首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two divergent routes of evolution gave rise to the DRw13 haplotypes   总被引:1,自引:0,他引:1  
The HLA class II genes and haplotypes have evolved over a long period of evolutionary time by mechanisms such as gene conversion, reciprocal recombination and point mutation. The extent of the diversity generated is most clearly evident in an analysis of the HLA class II alleles present within DRw13 haplotypes. This study uses cDNA sequencing to examine the first domains of DRB1, DRB3, DQA1, and DQB1 alleles from several American black individuals expressing seven different DRw13 haplotypes, five with undefined HLA-D specificities (i.e., not Dw18 or Dw19). Two new DRw13 alleles described in this study are the first examples of convergent evolution of DR alleles in which gene conversion has apparently combined segments of DRB1 alleles encoding DRw11 and DRw8 to generate two new DRB1 alleles, DRB1*1303 and DRB1*1304, that encode molecules bearing serologic determinants of a third allele, DRw13. These new DRw13 alleles are found embedded in haplotypes of DRw11 origin distinct from haplotypes encoding previously identified DRw13 alleles, DRB1*1301 and DRB1*1302. These data suggest that two evolutionary pathways may have given rise to two subgroups of alleles encoding molecules that share DRw13 serologic determinants yet which possess different structural and, likely, functional motifs. Reciprocal gene recombination events resulting in different DR, DRw52 and DQ allele combinations also appear to have played a crucial role in augmenting the level of diversity found in DRw13 haplotypes. Recombination has resulted in the association of one of the new DRw13 alleles with a DQw2 allele normally found associated with DR7 and the association of the DRw52c-associated DRw13 allele (DRB1*1302) with three different DQw1 alleles. The seven DRw13 haplotypes that have resulted from the effect of recombination on haplotypes formed by the two pathways of DRw13 allelic diversification have resulted in different repertoires of class II molecules and, most likely, different immune response profiles in individuals with these haplotypes.  相似文献   

2.
Conventional phylogenetic trees for the human leukocyte antigen (HLA)-DRB1 alleles constructed by the neighbor-joining (Saitou and Nei 1987) and UPGMA (Sneath and Sokal 1973) methods using nucleotide sequences of the DRB1 alleles suggest that DRB1*0701 may have diverged from other DRB1 alleles before the separation of the human and chimpanzee species, because of a large number of nucleotide changes in DRB1*0701 compared with any of the other DRB1 alleles. Here we show new evidence that the haplotypes centering on DRB1*0701 and DRB1*04 alleles are the most homologous. This suggests that these haplotypes have derived from the common ancestral haplotype, and that they have likely retained complete linkage disequilibrium even after the divergence of the DRB1*0701 and DRB1*04 allelic lineages. Together with the corresponding haplotype carrying chimpanzee DRB1*0701, which has a high sequence homology to HLA-DRB1*0701, these haplotypes reveal that: (1) the DRB1*04 allelic lineage may have been generated from the DRB1*0701 lineage after the separation of the human and chimpanzee species; (2) the DRB1*04 allelic lineage possibly has a higher substitution rate of DRB1 compared with pseudogene and neutral region; (3) there could be a significant difference in the substitution rate of DRB1 between the DRB1*0701 and DRB1*04 allelic lineages. Based on the difference between the present and previous results, we would like to propose that phylogenetic studies using not only nucleotide sequences of the DRB1 alleles but also haplotypes centering on the alleles should be conducted for understanding detailed phylogenetic relationships of the DRB1 alleles.  相似文献   

3.
The major histocompatibility complex (Mhc) consists of class I and class II genes. In the humanMhc (HLA) class II genes, nineDRB loci have been identified. To elucidate the origin of these duplicated loci and allelic divergences at the most polymorphicDRBI locus, introns 4 and 5 as well as the 3′ untranslated region (altogether approximately 1,000 base pairs) of sevenHLA-DRB loci, threeHLA-DRBI alleles, and nine nonhuman primateDRB genes were examined. It is shown that there were two major diversification events inHLA-DRB genes, each involving gene duplications and allelic divergences. Approximately 50 million years (my) ago,DRBI *04 and an ancestor of theDRB1 *03 cluster (DRBI *03, DRBI*15, andDRB3) diverged from each other andDRB5, DRB7, DRB8, and an ancestor of theDRB2 cluster (DRB2, DRB4, andDRB6) arose by gene duplication. Later, about 25 my ago,DRBI *15 diverged fromDRBI*03, andDRB3 was duplicated fromDRBI *03. Then, some 20 my ago, the lineage leading to theDRB2 cluster produced two new loci,DRB4 andDRB6. TheDRBI *03 andDRBI *04 allelic lineages are extraordinarily old and have persisted longer than some duplicated genes. The orthologous relationships ofDRB genes between human and Old World monkeys are apparent, but those between Catarrhini and New World monkeys are equivocal because of a rather rapid expansion and contraction of primateDRB genes by duplication and deletion. Correspondence to: Y. Satta  相似文献   

4.
Mhc-DRB genes of platyrrhine primates   总被引:3,自引:3,他引:0  
The two infraorders of anthropoid primates, Platyrrhini (New World monkeys) and Catarrhini (Old World monkeys and the hominoids) are estimated to have diverged from a common ancestor 37 million years ago. The major histocompatibility complex class II DRB gene and haplotype polymorphism of the Catarrhini has been characterized in several recent studies. The present study was undertaken to obtain information on the DRB polymorphism of the Platyrrhini. Fifty-five complete exon 2 DRB sequences were obtained from six species of Platyrrhini representing both the Callitrichidae and the Cebidae families. Combined with the results of a parallel contig mapping study, our data indicate that at least three loci (DRB1*03, DRB3, and DRB5) are shared by the Catarrhini and the Platyrrhini. However, the three loci are occupied by functional genes in the former infraorder and mostly by pseudogenes in the latter. Instead of the pseudogenes, the Platyrrhini have evolved a new set of apparently functional genes — DRB11 and DRB*W12 through DRB*W19, which have thus far not been found in the Catarrhini. The DRB*W13, *W14, *W15, *W17, *W18, and *W19 genes seem to be restricted to the Cebidae family, whereas the DRB*W16 locus has so far been documented in the Callitrichidae family only. The DRB alleles of the cotton-top tamarin, and perhaps also those of the common marmoset (both members of the family Callitrichidae), are characterized by low nucleotide diversity, possibly indicating that they diverged from a common ancestral gene relatively recently. Correspondence to: J. Klein.  相似文献   

5.
Hypervariability of intronic simple (gt)n(ga)m repeats in HLA-DRB genes   总被引:2,自引:2,他引:0  
We have investigated the extent of DNA variability in intronic simple (gt)n(ga)m repeat sequences and correlated this to sequence polymorphisms in the flanking exon 2 of HLA-DRB genes. The polymerase chain reaction (PCR) was used to amplify a DNA fragment containing exon 2 and the repeat region of intron 2. The PCR products were separated on sequencing gels in order to demonstrate length hypervariability of the (gt)n(ga)m repeats. In a parallel experiment, the PCR products were cloned and sequenced (each exon 2 plus adjacent simple repeats) to characterize the simple repeats in relation to the HLA-DRB sequences. In a panel of 25 DRB1, DRB4, and DRB5 alleles new sequences were not detected. Restriction fragment length polymorphism (RFLP) subtyping of serologically defined haplotypes corresponds to translated DNA sequences in 85% of the cases, the exceptions involving unusual DR/DQ combinations. Many identical DRB1 alleles can be distinguished on the basis of their adjacent simple repeats. We found group-specific organization of the repeats: the DRw52 supergroup repeats differ from those of DRB1*0101, DRB4*0101, and DRB5*0101 alleles and from those of pseudogenes. Finally, we amplified baboon DNA and found a DRB allele with extensive similarity to DRB1 sequences of the DRw52 supergroup. The simple repeat of the baboon gene, however, resembles that of human pseudogenes. In addition to further subtyping, the parallel study of polymorphic protein and hypervariable DNA alleles may allow conclusions to be drawn on the relationships between the DRB genes and perhaps also on the theory of trans-species evolution.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M 34258.  相似文献   

6.
Genetic diversity at class II DRB loci of the primate MHC   总被引:6,自引:0,他引:6  
The evolution of polymorphism at loci encoding the beta-chains of the MHC class II DR Ag was studied in primates by DNA amplification (polymerase chain reaction). Phylogenetic analysis of 63 DRB sequences from the polymorphic second exon (first domain) of nonhuman primates and 53 human sequences indicates the presence of five DRB loci in primates, derived from a DRB1-like ancestral locus over 20 million yr ago. Many of the allelic types at the DRB1 locus predate the divergence of hominoids (5 million yr ago) and some (DR4, DR3, 5, 6) predate the divergence of Old world monkeys and hominoids (20 million yr ago). The DRB3 locus appears to have arisen before the divergence of hominoids on an ancestral DRB1 lineage. The DRB2 and DRB5 loci were generated more than 20 million yr ago and the DRB4 locus more than 5 million yr ago. The DRB2 locus, a pseudogene in humans, is polymorphic in the nonhuman primates.  相似文献   

7.
The DRB region of the human and great-ape major histocompatibility complex displays not only gene but also haplotype polymorphism. The number of genes in the human DRB region can vary from one to four, and even greater variability exists among the DRB haplotypes of chimpanzees, gorillas, and orangutans. Accumulating evidence indicates that, like gene polymorphism, part of the haplotype polymorphism predates speciation. In an effort to determine when the gene haplotype polymorphisms emerged in the primate lineage, we sequenced three cDNA clones of the New-World monkey, the cottontop tamarin (Saguinus oedipus). We could identify two DRB loci in this species, one (Saoe-DRB1) occupied by apparently functional alleles (*0101 and *0102) which differ by only two nucleotide substitutions and the other (Saoe-DRB2) occupied by an apparent pseudogene. The Saoe-DRB2 gene contains an extra sequence derived from the 3' portion of exon 2 and placed 5' to this exon. This sequence contains a stop codon which makes the translation of the bulk of the Saoe-DRB2 gene unlikely. Preliminary Southern blot hybridization analysis with probes derived from these two genes suggests that both the DRB gene polymorphism and the haplotype polymorphism in the cottontop tamarin may be low. In most individuals the DRB region of this species probably consists of three genes. Comparisons of the Saoe-DRB sequences with those of other primates suggest that probably all of the DRB genes found until now in the Catarrhini were derived from a common ancestor after the separation of the Catarrhini and Platyrrhini lineages. The extant DRB gene and haplotype polymorphism may therefore have been founded in the mid-Oligocene some 33 Mya.  相似文献   

8.
We analyzed the origin of allelic diversity at the class II HLA-DRB1 locus, using a complex microsatellite located in intron 2, close to the polymorphic second exon. A phylogenetic analysis of human, gorilla, and chimpanzee DRB1 sequences indicated that the structure of the microsatellite has evolved, primarily by point mutations, from a putative ancestral (GT)x(GA)y-complex-dinucleotide repeat. In all contemporary DRB1 allelic lineages, with the exception of the human *04 and the gorilla *08 lineages, the (GA)y repeat is interrupted, often by a G-->C substitution. In general, the length of the 3' (GA)y repeat correlates with the allelic lineage and thus evolves more slowly than a middle (GA)z repeat, whose length correlates with specific alleles within the lineage. Comparison of the microsatellite sequence from 30 human DRB1 alleles showed the longer 5' (GT)x to be more variable than the shorter middle (GA)z and 3' (GA)y repeats. Analysis of multiple samples with the same exon sequence, derived from different continents, showed that the 5' (GT)x repeat evolves more rapidly than the middle (GA)z and the 3' (GA)y repeats, which is consistent with findings of a higher mutation rate for longer tracts. The microsatellite-repeat-length variation was used to trace the origin of new DRB1 alleles, such as the new *08 alleles found in the Cayapa people of Ecuador and the Ticuna people of Brazil.  相似文献   

9.
The HLA region harbors some of the most polymorphic loci in the human genome. Among them is the class II locus HLA-DRB1, with more than 400 known alleles. The age of the polymorphism and the rate at which new alleles are generated at HLA loci has caused much controversy over the years. Previous studies have mostly been restricted to the 270 base pairs that constitute the second exon and represent the most variable part of the gene. Here, we investigate the evolutionary history of the HLA-DRB1 locus on the basis of an analysis of 15 genomic full-length alleles (10-15 kb). In addition, the variation in 49 complete coding sequences and 322 exon 2 sequences were analyzed. When excluding exon 2 from the analysis, the diversity at the synonymous sites was found to be similar to the intron diversity. The overall diversity in noncoding region was also similar to the genome average. The DRB1*03 lineage has been found in human, chimpanzee, bonobo, gorilla, and orangutan. An ancestral "proto HLA-DRB1*03 lineage" appeared to have diverged in the last 5 million years into the human-specific lineages *08, *11, *13, and *14. With exception to exon 2, both the coding- and the noncoding diversity suggests a recent origin (<1 million years ago) for most of the alleles at the HLA-DRB1 locus. Sites encoding for amino acids involved in antigen binding [antigen recognizing sites (ARS)] appear to have a more ancient origin. Taken together, the recent origin of most alleles, the high diversity between allelic lineages, and the ancient origin of sequence motifs in exon 2, is consistent with a relatively rapid generation of novel alleles by gene conversion like events.  相似文献   

10.
Two fetal globin genes (G gamma and A gamma) from one chromosome of a lowland gorilla (Gorilla gorilla gorilla) have been sequenced and compared to three human loci (a G gamma-gene and two A gamma-alleles). A comparison of regions of local homology among these five sequences indicates that long after the duplication that produced the two nonallelic gamma-globin loci of catarrhine primates, about 35 million years (Myr) ago, at least one gene conversion event occurred between these loci. This conversion occurred not long before the ancestral divergence (about 6 Myr ago) of Homo and Gorilla. After this ancestral divergence, a minimum of three more gene conversion events occurred in the human lineage. Each human A gamma-allele shares specific sequence features with the gorilla A gamma-gene; one such distinctive allelic feature involves the simple repeated sequence in IVS 2. This suggests that early in the human lineage the A gamma-genes may have undergone a crossing-over event mediated by this simple repeated sequence. The DNA sequences from coding regions of both G gamma- and A gamma-loci, a comparison of 292 codons in the corresponding gorilla and human genes, show an unusually low evolutionary rate, with only two nonsilent differences and, surprisingly, not even one silent substitution. The two nonsynonymous substitutions observed predict a glycine at codon 73 and an arginine at codon 104 in the gorilla A gamma-sequence rather than aspartic acid and lysine, respectively, in human A gamma. Because only arginine has been found at position 104 in gamma-chains of Old World monkeys, it may represent the ancestral residue lost in gorilla and human G gamma-chains and in the human A gamma-chain. Possibly the arginine codon (AGG) was replaced by the lysine codon (AAG) in the G gamma-gene of a common ancestor of Homo and Gorilla and then was transferred to the A gamma-gene by subsequent conversions in the human lineage. DNA sequence conversions, similar to that attributed to the fetal gamma-globin genes, appear to be relatively frequent phenomena and, if widespread throughout the genome, may have profound evolutionary consequences.   相似文献   

11.
The human major histocompatibility complex (MHC) class I chain-related gene A ( MICA) is located 46 kb upstream of HLA-B and encodes a stress-inducible protein which displays a restricted pattern of tissue expression. MICA molecules interact with NKG2D, augmenting the activation of natural killer cells, CD8(+) alpha beta T cells, and gamma delta T cells. MICA allelic variation is thought to be associated with disease susceptibility and immune response to transplants. We investigated MICA allelic variations and linkage disequilibrium with HLA-A, B, and DRB1 loci on 110 parental haplotypes from 29 African-American families. PCR/sequence-specific oligonucleotide probing (SSOP) was used to define MICA polymorphisms in exons 2, 3, and 4. Ambiguous allelic combinations were resolved by sequencing exons 2, 3, and 4. Exon 5 polymorphisms were analyzed by size sequencing. For HLA-A, B and DRB1 typing, low-resolution PCR/SSOP and allelic PCR/sequence-specific priming techniques were used. Twelve MICA alleles were observed, the most frequent of which were MICA*008, MICA*004, and MICA*002, with gene frequencies of 28.2, 26.4, and 25.5%, respectively. Thirty-eight HLA-B- MICA haplotypic combinations were uncovered, 22 of which have not been reported in the HLA homozygous typing cell lines from the 10th International Histocompatibility Workshop. Significant positive linkage disequilibria were found in 8 HLA-B- MICA haplotypes. Furthermore, haplotypes bearing HLA-B*1503, *1801, *4901, *5201, *5301, and *5703 were found to segregate with at least two different MICA alleles. Our results provide new data about MICA genetic polymorphisms in African-Americans, which will form the basis for future studies of MICA alleles in allogeneic stem cell transplantation outcome.  相似文献   

12.

Background

Kazakhstan has been inhabited by different populations, such as the Kazakh, Kyrgyz, Uzbek and others. Here we investigate allelic and haplotypic polymorphisms of human leukocyte antigen (HLA) genes at DRB1, DQA1 and DQB1 loci in the Kazakh ethnic group, and their genetic relationship between world populations.

Methodology/Principal Findings

A total of 157 unrelated Kazakh ethnic individuals from Astana were genotyped using sequence based typing (SBT-Method) for HLA-DRB1, -DQA1 and -DQB1 loci. Allele frequencies, neighbor-joining method, and multidimensional scaling analysis have been obtained for comparison with other world populations. Statistical analyses were performed using Arlequin v3.11. Applying the software PAST v. 2.17 the resulting genetic distance matrix was used for a multidimensional scaling analysis (MDS). Respectively 37, 17 and 19 alleles were observed at HLA-DRB1, -DQA1 and -DQB1 loci. The most frequent alleles were HLA-DRB1*07:01 (13.1%), HLA-DQA1*03:01 (13.1%) and HLA-DQB1*03:01 (17.6%). In the observed group of Kazakhs DRB1*07:01-DQA1*02:01-DQB1*02:01 (8.0%) was the most common three loci haplotype. DRB1*10:01-DQB1*05:01 showed the strongest linkage disequilibrium. The Kazakh population shows genetic kinship with the Kazakhs from China, Uyghurs, Mongolians, Todzhinians, Tuvinians and as well as with other Siberians and Asians.

Conclusions/Significance

The HLA-DRB1, -DQA1and -DQB1 loci are highly polymorphic in the Kazakh population, and this population has the closest relationship with other Asian and Siberian populations.  相似文献   

13.
HLA class II loci are useful markers in human population genetics, because they are extremely variable and because new molecular techniques allow large-scale analysis of DNA allele frequencies. Direct DNA typing by hybridization with sequence-specific oligonucleotide probes (HLA oligotyping) after enzymatic in vitro PCR amplification detects HLA allelic polymorphisms for all class II loci. A detailed HLA-DR oligotyping analysis of 191 individuals from a geographically, culturally, and genetically well-defined western African population, the Mandenkalu, reveals a high degree of polymorphism, with at least 24 alleles and a heterozygosity level of .884 for the DRB1 locus. The allele DRB1*1304, defined by DNA sequencing of the DRB1 first-domain exon, is the most frequent allele (27.1%). It accounts for an unusually high DR13 frequency, which is nevertheless within the neutral frequency range. The next most frequent specificities are DR11, DR3, and DR8. Among DRB3-encoded alleles, DR52b (DRB3*02) represents as much as 80.7% of all DR52 haplotypes. A survey of HLA-DR specificities in populations from different continents shows a significant positive correlation between genetic and geographic differentiation patterns. A homozygosity test for selective neutrality of DR specificities is not significant for the Mandenka population but is rejected for 20 of 24 populations. Observed high heterozygosity levels in tested populations are compatible with an overdominant model with a small selective advantage for heterozygotes.  相似文献   

14.
The class II region of the human major histocompatibility complex (HLA) is made up of three major subregions designated DR, DQ, and DP. With the aim of gaining an insight into the evolution and stability of DR haplotypes, a total of 63 cosmid clones were isolated from the DR subregion (Gogo-DR) of a western lowland gorilla. All but one of these cosmid clones were found to fall into two clusters. The larger cluster, A, was defined by 41 overlapping cosmid clones and contained a DRB gene segment made up of exons 4 through 6 and four DRB genes, designated Gogo-DRB6, Gogo-DRB5*01, Gogo-DRB8, and Gogo-DRB3*01. The total length of this cluster was approximately 180 kb. The second cluster, B, encompassed a contiguous DNA stretch of approximately 145 kb and was composed of 21 overlapping cosmid clones. Cluster B contained three DRB genes, designated Gogo-DRB1*08, Gogo-DRB2, and Gogo-DRB3*02. One cosmid clone (WP1-9) containing a DRB pseudogene could not be linked to either cluster A or B. Neither the organization of cluster A nor that of cluster B was identical to that of known HLA-DR haplotypes. However, two gorilla DRB genes, Gogo-DRB6 and Gogo-DRB5*01, the human counterparts of which are linked in the HLA-DR2 haplotype, were found to be located next to each other in cluster A. The arrangement of the Gogo-DRB genes in cluster B, which is presumed to be the gorilla DR8 haplotype, was similar to that of HLA-DR3/DR5/DR6 haplotypes and to that of the presumed ancestral HLA-DR8 haplotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have conducted an extensive phylogenetic analysis of polymorphic alleles from human and mouse major histocompatibility complex (MHC) class I and class II genes. The phylogenetic tree obtained for 212 complete human class I allele sequences (HLA-A, -B, and -C) has shown that all alleles from the same locus form a single cluster, which is highly supported by bootstrap values, except for one HLA-B allele (HLA-B*7301). Mouse MHC class I loci did not show locus-specific clusters of polymorphic alleles. This was considered to be because of either interlocus genetic exchange or the confusing designation of loci in different haplotypes at the present time. The locus specificity of polymorphic alleles was also observed in human and mouse MHC class II loci. It was therefore concluded that interlocus recombination or gene conversion is not very important for generating MHC diversity, with a possible exception of mouse class I loci. According to the phylogenetic trees of complete coding sequences, we classified human MHC class I (HLA-A, -B, and -C) and class II (DRB1) alleles into three to five major allelic lineages (groups), which were monophyletic with high bootstrap values. Most of these allelic groups remained unchanged even in phylogenetic trees based on individual exons, though this does not exclude the possibility of intralocus recombination involving short DNA segments. These results, together with the previous observation that MHC loci are subject to frequent duplication and deletion, as well as to balancing selection, indicate that MHC evolution in mammals is in agreement with the birth-and-death model of evolution, rather than with the model of concerted evolution.  相似文献   

16.
本研究通过对123只陕北白绒山羊DRB1基因外显子2的遗传变异分析,旨在获得陕北白绒山羊DRB1基因的多态性及变异信息,为山羊抗病基因的挖掘研究提供基础资料。本研究共获得6条陕北白绒山羊DRB1基因外显子2序列,其中4条为首次发现。生物信息学分析表明DRB1位点具有较高的多态性,6条等位基因可能起源于2个祖先基因。在长期的进化过程中,DRB1位点受到了明显的选择压力作用,这种选择作用有助于陕北白绒山羊对当地气候的适应。蛋白质结构的预测证实了DRB1*1与其它等位基因间的差异性,说明核苷酸变异可能会引起蛋白质结构的改变,最终可能影响宿主对病原体的免疫应答。本次对陕北白绒山羊DRB1基因多态性的调查与分析有助于筛选疾病抗性和易感性MHC (Major histocompatibility complex)候选基因,进而可加速绒山羊抗病品系的改良与培育进程。  相似文献   

17.
Human leukocyte antigen (HLA) class I and class II alleles are implicated as genetic risk factors for many autoimmune diseases. However, the role of the HLA loci in human systemic lupus erythematosus (SLE) remains unclear. Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, we identified three distinct haplotypes that encompassed the class II region and exhibited transmission distortion. DRB1 and DQB1 typing of founders showed that the three haplotypes contained DRB1*1501/ DQB1*0602, DRB1*0801/ DQB1*0402, and DRB1*0301/DQB1*0201 alleles, respectively. By visualizing ancestral recombinants, we narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to an approximately 500-kb region. We conclude that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE.  相似文献   

18.
19.
Variability of the HLA class II genes (alleles of the DRB1, DQA1, and DQB1 loci) was investigated in a sample of Aleuts of the Commanders (n = 31), whose ancestors inhabited the Commander Islands for many thousand years. Among 19 haplotypes revealed in Aleuts of the Commanders, at most eight were inherited from the native inhabitants of the Commander Islands. Five of these haplotypes (DRB1*0401-DQA1*0301-DQB1*0301, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*0802-DQA1*0401-DQB1*0402, DRB1*1101-DQA1*0501-DQB1*0301, and DRB1*1201-DQA1*0501-DQB1*0301) were typical of Beringian Mongoloids, i.e., Coastal Chukchi and Koryaks, as well as Siberian and Alaskan Eskimos. Genetic contribution of the immigrants to the genetic pool of proper Aleuts constituted about 52%. Phylogenetic analysis based on Transberingian distribution of the DRB1 allele frequencies favored the hypothesis on the common origin of Paleo-Aleuts, Paleo-Eskimos, and the Indians from the northwestern North America, whose direct ancestors survived in Beringian/southwestern Alaskan coastal refugia during the late Ice Age.  相似文献   

20.
  In both Old World and New World monkeys Mhc-DRB sequences have been found which resemble human DRB1*03 and DRB3 genes in their second exon. The resemblance is shared sequence motifs and clustering of the genes or the encoded proteins in phylogenetic trees. This similarity could be due to common ancestry, convergence at the molecular level, or chance. To test which of these three explanations applies, we sequenced segments of New World monkey and macaque genes which encompass the entire second exon and large parts of both flanking introns. The test strongly supports the monophyly of New World monkey DRB intron sequences. The phylogenies of introns 1 and 2 from DRB1*03-like and DRB3-like genes are congruent, but both are incongruent with the exon 2-based phylogeny. The matching of intron 1- and intron 2-based phylogenies with each other suggests that reciprocal recombination has not played a major role in exon 2 evolution. Statistical comparisons of exon 2 from different DRB1*03 and DRB3 lineages indicate that it was neither gene conversion (descent), nor chance, but molecular convergence that has shaped their characteristic motifs. The demonstration of convergence in anthropoid Mhc-DRB genes has implications for the classification, age, and mechanism of generation of DRB allelic lineages. Received: 30 August 1999 / Revised: 19 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号