首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Studies have been carried out to analyze protein phosphorylation in membranes isolated from adriamycin resistant HL60 cells which have been grown for various time periods in the presence of dimethylsulfoxide (DMSO), retinoic acid (RA) or 12-O-tetradecanoylphorbol-13-acetate (TPA). The results show that membranes isolated from cells treated with these agents are defective in the phosphorylation of P150, a membrane phosphoprotein associated with drug resistance in HL60 cells. This response is highly selective since only a few membrane proteins show decreased phosphorylation levels under these conditions. Magnesium dependent protein kinase activity in membranes from cells treated with DMSO, RA or TPA is not altered relative to untreated membranes under conditions where there is a major decrease in P150 phosphorylation. Additional studies also show that treatment of resistant cells with TPA results in a major decrease in the in vivo phosphorylation of P150. These results thus demonstrate that agents capable of inducing differentiation in HL60 cells can selectively modulate the phosphorylation of P150. This system should be of value in clarifying mechanisms involved in the phosphorylation of this protein.  相似文献   

2.
The addition of the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) to serum-starved quiescent Reuber H35 hepatoma cells results in a rapid 5- to 11-fold increase in the incorporation of 32Pi into a Mr = 32,000 ribosomal protein. The Mr = 32,000 protein was the major phosphorylated protein extracted from isolated 80 S ribosomes and was identified as the 40 S ribosomal protein S6 based upon its migration in two-dimensional gels. Insulin, which has been demonstrated to increase the phosphorylation of S6 in a number of cell lines, caused a 10- to 20-fold increase in the incorporation of 32Pi into this Mr = 32,000 ribosomal protein. S6 phosphorylation was dose- and time-dependent being detected as early as 5 min following the addition of 1.6 microM TPA. Maximal phosphorylation of ribosomal protein S6 was achieved by 60 min and remained elevated for at least 90 min in the presence of TPA. The 50% effective dose for TPA was estimated to be 0.14 microM. Based upon the altered migration of S6 in pH 8.5 urea-polyacrylamide gels, it was demonstrated that the increased 32Pi labeling of S6 by TPA was due to a net increase in the incorporation of phosphates into the S6 molecule. Non-tumor-promoting phorbol esters were ineffective in increasing the phosphorylation of S6. In whole cells, exogenously added 1 mM 8-bromoadenosine 3':5'-monophosphate failed to substantially increase phosphorylation of S6 suggesting that the TPA-induced phosphorylation of S6 occurs via a cyclic AMP-independent mechanism. The S6 amino acid residue phosphorylated in response to TPA was phosphoserine. A possible role for protein kinase C in the phosphorylation of ribosomal protein S6 is discussed.  相似文献   

3.
The effects of phorbol esters, dioctanoylglycerol (DiC8), and micromolar Ca2+ on protein phosphorylation and catecholamine secretion in digitonin-treated chromaffin cells were investigated. [gamma-32P]ATP was used as a substrate for phosphorylation in the permeabilized cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) enhanced Ca2+-dependent catecholamine secretion from digitonin-permeabilized cells. The enhancement required MgATP. Only those phorbol esters which activate protein kinase C in vitro enhanced both catecholamine secretion and protein phosphorylation. DiC8, which activates protein kinase C in vitro and mimics phorbol ester effects in situ, also enhanced both catecholamine secretion and protein phosphorylation. Preincubation of intact cells with TPA or DiC8 was necessary for maximal effects on both catecholamine secretion and protein phosphorylation in subsequently digitonin-treated chromaffin cells. The TPA-induced enhancement of protein phosphorylation was almost entirely Ca2+-independent, whereas DiC8-induced enhancement of protein phosphorylation was mainly Ca2+-dependent. Micromolar Ca2+ alone also enhanced the phosphorylation of a large number of proteins. Most of the proteins phosphorylated in response to TPA or potentiated by DiC8 in combination with Ca2+ were also phosphorylated by micromolar Ca2+ in the absence of exogenous protein kinase C activators. In intact cells, 1,1-dimethyl-4-phenylpiperazinium (DMPP) induced Ca2+-dependent phosphorylation of at least 17 proteins which were detected by two-dimensional gel electrophoresis. All of the proteins phosphorylated upon incubation with 1,1-dimethyl-4-phenylpiperazinium were phosphorylated upon incubation with micromolar Ca2+ in digitonin-treated cells. These results demonstrate that TPA- or DiC8-enhanced Ca2+-dependent catecholamine secretion is associated with enhanced protein phosphorylation which is probably mediated by protein kinase C and that activation of protein kinase C modulates catecholamine secretion from digitonin-treated chromaffin cells.  相似文献   

4.
We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.  相似文献   

5.
The tumor-promoting 12-0-tetradecanoylphorbol-13-acetate (TPA) stimulated phosphorylation of several proteins in block I (including protein Ia) and protein 3 in HL60 cells. The antileukemic agent alkyllysophospholipid (ALP) inhibited the TPA-stimulated phosphorylation of these proteins and the TPA-induced differentiation of the cells. In comparison, TPA only stimulated phosphorylation of protein 3 in K562 cells which, in contrast, were not induced to differentiate by TPA and lacked protein Ia and had a very high basal phosphorylation of protein B. ALP inhibited phosphorylation of protein 3 as well as protein B in K562 cells. The data suggest that the presence of distinct phosphoproteins and regulation of their phosphorylation may be related to the selective susceptibility of the two leukemia cell lines to the maturating effect of TPA and cytotoxicity of ALP.  相似文献   

6.
A rapid and simple method was developed for isolating denatured epidermal growth factor (EGF)-receptor suitable for use in preparation of polyclonal antisera. Membranes from A431 cells (which possess unusually high numbers of EGF-receptors) were phosphorylated in vitro with [gamma-32P]ATP and run on preparative sodium dodecyl sulfate (SDS)-polyacrylamide gels. The Mr 170,000 major phosphorylated region was excised from the gels, eluted, and protein chromatographed on SDS-hydroxylapatite. Fractions containing the Mr 170,000 tyrosine-phosphorylated protein were pooled, concentrated, and rerun on preparative SDS gels. The protein eluted from these gels was judged to be highly purified, based on peptide mapping and on comparison of proteins immunoprecipitated by monoclonal antibody against the EGF-receptor with proteins precipitated by polyclonal antibody prepared against the Mr 170,000 protein described here. The polyclonal antiserum recognized native and denatured EGF-receptor from human, rat, and mouse cells and should prove useful in studying EGF-receptor synthesis and function.  相似文献   

7.
To examine the possibility that insulin might stimulate calmodulin phosphorylation in intact cells, we compared autoradiographs of two-dimensional gels of [35S]methionine- and 32P-labeled proteins from 3T3-L1 adipocytes, before and after immunoprecipitation with anti-calmodulin antiserum. Insulin stimulated the phosphorylation of one or two proteins of approximately 22 kDa and pI 4.6; this increased phosphorylation was accompanied by an apparent shift in the position of the analogous [35S]methionine-labeled proteins towards the anode. In contrast, insulin had no effect on the phosphorylation state of another protein of 18-22 kDa and pI 4.6. This protein was very heavily labeled with [35S]methionine, co-migrated exactly with purified calmodulin, reacted specifically with two anti-calmodulin antibodies by Western blotting, and was specifically immunoprecipitated with the anti-calmodulin antiserum. Similar amounts of [35S]methionine-labeled calmodulin were immunoprecipitated from control and insulin-stimulated cells, arguing against the possibility that insulin-stimulated phosphorylation of calmodulin changed its affinity for the antibody. We conclude that calmodulin is phosphorylated to a negligible extent in serum-deprived 3T3-L1 adipocytes and that insulin does not stimulate its phosphorylation under conditions in which it stimulates the phosphorylation of one or more neighboring proteins.  相似文献   

8.
Membrane protein phosphorylation in Plasmodium berghei-infected erythrocytes was studied by incubating intact cells with (32P)orthophosphate and incubating isolated membrane with (gamma-32P)ATP. Phosphorylated proteins were detected by autoradiography after sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis or isoelectric focusing followed by gel electrophoresis. New phosphorylated proteins were found in membrane from infected erythrocytes, including a protein with electrophoretic mobility identical to band 5, with Mr 43,000. The molar ratio of phosphate to protein ranged between 0.1 and 0.5. Isoelectric focusing-SDS polyacrylamide gel electrophoresis, peptide mapping, extractability properties, and reduction of susceptibility to DNase I inhibition suggested that this protein is phosphorylated actin. In contrast, spectrin phosphorylation in infected erythrocytes was mostly unchanged.  相似文献   

9.
The abilities of proteins endogenous to normal and neoplastic tissues to serve as substrates in a protein-phosphorylation reaction in vitro were compared. After the tissue extracts were incubated with [gamma-32P]ATP, the phosphorylated proteins were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the dried gels were subjected to radioautography. Considerable incorporation of 32P into a protein of mol.wt. 135000 was observed with extracts from foetal tissues and tumours, but only minimal incorporation into this protein occurred when extracts from adult tissues were used. The ability of this protein to become phosphorylated in vitro may be related to cell proliferation. When ascites cells were incubated with [32P]Pi, one of the major phosphoproteins migrated on sodium dodecyl suphate/polyacrylamide gels at mol.wt. 135000, suggesting that this protein can be phosphorylated both in intact cells and broken-cell preparations. A protein of mol.wt. 87000 was highly phosphorylatable in extracts from solid tumours, but was not phosphorylated in extracts from ascites tumours, foetal or adult tissues. The phosphorylation pattern of these two proteins can thus distinguish solid neoplasms and normal adult tissues from ascites tumours and from foetal tissues. A protein of mol.wt. 49000, which was the most labelled protein in adult tissues, was also one of the major phosphoproteins in foetal and neoplastic tissues. Numerous mechanisms are postulated to explain how the extent of 32P incorporation into a protein could vary as a function of biological state.  相似文献   

10.
The actin/myosin II cytoskeleton and its role in phagocytosis were examined in primary cultures of dog thyroid cells. Two (19 and 21 kD) phosphorylated light chains of myosin (P-MLC) were identified by two- dimensional gel electrophoresis of antimyosin immunoprecipitates, and were associated with the Triton X-100 insoluble, F-actin cytoskeletal fraction. Analyses of Triton-insoluble and soluble 32PO4-prelabeled protein fractions indicated that TSH (via cAMP) or TPA treatment of intact cells decreases the MLC phosphorylation state. Phosphoamino acid and tryptic peptide analyses of 32P-MLCs from basal cells showed phosphorylation primarily at threonine and serine residues; most of the [32P] appeared associated with a peptide containing sites typically phosphorylated by MLC kinase. Even in the presence of the agents which induced dephosphorylation, the phosphatase inhibitor, calyculin A, caused a severalfold increase in MLC phosphorylation at several distinct serine and threonine sites which was also associated with actomyosin and cell contraction. Phosphorylation of cell homogenate proteins or the cytoskeletal fraction with [gamma-32P]ATP indicated that Ca2+, EGTA, or trifluoperazine (TFP) has little effect on the phosphorylation of MLC. Both fluorescent phalloidin and antimyosin staining of cells showed distinct dorsal and ventral stress fiber complexes which were disrupted within 30 min by TSH and cAMP; TPA appeared to cause disruption of dorsal, and rearrangement of ventral complexes. Concomitant with MLC dephosphorylation and stress fiber disruption, TSH/cAMP, but not TPA, induced dorsal phagocytosis of latex beads. While stimulation of either A or C-kinase disrupts dorsal stress fibers and rearranges actomyosin, another event(s) mediated by A-kinase appears necessary for phagocytic activity.  相似文献   

11.
The influenza A virus nucleoprotein (NP) is a phosphoprotein that encapsidates the viral genomic RNA. To map the in vivo phosphorylation site(s) of this protein, 32P-labeled NP was purified from cell cultures infected with influenza virus A/Victoria/3/75 by immunoaffinity chromatography. The purified protein was then subjected to chemical digestion with formic acid, which cleaves proteins at Asp-Pro bonds, and the resulting products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two of the phosphorylated products obtained were identified as fragments corresponding to the N-terminal 88 amino acids and to the C-terminal 196 residues of the NP. To identify the phosphate acceptor site(s) at the N-terminal phosphorylated region of NP, each of the seven serines within this region was individually changed to alanine by site-directed mutagenesis. The mutant proteins were then transiently expressed in mammalian cells and analyzed for their phosphorylation state. It was observed that the S-to-A mutation at position 3 drastically reduced the amount of 32P label incorporated into NP, whereas the other substitutions did not have a discernible effect on the phosphorylation level of the protein. In addition, all serine-altered proteins were tested for their functionality in an artificial system in which expression of a synthetic chloramphenicol acetyl-transferase RNA molecule is driven by influenza virus proteins synthesized from cloned genes. The results obtained demonstrate that all mutant proteins were competent to cooperate with the subunits of the viral polymerase for expression of the synthetic virus-like chloramphenicol acetyltransferase RNA in vivo. These data are discussed regarding the possible roles of NP phosphorylation for the viral replicative cycle.  相似文献   

12.
ABSTRACT. Membrane protein phosphorylation in Plasmodium berghei-infected erythrocytes was studied by incubating intact cells with (32P)orthophosphate and incubating isolated membrane with (γ-32P)ATP. Phosphorylated proteins were detected by autoradiography after sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis or isoelectric focusing followed by gel electrophoresis. New phosphorylated proteins were found in membrane from infected erythrocytes, including a protein with electrophoretic mobility identical to band 5, with M, 43,000. The molar ratio of phosphate to protein ranged between 0.1 and 0.5. Isoelectric focusing-SDS polyacrylamide gel electrophoresis, peptide mapping, extractability properties, and reduction of susceptibility to DNase I inhibition suggested that this protein is phosphorylated actin. In contrast, spectrin phosphorylation in infected erythrocytes was mostly unchanged.  相似文献   

13.
32P-labeled acetyl-CoA carboxylase was isolated from 32P-labeled rat epididymal fat pads by avidin-Sepharose affinity chromatography after exposure to epinephrine and insulin. Epinephrine led to an inactivation of the isolated enzyme by a reduction of Vmax, while the insulin stimulation observed in crude extracts did not survive enzyme purification. Both insulin and epinephrine caused only small increases in total 32P content of the enzyme. However, mapping of tryptic 32P-phosphopeptides by high performance liquid chromatography revealed that epinephrine and insulin stimulated the phosphorylation of 32P-peptides specific for each hormone. The major 32P-peptide phosphorylated by epinephrine co-migrated with the major 32P-peptide phosphorylated in vitro by the cAMP-dependent protein kinase, while the 32P-peptide phosphorylated in response to insulin co-migrated with that phosphorylated by casein kinase-I and casein kinase-II. The effects of epinephrine on carboxylase activity and phosphorylation can thus be accounted for by the expected epinephrine-induced activation of the cAMP-dependent protein kinase. While the increase in site-specific phosphorylation caused by insulin cannot be directly linked to insulin-induced activation in crude extracts, these data suggest that casein kinase-I and/or casein kinase-II may mediate the insulin-stimulated phosphorylation of acetyl-CoA carboxylase.  相似文献   

14.
The subcellular localization of protein kinase C (PKC)-δ was determined in HL60 cells differentiated toward monocytes/macrophages by treatment with TPA. PKC-δ was detected in the nucleus and cytoplasm of differentiated HL60 cells and, more specifically, associated with structures resembling intermediate filaments. Indirect immunostaining revealed that PKC-δ colocalized with vimentin in the cytosol and perinuclear region of these cells. Immunoprecipitation studies showed that PKC-δ was in an active (autophosphorylated) state in differentiated HL60 cells and that vimentin immunoprecipitated from these cells was also phosphorylated. Treatment of HL60 cells with the PKC-specific inhibitor chelerythrine decreased the phosphorylation of vimentin. These data suggest that vimentin is a substrate for PKC-δ and that this PKC isoenzyme may play a specific role in the regulation of shape change and cell adhesion during HL60 differentiation.  相似文献   

15.
Cyclic AMP-dependent protein kinases from several mammalian sources inhibit Na+-dependent alpha-aminoisobutyric acid transport by membrane vesicles isolated from 3T3 cells. Evidence is provided that phosphorylation of membrane proteins by the enzyme is responsible for the inhibition. Lysis of the vesicles, or a reduction in the intravesicular volume is not the cause of reduced transport. The cyclic AMP-dependent protein kinase and its catalytic subunit phosphorylate a number of membrane proteins. Most of these proteins are phosphorylated, but to a lesser extent in the absence of protein kinase or cyclic AMP. The phosphorylated proteins remain associated with the membranes during hypotonic lysis treatments, which would be expected to release intravesicular contents and loosely associated membrane proteins. 32P-labeled bands detected on sodium dodecyl sulfate polyacrylamide gels after phosphorylation of membranes by the catalytic subunit of the cyclic AMP-dependent kinase are eliminated by treatment with either pronase or 1 N NaOH, but not by ribonuclease nor by phospholipase C. The stability of the incorporated radioactivity to hot acid and hydroxylamine relative to hot base suggests that most of the 32P from [gamma-32P]ATP is incorporated into protein phosphomonoester linkages.  相似文献   

16.
The subcellular localization of protein kinase C (PKC)-δ was determined in HL60 cells differentiated toward monocytes/macrophages by treatment with TPA. PKC-δ was detected in the nucleus and cytoplasm of differentiated HL60 cells and, more specifically, associated with structures resembling intermediate filaments. Indirect immunostaining revealed that PKC-δ colocalized with vimentin in the cytosol and perinuclear region of these cells. Immunoprecipitation studies showed that PKC-δ was in an active (autophosphorylated) state in differentiated HL60 cells and that vimentin immunoprecipitated from these cells was also phosphorylated. Treatment of HL60 cells with the PKC-specific inhibitor chelerythrine decreased the phosphorylation of vimentin. These data suggest that vimentin is a substrate for PKC-δ and that this PKC isoenzyme may play a specific role in the regulation of shape change and cell adhesion during HL60 differentiation.  相似文献   

17.
M Hartmann  M Kelm  J Schrader 《Life sciences》1991,48(17):1619-1626
In cultured coronary endothelial cells obtained from guinea pig hearts, bradykinin (10(-6) M) stimulated the 32Pi-incorporation into 5 substrate proteins with molecular weights corresponding to 27, 32, 60, 86 and 100 kDa. The time course of phosphorylation of the 60, 86 and 100 kDa proteins was rapid (within 30 s), but transient (max. within 1-2 min.), while the 32Pi incorporation into the 27 and 32 kDa protein was delayed but increased within 10 minutes. Ca+(+)-ionophore A 23187 (10(-5) M) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-5) M) both mimicked the effects of the bradykinin induced phosphorylation pattern. While A 23187 enhanced the phosphorylation of the 27, 60 and 100 kDa substrates, TPA increased the 32Pi-incorporation into the 32 and 86 kDa proteins. Furthermore the time course of protein phosphorylation elicited by A 23187 and TPA showed marked similarities to those obtained with bradykinin. Our findings are consistent with the view, that stimulation of coronary endothelial bradykinin-receptors activates both Ca+(+)-dependent protein kinases and protein kinase C.  相似文献   

18.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weights between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [gamma-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [gamma-32P]ATP and cyclic AMP-dependent protein kinase from calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

19.
Z Kiss  E Deli    J F Kuo 《The Biochemical journal》1987,248(3):649-656
Treatment of human promyelocytic leukaemia HL60 cells in conditioned medium with 12-O-tetradecanoylphorbol 13-acetate (TPA) for 4 h resulted in 25-30% inhibition of labelling of phosphatidylserine (PS) with [U-14C]serine. PS labelling was 40% lower, and no inhibitory TPA effect was observed when the experiments were performed in fresh medium. Cycloheximide or puromycin also inhibited PS labelling by 38-44%; their inhibitory effects were non-additive with that of TPA and occurred only in conditioned medium. Catalase (CAT) and superoxide dismutase (SOD), both free-radical scavengers, and H7, a protein kinase C inhibitor, reversed to various extents the inhibitory effect of TPA on PS synthesis. On the other hand, chlorobenzoic acid, a free-radical-generating agent, also inhibited PS synthesis by 22% after 4 h treatment when conditioned medium was used. When ethanolamine was added to cells in conditioned medium to quench PS formation through the exchange of free serine with the ethanolamine moiety of phosphatidylethanolamine (PE), PS labelling was decreased by 33% and the inhibitory TPA effect was significantly decreased. On the other hand, ethanolamine had marginal quenching effect on PS labelling when added to cells in fresh medium. TPA increased the phosphorylation of various proteins in the cells, including protein lb (Mr 80,000; pI 5.5) shown to be localized mainly in the nuclear fraction. Chlorobenzoic acid selectively stimulated the phosphorylation of protein lb, whereas CAT and SOD specifically attenuated the TPA-stimulated phosphorylation of this protein. All these agents affected phosphorylation of protein lb only if conditioned medium was used. The findings suggested that net synthesis of PS through the base-exchange mechanism was stimulated in HL60 cells by cell products present in the conditioned medium. TPA inhibited this stimulated PS synthesis by a mechanism which appeared to involve active oxygen species and protein synthesis and might be related to the phosphorylation of protein lb.  相似文献   

20.
The phosphorylation of DNA topoisomerase I in quiescent murine 3T3-L1 fibroblasts treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was characterized by in vivo labeling with [32P] orthophosphate and immunoprecipitation with a scleroderma anti-DNA topoisomerase I autoantibody. DNA topoisomerase I phosphorylation was stimulated 4-fold by 2 h of TPA treatment (TPA at 100 ng/ml maximally enhanced phosphorylation). Purified DNA topoisomerase I was phosphorylated in vitro in a Ca2+ and phospholipid-dependent fashion by types I, II, and III protein kinase C. The phosphorylation reaction was stimulated by TPA and had an apparent K(m) of 0.4 microM. DNA topoisomerase I was phosphorylated in vivo and in vitro predominantly at serine. The major tryptic phosphopeptides from DNA topoisomerase I in TPA-treated fibroblasts and phosphorylated by protein kinase C comigrated in thin-layer electrophoresis. The half-life of incorporated phosphate on DNA topoisomerase I was 40 min in both TPA-treated and control cells. These results suggest that phosphorylation is a mechanism for activating DNA topoisomerase I in fibroblasts treated with TPA and that protein kinase C functions in the phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号