-steroids are non-fluorescent or only weakly fluorescent in protic as well as in aprotic solvents. In contrast, the 4,6,8(14)-triene-3-one steroids are highly fluorescent in aqueous solution but they do not appreciably fluoresce in other solvents. Evidence is presented that the introduction of double bonds into the skeleton of the 3-keto-steroids leads to a decrease of the energy of the lowest * state, bringing this level into the neighbourhood of the non-fluorescent n – * state. As a consequence, for two states of approximately the same energy, relatively small perturbations such as those due to solvent interactions, protein binding and micelle formation, will then determine whether a system will fluoresce ( * state lowest) or not (n – * state lowest). When the fluorescent 3-keto-steroids, having three conjugated double bonds, bind to proteins, the fluorescence intensity becomes almost zero, making these compounds useful as probes for steroid-protein interactions. This quenching of the fluorescence is explained by a decrease in energy of the n – * state relative to the * state of the steroids due to hydrophobic interactions with the proteins.Abbreviations 6,8-BDT 6,8-bisdehydrotestosterone; DMSO, dimethylsulfoxide - HPLC high pressure liquid chromatography This work was presented in part at the Annual Meeting of the Gesellschaft für Biologische Chemie, September 26–29, 1983, in Göttingen. For an abstract see: Hoppe-Seyler's Z. Physiol. Chem. (1983) 364: 1151–1152Dedicated to Prof. Dr. F.-W. Zilliken on the occasion of his 65th birthday  相似文献   

10.
Summary Exposing the apical membrane of toad urinary bladder to the ionophore nystatin lowers its resistance to less than 100 cm2. The basolateral membrane can then be studied by means of transepithelial measurements. If the mucosal solution contains more than 5mm Na+, and serosal Na+ is substituted by K+, Cs+, or N-methyl-d-glucamine, the basolateral membrane expresses what appears to be a large Na+ conductance, passing strong currents out of the cell. This pathway is insensitive to ouabain or vanadate and does not require serosal or mucosal Ca2+. In Cl-free SO 4 2– Ringer's solution it is the major conductive pathway in the basolateral membrane even though the serosal side has 60mm K+. This pathway can be blocked by serosal amiloride (K i=13.1 m) or serosal Na+ ions (K i 10 to 20mm). It also conducts Li+ and shows a voltage-dependent relaxation with characteristic rates of 10 to 20 rad sec–1 at 0 mV.  相似文献   

11.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   

12.
Summary Previous studies indicate a particular sensitivity of red blood cell Na+-Li+ countertransport activity to small variations in the fatty acid composition of membrane phospholipids. To assess whether the interindividual variability of Na+-Li+ countertransport is related to differences in the species pattern of erythrocyte phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vivo, the molecular species composition of PC and PE as well as the kinetics of Na+-Li+ countertransport were analyzed in parallel in normo- and hyperlipidemic donors. Both in diacyl PC and in diacyl-PE the species 160/204 and 160/182 were, respectively, positively and negatively related to the apparent maximal velocity of Na+-Li+ countertransport. The sum of all species with 204 at sn2 of diacyl-PE exhibited a strong positive (r = 0.82, 2p < 0.001), and those containing 182 a negative correlation (r = –0.63, 2p < 0.01) to the transport activity. Essentially similar connections were observed between these species and the apparent affinity of the transport system for intracellular Na+. To evaluate whether the associations between molecular species of membrane phospholipids and Na+-Li+ countertransport activity were indicative of a causal relationship, the species 160/204-PC and 160/182-PC were selectively introduced into the erythrocyte membrane by means of the PC-specific transfer protein. Replacement of 11% of native PC by 160/182-PC inhibited the transport rate by about 25%. Exchange of 6 and 9% of PC with 160/204-PC, in contrast, accelerated the transport rate by 30 and 60%, respectively. The accordance between the in vivo relations and the results of the in vitro modification strongly suggests that elevations and reductions in the arachidonic acid and linoleic acid content of membrane PC and PE contribute to the interindividual variability of red blood cell Na+-Li+ counter-transport activity and its acceleration in hyperlipidemias.The authors wish to thank Dr. W.O. Richter (II. Medizinische Klinik, Klinikum Großhadern, Universität München) for selection of the patients and Dr. T. Brosche (Universität ErlangenNürnberg) for gaschromatographic analyses. This study was supported in part by a grant of the Wilhelm-Sander-Stiftung to B.E.  相似文献   

13.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol. 84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.  相似文献   

14.
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (>100 M), and preincubation with 2 M -conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2–4 min. Although 2 M tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.  相似文献   

15.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   

16.
A dual-wavelength fluorimeter was constructed, which used two light emitting diodes (LEDs) to excite the fluorescence dye RH 421 alternately with two different wavelengths. The ratio of the emissions at the two excitation wavelengths provided a drift-insensitive signal, which allowed detection of very small changes of the fluorescence intensity. Those small changes were induced by ion binding and release in conformation E1 of the Na,K-ATPase. Titration experiments were performed to determine equilibrium dissociation constants (± standard deviation) for each step in the complete binding and release sequence: 0.12 ± 0.01 mM (E2(K2) KE1), 0.08 ± 0.01 mM (KE1 E1), 3.0 ± 0.2 mM (NaE1 E1), 5.2 ± 0.4 mM (Na2E1 NaE1) and 6.5 ± 0.4 mM (Na3E1 Na2E1) at pH 7.2 and T=16°C. These numbers show that the affinities of the binding sites exposed to the cytoplasm, are higher for K+ than for Na+ ions, similar to what was found on the extracellular side. The physiological requirement for extrusion of Na+ from the cytoplasm, and for import of K+ from the extracellular medium seems to be facilitated not by favorable binding affinities in state E1 but by the two ATP-driven reaction steps of the cycle, E2(K2) + ATP K2E1 · ATP and Na3E1 · ATP (Na3) El-P, which border the ion exchange reactions at the binding sites in conformation E1. Correspondence to: H.-J. Apell  相似文献   

17.
1. Voltage-gated Na+ channels are responsible for initiation and conduction of action potentials. The arrival of an action potential at nerve terminal increases intracellular Na+ and Ca2+ concentrations. Calcium entry into neurons through voltage-dependent calcium channels is associated with a variety of intracellular processes. Scorpion neurotoxins have been used as tools to investigate mechanisms involved in neurotransmitter release. Tityustoxin (TsTX) is an -type toxin that delays Na+-channel inactivation. Toxin- (TiTX-) is a -type toxin that induces Na+-channel activation at resting potentials.2. In the present work, we describe the effects of both toxins on [3H]acetylcholine ([3H]ACh) release from rat cerebrocortical synaptosomes, in the presence or absence of the calcium channels blockers: -conotoxin-GVIA (-CgTx), 1 M; -agatoxin-IVA (-Aga), 30 nM; -conotoxin-MVIIC (-MVIIC), 1 M; or verapamil, 1M.3. TsTX evokes [3H]ACh release in a concentration-dependent manner with a gradual increase up to saturation at concentrations of 500 nM. However, release of ACh evoked by TiTX- was not linear regarding the toxin concentration. The [3H]-ACh release evoked by TsTX or TiTX- was partially inhibited by -CgTx or -Aga, and blocked with -MVIIC. Verapamil (1 M) had no effect. Tetrodotoxin blocked [3H]ACh release evoked by both toxins.4. These results show that different actions on Na+-channels produce different effects on [3H]ACh release with involvement of distinct presynaptic Ca2+-channels, which supports the idea that sodium channels may modulate neurotransmitter release.  相似文献   

18.
Summary The mechanism of Na+ transport in rabbit urinary bladder has been studied by microelectrode techniques. Of the three layers of epithelium, the apical layer contains virtually all the transepithelial resistance. There is radial cell-to-cell coupling within this layer, but there is no detectable transverse coupling between layers. Cell coupling is apparently interrupted by intracellular injection of depolarizing current. The cell interiors are electrically negative to the bathing solutions, but the apical membrane of the apical layer depolarizes with increasingI sc. Voltage scanning detects no current sinks at the cell junctions or elsewhere. The voltage-divider ratio, , (ratio of resistance of apical cell membrane,R a, to basolateral cell membrane,R b) decreases from 30 to 0.5 with increasingI sc, because of the transportrelated conductance pathway in the apical membrane. Changes in effective transepithelial capacitance withI sc are predicted and possibly observed. The transepithelial resistance,R t, has been resolved intoR a, Rb, and the junctional resistance,R j, by four different methods: cable analysis, resistance of uncoupled cells, measurements of pairs of (R t, ) values in the same bladder at different transport rates, and the relation betweenR t andI sc and between andI sc.R j proves to be effectively infinite (nominally 300 k F) and independent ofI sc, andR a decreases from 154 to 4 k F with increasingI sc. In the resulting model of Na+ transport in tight epithelia, the apical membrane contains an amiloride-inhibited and Ca++-inhibited conductance pathway for Na+ entry; the basolateral membrane contains a Na+–K+-activated ATPase that extrudes Na+; intracellular (Na+) may exert negative feedback on apical membrane conductance; and aldosterone acts to stimulate Na+ entry at the apical membrane via the amiloride-sensitive pathway.  相似文献   

19.
Functionally active Na2+,K2+-ATPase isozymes containing three types of the catalytic subunits (1, 2, and 3) were obtained from calf brain by two methods: selective removal of contaminating proteins according to Jorgensen (1974) and selective solubilization of the enzyme with subsequent reformation of the membrane structure according to Esmann (1988). All preparations were characterized with respect to ouabain-inhibition constants. The presence of the cytoskeleton protein tubulin (3 isoform) in the high-molecular-weight complex of Na2+,K2+-ATPase 31 isozyme from brain stem axolemma and the junction between Na2+,K2+-ATPase 3 subunit and tubulin 3 subunit are shown for the first time.  相似文献   

20.
Summary The effect of the dnaN mutation on the growth of single-stranded DNA phages was studied by burst experiments. In HC138 dnaN cells exposed to 42.5° C at 5 min before infection, growth of spherical (microvirid or isometric) phages such as 3, Kh-1 and X174 was partially reduced at the nonpermissive temperature. When infection was performed at 30 min after temperature shift-up, viral replication was completely inhibited at 42.5° C in the dnaN strain but not in a dna + revertant. At 41° C, multiplication of filamentous (inovirid) phages M13 and fd was restricted specifically in HC138 F+ dnaN bacteria. When dnaN cells lysogenic for i21 were grown at 42.5° C for 60 min and then shifted down to 33° C, a burst of i21 occurred with concomitant cellular lysis, manifesting induction of the prophage development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号