首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An extracellular β-galactosidase which catalyzed the production of galacto-oligosaccharide from lactose was harvested from the late stationary-phase of Bacillus sp MTCC 3088. The enzyme was purified 36.2-fold by ZnCl2 precipitation, ion exchange, hydrophobic interaction and gel filtration chromatography with an overall recovery of 12.7%. The molecular mass of the purified enzyme was estimated to be about 484 kDa by gel filtration on a Sephadex G-200 packed column and the molecular masses of the subunits were estimated to be 115, 86.5, 72.5, 45.7 and 41.2 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the native enzyme, determined by polyacrylamide gel electrofocusing, was 6.2. The optimum pH and temperature were 8 and 60°C, respectively. The Michaelis–Menten constants determined with respect to o-NO2-phenyl-β-D-galactopyranoside and lactose were 6.34 and 6.18 mM, respectively. The enzyme activity was strongly inhibited (68%) by galactose, the end product of lactose hydrolysis reaction. The β-galactosidase was specific for β-D anomeric linkages. Enzyme activity was significantly inhibited by metal ions (Hg2+, Cu2+ and Ag+) in the 1–2.5 mM range. Mg2+ was a good activator. Catalytic activity was not affected by the chelating agent EDTA. Journal of Industrial Microbiology & Biotechnology (2000) 24, 58–63. Received 09 February 1999/ Accepted in revised form 24 September 1999  相似文献   

2.
An alkaline protease produced by Pseudomonas aeruginosa MN1, isolated from an alkaline tannery waste water, was purified and characterized. The enzyme was purified 25-fold by gel filtration and ion exchange chromatography to a specific activity of 82350 U mg−1. The molecular weight of the enzyme was estimated to be 32000 daltons. The optimum pH and temperature for the proteolytic activity were pH 8.00 and 60°C, respectively. Enzyme activity was inhibited by EDTA suggesting that the preparation contains a metalloprotease. Enzyme activity was strongly inhibited by Zn2+, Cu2+ and Hg2+(5 mM), while Ca2+ and Mn2+ resulted in partial inhibition. The enzyme is different from other Pseudomonas aeruginosa alkaline proteases in its stability at high temperature; it retained more than 90% and 66% of the initial activity after 15 and 120 min incubation at 60°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 291–295. Received 09 June 1999/ Accepted in revised form 24 January 2000  相似文献   

3.
The thermotolerant fungus, Aspergillus niger NCIM 563, was used for production of extracellular phytase on agricultural residues: wheat bran, mustard cake, cowpea meal, groundnut cake, coconut cake, cotton cake and black bean flour in solid state fermentation (SSF). Maximum enzyme activity (108 U g−1 dry mouldy bran, DMB) was obtained with cowpea meal. During the fermentation phytic acid was hydrolysed completely with a corresponding increase in biomass and phytase activity within 7 days. Phosphate in the form of KH2PO4 (10 mg per 100 g of agriculture residue) increased phytase activity. Among various surfactants added to SSF, Trition X-100 (0.5%) exhibited a 30% increase in phytase activity. The optimum pH and temperature of the crude enzyme were 5.0 and 50°C respectively. Phytase activity (86%) was retained in buffer of pH 3.5 for 24 h. The enzyme retained 75% of its activity on incubation at 55°C for 1 h. In the presence of 1 mM K+ and Zn2+, 95% and 55% of the activity were retained. Scanning electron microscopy showed a high density growth of fungal mycelia on wheat bran particles during SSF. Journal of Industrial Microbiology & Biotechnology (2000) 24, 237–243. Received 07 June 1999/ Accepted in revised form 18 December 1999  相似文献   

4.
Pseudomonas sp EL-2 was cultivated to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from a structurally unrelated carbon source, glucose, by a fed-batch culture technique. Variation of the carbon to nitrogen (C/N) ratio of the medium produced optimal P(3HB-co-3HV) production at a C/N ratio of 95. Production of P(3HB-co-3HV) was favored by a dissolved oxygen tension of 40%. A maximum biomass concentration of 38 g L−1 containing 53% P(3HB-co-3HV) was achieved after 45 h of cultivation. This corresponds to a volumetric productivity of 0.84 g L−1 h−1. The copolymer contained 7.5 mol% 3-hydroxyvalerate. Journal of Industrial Microbiology & Biotechnology (2000) 24, 36–40. Received 28 January 1999/ Accepted in revised form 11 September 1999  相似文献   

5.
Endogeneous levels of zinc and copper were found to be 1.2±0.1×10−2 and 0.3±0.1×10−2 μg/A260 unit, respectively, in polysomal fractions from control animals; cadmium, however, was undetectable. In experimental animals (injected with cadmium) zinc, copper, and cadmium were found in polysomal fractions isolated by two different methods. One hour after a cadmium injection there was a rise in both the zinc and copper content of the polysomal fractions, which then declined steadily to below control levels by 16 h. Neither zinc nor cadmium were dialyzable from these fractions by a TRIS buffer; however, addition of 0.01M EDTA to the buffer resulted in removal of 75% of the zinc and all of the detectable cadmium. The addition of cadmium (CdCl2) to control supernatants (adjusted to the cadmium concentration present in supernatants 6 h after in vivo exposure) resulted in metal binding to polysomal fractions in levels comparable to those observed after in vivo exposures to the metal. When cadmium was added in the form of cadmium thionein, a smaller fraction of the metal was isolated with the polysomal fraction. Cadmium bound to polysomal fractions in vivo (24 h after exposure) was sensitive to release by protease digestion, but insensitive to release by ribonuclease digestion.  相似文献   

6.
Whole-cell immobilization of selenate-respiring Sulfurospirillum barnesii in polyacrylamide gels was investigated to allow the treatment of selenate contaminated (790 μg Se × L−1) synthetic wastewater with a high molar excess of nitrate (1,500 times) and sulfate (200 times). Gel-immobilized S. barnesii cells were used to inoculate a mesophilic (30°C) bioreactor fed with lactate as electron donor at an organic loading rate of 5 g chemical oxygen demand (COD) × L−1 day−1. Selenate was reduced efficiently (>97%) in the nitrate and sulfate fed bioreactor, and a minimal effluent concentration of 39 μg Se × L−1 was obtained. Scanning electron microscopy with energy dispersive X-ray (SEM–EDX) analysis revealed spherical bioprecipitates of ≤2 μm diameter mostly on the gel surface, consisting of selenium with a minor contribution of sulfur. To validate the bioaugmentation success under microbial competition, gel cubes with immobilized S. barnesii cells were added to an Upflow Anaerobic Sludge Bed (UASB) reactor, resulting in earlier selenate (24 hydraulic retention times (HRTs)) and sulfate (44 HRTs) removal and higher nitrate/nitrite removal efficiencies compared to a non-bioaugmented control reactor. S. barnesii was efficiently immobilized inside the UASB bioreactors as the selenate-reducing activity was maintained during long-term operation (58 days), and molecular analysis showed that S. barnesii was present in both the sludge bed and the effluent. This demonstrates that gel immobilization of specialized bacterial strains can supersede wash-out and out-competition of newly introduced strains in continuous bioaugmented systems. Eventually, proliferation of a selenium-respiring specialist occurred in the non-bioaugmented control reactor, resulting in simultaneous nitrate and selenate removal during a later phase of operation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The removal of Ca2+ from the medium by intact vacuoles and microsomes of Chenopodium album was investigated by measuring INDO-1 fluorescence emission at 400 and 480 nm and the response of Ca2+ -selective mini-electrodes. The removal of Ca2+ depended on the presence of MgATP, displaying an apparent K mATP of about 50 μM, a K mCa of 400–500 nM, and a nucleotide specificity (%) of ATP (100) > CTP (49) > GTP (28) > UTP (20) > ADP = AMP (0). In the presence of saturating MgATP, the vacuoles reduced the [Ca2+] of the medium below 30 nM. Part of the Ca2+ removed from the medium was released again after adding micromolar concentrations of inositol-1,4,5-trisphosphate. This release of Ca2+ was inhibited by heparin. Since digitonin caused the release of the entire amount of Ca2+ removed from the medium in the presence of MgATP, we argue that the Ca2+ is not bound to membranes or sequestered otherwise, but is transported into the vacuoles (or vesicles) and remains freely mobile there. In accordance with the current literature, we conclude that the plant vacuole is an important store for mobile Ca2+ to be released for purposes of signal transduction. Since changes in the trans-tonoplast ΔpH and inhibition of the H+-translocating pumps had no significant influence on the ATP-dependent removal of Ca2+ from the cytoplasmic side, we argue that in C. album ATP-driven Ca2+ transport is the predominant form of Ca2+ translocation into the vacuole. Received: 11 July 1996 / Accepted: 18 October 1996  相似文献   

8.
A thermophilic bacterial strain, Streptomyces thermonitrificans, produced high levels of extracellular deoxyribonuclease (DNase) when grown on NBG medium (containing 1% peptone, 0.3% beef extract, 1% glucose and 0.5% NaCl). Maximum DNase activity (140 U ml−1) was obtained, in 24 h, when the culture was grown on modified NBG medium (containing 1.3% beef extract, 1% glucose, 0.5% NaCl and 50 μM Mn2+ at 45°C. The crude enzyme showed higher activity on native DNA than on sonicated and heat denatured DNA. Moreover, addition of Mn2+ in the assay mixture resulted in a significant stimulation (10–15 fold) of the enzyme activity. Received 24 November 1998/ Accepted in revised form 25 April 1999  相似文献   

9.
 The structure of eleven complexes of cadmium-substituted alcohol dehydrogenase with or without coenzyme and with different non-protein cadmium ligands has been estimated by combined quantum chemical and molecular mechanical geometry optimisations. The geometry of the optimised complexes is similar to the crystal structure of cadmium-substituted alcohol dehydrogenase, indicating that the method behaves well. The optimised structures do not differ significantly (except for the metal bond lengths) from those of the corresponding zinc complexes, which shows that cadmium is a good probe of zinc coordination geometries. The electric field gradients at the cadmium nucleus have been calculated quantum chemically at the MP2 level with a large cadmium basis set, and they have been used to interpret experimental data obtained by perturbed angular correlation of γ-rays. The experimental and calculated field gradients (all three eigenvalues) differ by less than 0.35 a.u. (3.4·1021 Vm–2), the average error is 0.11 a.u., and the average relative error in the two largest eigenvalues of the field gradients is 9%. Calculated field gradients of four-coordinate structures agree better with the experimental results than do those of any five-coordinate model. Thus, the results indicate that the catalytic metal ion remains four-coordinate in all examined complexes. Two measurements are best explained by a four-coordinate cadmium ion with Glu-68 as the fourth ligand, indicating that Glu-68 probably coordinates intermittently to the catalytic metal ion in horse liver alcohol dehydrogenase under physiological conditions. Received: 10 January 1997 / Accepted: 24 May 1997  相似文献   

10.
The impact of elevated temperature on bacterial community structure and function during aerobic biological wastewater treatment was investigated. Continuous cultures, fed a complex growth medium containing gelatin and α-lactose as the principal carbon and energy sources, supported mixed bacterial consortia at temperatures ranging from 25–65°C. These temperature- and substrate-acclimated organisms were then used as inocula for batch growth experiments in which the kinetics of microbial growth and substrate utilization, efficiency of substrate removal, and mechanism of substrate removal were compared as functions of temperature. Bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) revealed that distinct bacterial consortia were supported at each temperature. The efficiency of substrate removal declined at elevated temperatures. Maximum specific growth rates and the growth yield increased with temperature from 25–45°C, but then decreased with further elevations in temperature. Thus, maximum specific substrate utilization rates did not vary significantly over the 40°C temperature range (0.64 ± 0.04 mg COD mg−1 dry cell mass h−1). A comparison of the degradation of the protein and carbohydrate portions of the feed medium revealed a lag in α-lactose uptake at 55°C, whereas both components were utilized simultaneously at 25°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 140–145. Received 09 August 1999/ Accepted in revised form 12 November 1999  相似文献   

11.
A zinc-resistant bacterium, Brevibacterium sp. strain HZM-1 which shows a high Zn2+-adsorbing capacity, was isolated from the soil of an abandoned zinc mine. Kinetic analyses showed that Zn2+ binding to HZM-1 cells follows Langmuir isotherm kinetics with a maximum metal capacity of 0.64 mmol/g dry cells and an apparent metal dissociation constant of 0.34 mM. The observed metal-binding capacity was one of the highest values among those reported for known microbial Zn2+ biosorbents. The cells could also adsorb heavy metal ions such as Cu2+. HZM-1 cells could remove relatively low levels of the Zn2+ ion (0.1 mM), even in the presence of large excess amounts (total concentration, 10 mM) of alkali and alkali earth metal ions. Bound Zn2+ ions could be efficiently desorbed by treating the cells with 10 mM HCl or 10 mM EDTA, and the Zn2+-adsorbing capacity of the cells was fully restored by treatment of the desorbed cells with 0.1 M NaOH. Thus, HZM-1 cells can serve as an excellent biosorbent for removal of Zn2+ from natural environments. The cells could grow in the presence of significant concentrations of ZnCl2 (at least up to 15 mM) and thus is potentially applicable to in situ bioremediation of Zn2+-contaminated aqueous systems. Received: 1 February 2000 / Received revision: 31 March 2000 / Accepted: 1 May 2000  相似文献   

12.
We aimed to determine the immunological effects of low doses of recombinant interleukin-2 (rIL-2) and recombinant interferon-α (rIFN-α) in patients bearing advanced renal cell carcinoma. Methods: Twenty-seven patients received therapeutic cycles consisting of subcutaneous rIL-2 for 5 days per week and intramuscular rIFN-α twice weekly, for 4 consecutive weeks. The cycle was repeated indefinitely at regular 4-month intervals, for all patients. rIL-2 (1 × 106 IU/m2) was administered every 12 h on days 1 and 2 and once a day on days 3–5 of each week; rIFN-α (1.8 × 106 IU/m2) was given on days 3 and 5. In the enrolled patients, total and differential white blood cell counts, phenotypic analysis of some lymphocyte subsets, and soluble IL-2 receptor (sIL-2R), were investigated before and after each of the first six cycles of therapy (about 24 months of follow-up). Results: The cycles of immunotherapy induced a significant increase of total lymphocytes (37%, P < 0.001), eosinophils (222%, P < 0.001), CD25+ cells (27%, P=0.004), sIL-2R (174%, P < 0.001) and natural killer (NK) cells (CD3-CD56+) (61%, P < 0.001); the subset that expresses CD56 with high density (CD56+ bright) expanded more (233%, P < 0.001) than the subset expressing the same marker with low density (CD56+ dimmer) (15%, P=0.043). Unlike the previous subsets, the treatment decreased significantly T-lymphocytes with NK cell marker (CD3+ CD56+) (28%, P=0.011). No significant differences of effectiveness were found among the subsequent treatment cycles, except for CD25+ cells and sIL-2R (P=0.036 and P=0.005, respectively): the increase induced by immunotherapy was maximum after the first cycle and decreased progressively thereafter. Conclusions: Long-term repeated cycles of low-dose immunotherapy induced repeated and significant expansion of one of the most important lymphocyte subsets for the non-MHC-restricted immune response to the tumour mass: CD3–CD56+ cells. Received: 8 November 2000 / Accepted: 11 January 2001  相似文献   

13.
This paper explores the use of an experimental system based on polyacrylamide-entrapped cells of Brevibacterium sp strain PBZ for the removal of metal ions from solutions. Experiments were performed in columns filled with the immobilised cells and challenged with influents containing 20 mg L−1 of lead and 10 mg L−1 of cadmium. The cells were able to accumulate lead (about 40 mg g−1 dry biomass) and, to a lesser extent, cadmium (about 13 mg g−1 dry biomass) from solutions. In the presence of 0.4 g L−1 of glucose, the cells removed up to 53% of lead. Lead competed with cadmium for attachment to the binding sites when a solution containing both the metals was applied. Lead removal occurred by a combination of fast physico-chemical adsorption and prolonged low rate accumulation mediated by cell metabolism. The biosorptive capacity of the cells was sensitive to pH. Desorption of the metal with EDTA restored the binding capability of the cells. Received 07 July 1997/ Accepted in revised form 26 November 1997  相似文献   

14.
 We have selectively replaced the catalytic zinc of the catalytic domain of stromelysin-1 (SCD) with other transition metals. Dialysis of the enzyme against 2 mM 1,10-phenanthroline, 20 mM Hepes, pH 7.5 in the presence of 10 mM CaCl2 removes the catalytic zinc, leaving the structural zinc site intact. Dialysis with metal-free buffer followed by the new metal ion replaces the catalytic zinc forming a metal hybrid enzyme. Full incorporation of 1 mol Co2+, Ni2+, or Cd2+/mol enzyme is confirmed by atomic absorption spectrometry while the weaker binding Mn2+ yields a value of 0.4 mol Mn2+/mol enzyme after dialysis against 1 μM Mn2+. The activity of the monozinc enzyme is <10% while its activity is restored upon the addition of zinc and other transition metals. The k cat values for the Co2+, Mn2+, Cd2+, and Ni2+ enzymes are respectively 99%, 54%, 19%, and 17% of the value for the native enzyme, while the respective k cat/K m values are 36%, 29%, 7%, and 16% toward the fluorescent heptapeptide substrate, DnsPLALRAR. The zinc and metal hybrid SCD cleave DnsPLA↓LRAR, and DnsPLE↓LFAR, exclusively at one bond, while DnsPLA↓L↓WAR and DnsPLA↓L↓FAR are cleaved at two positions. The double cleavage of DnsPLALWAR and DnsPLALFAR catalyzed by SCD is in marked contrast to the close structurally related matrilysin. A notable feature of SCD catalysis is the different cleavage site specificity of the metal hybrids toward the A-L and L-W bonds of the DnsPLALWAR substrate. Thus the k cat values of the Co/Zn hybrid for the cleavage of the A-L bond in the DnsPLALRAR and DnsPLAWAR substrates are 5- and 8-fold greater than those for the Cd/Zn hybrid compared to a 140-fold difference for the corresponding k cat values for the L-W bond cleavage. These results imply that the catalytic metal of SCD is not only involved in catalysis but also influences the substrate specificity of the enzyme. Received: 30 December 1997 / Accepted: 23 February 1998  相似文献   

15.
The wild strain and the astaxanthin-overproducing mutant strain 25–2 of Phaffia rhodozyma were analyzed in order to assess their ability to grow and synthesize astaxanthin in a minimal medium composed of g L−1: KH2PO4 2.0; MgSO4 0.5; CaCl2 0.1; urea 1.0 and supplemented with date juice of Yucca fillifera as a carbon source (yuca medium). The highest astaxanthin production (6170 μg L−1) was obtained at 22.5 g L−1 of reducing sugars. The addition of yeast extract to the yuca medium at concentrations of 0.5–3.0 g L−1 inhibited astaxanthin synthesis. The yuca medium supported a higher production of astaxanthin, 2.5-fold more than that observed in the YM medium. Journal of Industrial Microbiology & Biotechnology (2000) 24, 187–190. Received 14 July 1999/ Accepted in revised form 02 December 1999  相似文献   

16.
A whey solution was used as a substrate for methane production in an anaerobic fixed-bed reactor. At a hydraulic retention time of 10 days, equivalent to a space loading of 3.3 kg (m3 day)−1, 90% of the chemical oxygen demand was converted to biogas. Only a little propionate remained in the effluent. Toxicity tests with either copper chloride, zinc chloride or nickel chloride were performed on effluent from the reactor. Fifty per cent inhibition of methanogenesis was observed in the presence of ≥10 mg CuCl2 l−1≥40 mg ZnCl2 l−1 and ≥60 mg NiCl2 l−1, respectively. After exposure to Cu2+, Zn2+ or Ni2+ ions for 12 days, complete recovery of methanogenesis by equimolar sulfide addition was possible upon prolonged incubation. Recovery failed, however, for copper chloride concentrations ≥40 mg l−1. If the sulfide was added simultaneously with the three heavy metal salts, methanogenesis was only slightly retarded and the same amount of methane as in non-inhibited controls was reached either 1 day (40 mg ZnCl2 l−1) or 2 days later (10 mg CuCl2 l−1). Up to 60 mg NiCl2 l−1 had no effect if sulfide was present. Sulfide presumably precipitated the heavy metals as metal sulfides and by this means prevented heavy metal toxicity. Received: 8 October 1999 / Received revision: 3 January 2000 / Accepted: 4 January 2000  相似文献   

17.
Exopolysaccharide (EPS) production was compared among three strains of lactobacilli. Lactobacillus rhamnosus strain 9595M can be classified among the highest EPS-producing strains of lactic acid bacteria reported to date with a maximum EPS production of 1275 mg L−1. Under controlled pH, no significant differences in the quantity of EPS produced could be detected between carbon source (glucose or lactose) or fermentation temperature (32 or 37°C). In milk, strains ATCC 9595M and R produced more than 280 mg L−1 EPS whereas strain Type V produced less than 80 mg L−1 EPS. Journal of Industrial Microbiology & Biotechnology (2000) 24, 251–255. Received 10 September 1999/ Accepted in revised form 22 December 1999  相似文献   

18.
The development of biofilms of Pseudomonas aeruginosa PAO-1 was studied using modified Robbins devices. Biofilm development was measured using viable counts, acridine orange direct counts (AODC), and a colorimetric method for exopolysaccharide (EPS). Biofilms reached their maximum population 24–72 h after inoculation on coupons with no paint or on coupons coated with marine paint VC-18 without additives. Biofilms on stainless steel contained higher numbers of total cells and of viable cells than biofilms on fiberglass or aluminum. Coating the surfaces with marine paint VC-18 resulted in decreased numbers of cells on stainless steel but had little effect on numbers of cells on fiberglass or aluminum. Addition to the paint of Cu or tributyltin (TBT), the active components in two types of antifouling paints, inhibited the initial development of biofilms. However, by 72–96 h, most biofilms contained the same number of cells as surfaces without additives as shown by both viable counts and AODC. Biofilms that formed on surfaces coated with Cu- or TBT-containing paint did not synthesize more EPS, suggesting that P. aeruginosa PAO-1 does not respond to these compounds by synthesizing more EPS, which could bind the metal and protect the cells. Rather, these biofilms may contain Cu- or TBT-resistant cells. TBT-resistant cells made up 1–10% of the viable counts in biofilms on uncoated stainless steel, but in biofilms on stainless steel coated with marine paint containing TBT, TBT-resistant cells made up as much as 50% of the population. For non-coated stainless steel surfaces, Cu-resistant cells initially made up the majority of the population, but after 48 h they made up less than 1% of the population. On Cu-coated stainless steel, Cu-resistant cells predominated through 48 h, but after 48 h they comprised less than 10% of the population. These results suggest that the growth of TBT-resistant and Cu-resistant cells contributes to biofilms of P. aeruginosa PAO-1 at early stages of development but not at later stages. Received 16 December 1997/ Accepted in revised form 9 March 1998  相似文献   

19.
A pilot-scale production method of recombinant human angiostatin, a 38-kD fragment of plasminogen which has been reported to have antiangiogenic activity, has been successfully established by expressing the protein in the methylotrophic yeast Pichia pastoris. The secreted protein inhibited cultured endothelial cell proliferation in vitro and Lewis lung carcinoma growth in mice. The fermentation process was carried out using an on-line methanol controller, administering methanol to the growing culture and keeping its concentration under 2 g L−1. The fermentation lasted 90 h, of which 70 h were growth on methanol. During growth on methanol the culture volume increased 64%, from 7 L to 11.5 L, producing 200 mg angiostatin and 5 kg of biomass. Journal of Industrial Microbiology & Biotechnology (2000) 24, 31–35. Received 12 May 1999/ Accepted in revised form 06 September 1999  相似文献   

20.
For the production of α-D-glucose-1-phosphate (G-1-P), α-1,4-D-glucan phosphorylase from Thermus caldophilus GK24 was partially purified to a specific activity of 13 U mg−1 and an enzyme recovery of 15%. The amount of G-1-P reached maximum (18%) when soluble starch was used as substrate, and the smallest substrate for G-1-P formation was maltotriose. The structure of purified G-1-P was confirmed by comparison to 13C-NMR data for an authentic sample. In addition to G-1-P, glucose-6-phosphate (12%) was simultaneously produced when 10 mM maltoheptaose was used as substrate. Journal of Industrial Microbiology & Biotechnology (2000) 24, 89–93. Received 12 May 1999/ Accepted in revised form 29 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号