首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Mouse plasma contains two major protease inhibitors, alpha 1-protease inhibitor (alpha 1-PI) and contrapsin, which have high affinity for bovine trypsin. Systemic injury, such as turpentine-induced inflammation, did not change the plasma concentration of alpha 1-PI, but increased that of contrapsin by 50%. The concentration of hepatic alpha 1-PI mRNA was determined by Northern blot hybridization and was not significantly affected by the acute phase reaction. J.M. Frazer, S.A. Nathoo, J. Katz, T.L. Genetta, and T.H. Finley [1985) Arch. Biochem. Biophys. 239, 112-119) have reported a threefold increase of mRNA for the elastase specific alpha 1-PI but this increase was not demonstrated by the present study. The mRNAs for known mouse acute phase plasma proteins were, however, stimulated severalfold by the same treatment. These results indicate that in the mouse, as opposed to human, alpha 1-PI is not an acute phase reactant.  相似文献   

2.
The response of rat hepatocytes co-cultured with rat liver epithelial cells to conditioned medium (CM) from lipopolysaccharide (LPS)-activated monocytes was investigated by measuring the concentration of alpha 2-macroglobulin (alpha 2M), alpha 1-acid glycoprotein (AGP), albumin and transferrin, as well as the changes in glycosylation of alpha 1-acid glycoprotein. During an initial 8-day treatment with CM, concentrations of alpha 2M and AGP increased markedly over those of control culture, whereas concentrations of albumin and transferrin decreased. The glycosylation pattern of AGP indicated an important relative increase of the concanavalin A-strongly-reactive (SR) variant upon treatment. When CM addition to hepatocyte culture medium was stopped, the concentrations of the four proteins and the glycosylation pattern of AGP reverted to those of control cultures. Further addition (on day 15) to cultures of CM increased the concentration of alpha 2M and decreased albumin and transferrin concentrations. Although AGP concentrations did not increase above those of controls, the appearance of the SR variant was again stimulated by CM. These results show that, in co-culture, rat hepatocytes remain able to respond to repeated inflammatory stimuli.  相似文献   

3.
Quantitative and qualitative changes of serum proteins, apart from glycation, have not been sufficiently studied in streptozotocin-induced diabetic rats (D), the most common experimental model for diabetes. Thus, we decided to analyze the serum of diabetic rats by concanavalin A-blotting in comparison with rats with acute inflammation induced by fermented yeast (Y), in which characteristic alterations of serum proteins have been described. Two months after the streptozotocin treatment, the blood glucose levels were highly elevated (456+/-24 vs. 124+/-10 mg/dl, p<0.001, n=12), the body weight was significantly lower than normal (279+/-10 vs. 392+/-6 g, p<0.001, n=12), and serum proteins appeared to be highly glycated (p<0.001) when analyzed by the fructosamine assay, without any significant change in the total serum protein concentration. Analysis by concanavalin A-blotting, revealed a significant decrease of alpha1-inhibitor-3 (alpha1-I3, p<0.05) and an increase of the beta chain of haptoglobin (beta-Hp, p<0.05) in both D and Y rats (n=3) compared with control animals. However, acute inflammation caused a marked rise of two prominent acute phase proteins, alpha2-macroglobulin and hemopexin, which did not change appreciably in diabetic rats. Further work will be necessary to evaluate the physiopathological significance of these phenomena which could result from changes of both concentration and glycosylation of the aforementioned proteins.  相似文献   

4.
BACKGROUND: alpha(1)-Acid glycoprotein (AGP), an acute phase reactant, is extensively glycosylated at five Asn-linked glycosylation sites. In a number of pathophysiological states, including inflammation, rheumatoid arthritis, and cancer, alterations of Asn-linked glycans (N-glycans) have been reported. We investigated alteration of N-glycans at each of glycosylation sites of AGP in the sera of patients with acute and chronic inflammation. METHODS: AGP purified from sera was digested with Glu-C and the liberated glycopeptides were isolated by reverse phase HPLC. N-glycans released with peptide N-glycosidase F and followed by neuraminidase treatment were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. RESULTS: Site-specific differences in branching structures were observed among N-glycosylation sites 1, 3, 4 and 5. Within the sera of patients with acute inflammation, increases in bi-antennary and decreases in tri- and tetra-antennary structures were observed, as well as increases in alpha1,3-fucosylation, at most glycosylation sites. In the sera of patients with chronic inflammation, increased rates of tri-antennary alpha1,3-fucosylation at sites 3 and 4 and tetra-antennary alpha1,3-fucosylation at sites 3, 4 and 5 were detected. Although there were no significant differences between acute and chronic sera in site directed branching structures, significant differences of alpha1,3-fucosylation were detected in tri-antennary at sites 2, 4 and 5 and in tetra-antennary at sites 3 and 4. CONCLUSION: Little variation in the N-glycan composition of the glycosylation sites of AGP was observed among healthy individuals, while the sera of patients with acute inflammation demonstrated increased numbers of bi-antennary and alpha1,3-fucosylated N-glycan structures at each glycosylation site.  相似文献   

5.
Acute phase proteins (APPs) are predominantly synthesized in the liver and play an important role in restoring homeostasis. In the present study, we set out to answer two questions using transdifferentiated hepatocytes induced from pancreatic cells as a model for studying the acute phase response. Firstly, do transdifferentiated hepatocytes express acute phase proteins following culture with glucocorticoid and cytokines? Secondly, what is the molecular basis of the induction of acute phase proteins in transdifferentiated hepatocytes? Hepatic transdifferentiation was induced in 11.5-day mouse embryonic pancreas or the pancreatic cell line AR42J-B13 (B13) by culture with dexamethasone. We found that acute phase proteins [alpha2-macroglobulin (MG), haptoglobin (Hp)] were induced in both systems following culture with dexamethasone. The combined treatment of dexamethasone and oncostatin M (OSM) enhanced the expression of the acute phase proteins in B13 cells and the mechanism of the up-regulation by the cytokine is probably mediated by phosphorylation of STAT3 and STAT1. In addition, ectopic expression of either C/EBPbeta or C/EBPalpha in B13 cells induced haptoglobin expression and culture with oncostatin M was sufficient to enhance the expression of haptoglobin in C/EBPbeta transfected cells from 18% to 43%. The results of the present study indicate transdifferentiated hepatocytes have the potential to be a useful model to study liver function in vitro.  相似文献   

6.
Filion ML  Bhakta V  Nguyen LH  Liaw PS  Sheffield WP 《Biochemistry》2004,43(46):14864-14872
The abundant plasma protein alpha(1)-proteinase inhibitor (alpha(1)-PI) physiologically inhibits neutrophil elastase (NE) and factor XIa and belongs to the serine protease inhibitor (serpin) protein superfamily. Inhibitory serpins possess a surface peptide domain called the reactive center loop (RCL), which contains the P1-P1' scissile peptide bond. Conversion of this bond in alpha(1)-PI from Met-Ser to Arg-Ser in alpha(1)-PI Pittsburgh (M358R) redirects alpha(1)-PI from inhibiting NE to inhibiting thrombin (IIa), activated protein C (APC), and other proteases. In contrast to either the wild-type or M358R alpha(1)-PI, heparin cofactor II (HCII) is a IIa-specific inhibitor with an atypical Leu-Ser reactive center. We examined the effects of replacement of all or part of the RCL of alpha(1)-PI with the corresponding parts of the HCII RCL on the activity and specificity of the resulting chimeric inhibitors. A series of 12 N-terminally His-tagged alpha(1)-PI proteins differing only in their RCL residues were expressed as soluble proteins in Escherichia coli. Substitution of the P16-P3' loop of alpha(1)-PI with that of HCII increased the low intrinsic antithrombin activity of alpha(1)-PI to near that of heparin-free HCII, while analogous substitution of the P2'-P3' dipeptide surpassed this level. However, gel-based complexing and quantitative kinetic assays showed that all mutant proteins inhibited thrombin at less than 2% of the rate of alpha(1)-PI (M358R) unless the P1 residue was also mutated to Arg. An alpha(1)-PI (P16-P3' HCII/M358R) variant was only 3-fold less active than M358R against IIa but 70-fold less active against APC. The reduction in anti-APC activity is desired in an antithrombotic agent, but the improvement in inhibitory profile came at the cost of a 3.5-fold increase in the stoichiometry of inhibition. Our results suggest that, while P1 Arg is essential for maximal antithrombin activity in engineered alpha(1)-PI proteins, substitution of the corresponding HCII residues can enhance thrombin specificity.  相似文献   

7.
We previously described the isolation and purification of two similar alpha 1-protease inhibitors from mouse plasma termed alpha 1-PI(E) and alpha 1-PI(T) because of their respective affinities for elastase and trypsin. Some of the biochemical and immunological properties of these proteins are reported. Both are acidic glycoproteins with pI's of 4.1-4.2. The plasma half-life of each inhibitor, determined after administration of the 125I-protein, is approximately 4 h both in normal mice and in mice after induction of the acute phase reaction. The two proteins have almost identical amino acid compositions and similar CNBr peptide maps. Tryptic maps, however, are considerably different. Reverse-phase chromatography separated alpha 1-PI(E) into three distinct isoforms, each eluting with approximately 60% acetonitrile. Under these conditions alpha 1-PI(T) shows a single peak, clearly different from those of alpha 1-PI(E). The three alpha 1-PI(E) isoforms have the same molecular weights on sodium dodecyl sulfate-gel electrophoresis and the same tripeptide sequence at their N-terminus, and appear to be immunologically identical. Polyclonal, monospecific antibodies to each native inhibitor, prepared in rabbits, showed no cross-reactivity when tested by functional assay or crossed immunoelectrophoresis. Interestingly, each antibody recognized epitopes on the C-terminal portion of its respective antigen. These studies confirm that alpha 1-PI(E) and alpha 1-PI(T), although highly similar, are products of different genes. Like human alpha 1-PI, the two mouse inhibitors are partially inactivated by mild oxidation with chloramine-T, losing all elastase inhibitor and lesser amounts of antichymotryptic and antitryptic activity. However, unlike the human protein, neither alpha 1-PI(E) nor alpha 1-PI(T) was found to have a methionine residue at its P1 site.  相似文献   

8.
Transgenic mouse lines carrying the gene for rat alpha 1-acid glycoprotein (AGP) express the protein in the plasma at concentrations equal to or exceeding that of acute phase rats. Owing to the high basal level, these transgenic mice represent a unique experimental system for defining the largely unknown function of AGP. Since the carbohydrate moiety of AGP has been found to be changed during acute phase and the oligosaccharide structure to be important for immunomodulating activity of the protein, the rat AGP in transgenic mice was characterized by lectin-affinity immuno-electrophoresis. Unlike in the rat, the AGP in the transgenic mouse plasma consisted primarily of strongly concanavalin A-reactive forms. Acute phase mediated a several-fold increase in the total plasma concentration of AGP concomitant with a shift toward moderately concanavalin A-reactive forms. A similar change in concanavalin A-reactive forms was observed for the endogenous acute phase plasma protein haptoglobin. To define the role of inflammatory factors in AGP production, primary cultures of hepatocytes were prepared. In contrast to in vivo, the AGP recovered from tissue culture medium represented primarily the concanavalin A-non-reactive form. Treatment of the cells with recombinant human interleukin-1, interleukin-6 and dexamethasone stimulated the production of concanavalin A-reactive AGP forms. The data indicate that the glycosylation pattern of plasma-resident AGP is modulated by acute phase, but that the profile of AGP forms does not coincide with that secreted by hepatocytes in tissue culture. This finding demands an assessment of which of the possible glycosylated forms of AGP is functionally significant in vivo.  相似文献   

9.
Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.  相似文献   

10.
Using a three-step procedure, we purified (79 and 51.6-fold to homogeneity) and characterized the two isoforms (a and b) of alpha1-proteinase inhibitor-like protein from carp seminal plasma. The isoforms have molecular masses of 55.5 and 54.0 kDa, respectively. These inhibitors formed SDS-stable complexes with cod and bovine trypsin, chymotrypsin and elastase. The thirty-three amino acids within the reactive loop SLPDTVILNRPFLVLIVEDTTKSILFMGKITNP were identified for isoform b. The same first ten amino acids were obtained for isoform a, and this sequence revealed 100% homology to carp alpha1-proteinase inhibitor (alpha1-PI) from perimeningeal fluid. Both isoforms of alpha1-PI are glycoproteins and their carbohydrate content was determined to be 12.6 and 12.1% for a and b, respectively. Our results indicated that alpha1-PI is one of the main proteins of carp seminal plasma. Using polyclonal anti-alpha1-PI antibodies, alpha1-PI was for the first time localized to the carp testis. The presence of alpha1-PI in testis lobules and in the area surrounding spermatides suggests that this inhibitor may be involved in the maintenance of testis connective tissue integrity, control of spermatogenesis or protection of tissue and spermatozoa against unwanted proteolysis. Since similar alpha1-PI has been identified in rainbow trout semen it can be suggested that the presence of alpha1-PI in seminal plasma is a common feature of cyprinid and salmonid fish.  相似文献   

11.
We measured the serum concentration of alpha 1-acid glycoprotein (alpha 1-AGP) and we evaluated the content of its hepatic mRNA in rats after 17 alpha-ethynyloestradiol treatment or after turpentine-induced acute inflammation, or after both treatments performed simultaneously. We have also studied the affinity of serum alpha 1-AGP for concanavalin A under these conditions. Both types of stimuli induce a marked retention of the glycoprotein on free concanavalin A. The serum concentration of alpha 1-AGP is increased about 14-fold compared with that in control rats when a single pharmacological dose (50 micrograms) or multiple injections of 17 alpha-ethynyloestradiol are administered. This increase is greater in turpentine-oil-injected rats (about 21-fold) and reaches a maximum (about 32-fold) in rats injected with 17 alpha-ethynyloestradiol plus turpentine oil; this increase in alpha 1-AGP corresponds to the addition of the effects of the two inducing agents. Similar changes are also observed either in the alpha 1-AGP mRNA content as estimated by using an alpha 1-AGP-specific cDNA probe, or in the amount of translatable alpha 1-AGP mRNA. The results indicate that: after a high dose of 17 alpha-ethynyloestradiol and after acute inflammation, the increase of the alpha 1-AGP serum concentration is due to an accumulation of the alpha 1-AGP mRNA; different mechanisms and/or pathways are probably involved in regulating the synthesis of alpha 1-AGP under various stimuli; 17 alpha-ethynyloestradiol as well as acute inflammation seem to control the glycosylation process of alpha 1-AGP in an identical manner.  相似文献   

12.
High-pH anion-exchange chromatography with pulsed amperometric detection is a highly sensitive technique that can be used for detecting changes in sialylation and fucosylation, as well as different branching patterns of N-linked oligosaccharides in glycoproteins. We examined the N-glycans of α1-acid glycoprotein obtained from twelve patients with various inflammatory conditions with this technique, as well as traditional concanavalin A crossed affinity immunoelectrophoresis. We found the chromatographic profiles of N-glycans in all patients with rheumatoid arthritis to be very similar, but significantly different from normal controls. N-glycans from patients with ulcerative colitis also showed specific alterations in their chromatographic profiles. However, some heterogeneity was found between these patients, perhaps reflecting changes in glycosylation secondary to certain states of the disease, or to medical treatment. We conclude that this technique is useful for detailed mapping of glycosylation changes in α1-acid glycoprotein in clinical samples, and that it may be used to further increase our knowledge about glycosylation changes in response to inflammatory disease. Abbreviations: AC, acute cholangitis; AGP, α1-acid glycoprotein; CAIE, crossed affinity immunoelectrophoresis; Con A, concanavalin A; HPAEC-PAD, high-pH anion-exchange chromatography with pulsed amperometric detection; IEC, ion exchange chromatography; RA, rheumatoid arthritis; SLex, sialyl Lex; UC, ulcerative colitis This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
This study was performed in order to gain insight into the occurrence, glycosylation and the possible origin of the acute-phase proteins α1-acid glycoprotein (AGP) and α1-protease inhibitor (PI) in sera and synovial fluid from patients with rheumatoid arthritis (RA). Therefore paired sera and synovial fluid samples from patients with RA, and paired synovial fluid samples from right and left knees of patients with varying degrees of arthritis were studied. Crossed affinity immunoelectrophoresis (CAIE) was used with concanavalin A and Aleuria aurantia lectin for the detection of the degree of branching and fucosylation, respectively, and the monoclonal CSLEX-1 for the detection of Sialyl Lewisx (SLex) groups on AGP. For PI, not only CAIE, but also high-pressure-anion-exchange chromatography with pulsed amperometric detection was used to study the glycosylation. It was established that the concentrations of AGP and PI were increased in the serum of RA patients compared to normal healthy controls, but that the concentration of both proteins, as well as albumin, was significantly lower in synovial fluid than in serum. Furthermore, the type of glycosylation of both AGP and PI found in RA was significantly different from that found in normals, with increased fucosylation, but there were no major differences in the degree of branching of AGP- or PI-glycans in RA, compared to normals. No differences in glycosylation could be established between serum and synovial fluid in RA. For PI an increased fucosylation was found, both in serum and synovial fluid, using both methods of detection, and it could be established that only the α1→3- and not the α1→6-fucosylation of PI was affected by RA. The increased fucosylation of AGP resulted in an increased expression of SLex on AGP-glycans. Since the α1→3- fucosylation of AGP was significantly increased in both serum and synovial fluid from RA patients, and this correlated with systemic but not with local disease parameters, it can be suggested that acute phase proteins in synovial fluid are most probably of hepatic origin. Abbreviations: AGP, α1-acid glycoprotein; AAL, Aleuria Aurantia Lectin; Con A, concanavalin A; PI, α1-protease inhibitor; CAIE, crossed affino-immunoelectrophoresis; SLex, sialyl Lewis X; IL-6, interleukin-6; RA, rheumatoid arthritis; PMN, polymorphonuclear cells; HPAEC, high pressure anion exchange chromatography This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
A strong increase of the affinity for concanavalin A (Con A) of serum alpha 2-macroglobulin, a non-acute-phase protein, was observed by lectin blotting in patients with Sj?gren's syndrome (SS). On the contrary, the total Con A reactivity of serum proteins, measured by enzyme-linked lectin assay, was not augmented in SS, compared with normal donors, probably because positive changes of certain proteins were balanced by negative changes of others, as suggested by lectin blotting analysis. However, a significant increase of total Con A reactivity occurred in subjects with increased serum concentrations of soluble interleukin (IL)-2 receptor, compared with patients with normal concentrations of this marker of disease activity. On the other hand, the same parameter did not appear to be different in patients with normal or increased serum concentrations of IL-6, indicating that this cytokine was not probably responsible for the changes of glycosylation described here.  相似文献   

15.
Glycosylation is the most common posttranslational modification of proteins and is highly reflective of changes in the environment of a cell. Epigenetic modifications to the genome are stably transmitted to daughter cells without the requirement for genetic sequence alterations. Aberrant regulation of both epigenetic programming and glycosylation patterning are integral aspects of carcinogenesis. The objective of this study was to determine the interplay between these two complex cellular processes. We demonstrate that global DNA methylation changes in ovarian cancer epithelial cells (OVCAR3) resulted in significant alterations in the glycosylation of secreted glycoproteins. These changes included a reduction in core fucosylation, increased branching and increased sialylation. We further show that the change in core fucose levels was mirrored by altered expression of GMDS and FX, key enzymes in fucose biosynthesis. Alterations in the expression of key glycosyltransferase enzymes such as MGAT5 reflect the changes seen in the branching and sialylation of secreted glycans. Overall, our results highlight that modifications to the epigenetic machinery have a profound effect on the glycan structures generated by cells, which may be a key step in understanding metastasis and drug resistance during cancer progression.  相似文献   

16.
《Epigenetics》2013,8(11):1362-1372
Glycosylation is the most common posttranslational modification of proteins and is highly reflective of changes in the environment of a cell. Epigenetic modifications to the genome are stably transmitted to daughter cells without the requirement for genetic sequence alterations. Aberrant regulation of both epigenetic programming and glycosylation patterning are integral aspects of carcinogenesis. The objective of this study was to determine the interplay between these two complex cellular processes. We demonstrate that global DNA methylation changes in ovarian cancer epithelial cells (OVCAR3) resulted in significant alterations in the glycosylation of secreted glycoproteins. These changes included a reduction in core fucosylation, increased branching and increased sialylation. We further show that the change in core fucose levels was mirrored by altered expression of GMDS and FX, key enzymes in fucose biosynthesis. Alterations in the expression of key glycosyltransferase enzymes such as MGAT5 reflect the changes seen in the branching and sialylation of secreted glycans. Overall, our results highlight that modifications to the epigenetic machinery have a profound effect on the glycan structures generated by cells, which may be a key step in understanding metastasis and drug resistance during cancer progression.  相似文献   

17.
Plasma levels of alpha 1-PI(T) and alpha 1-PI(E), two closely related murine alpha 1-protease inhibitors, having affinities for trypsin and elastase, respectively, were compared to changes in specific liver mRNA levels after induction of the acute-phase reaction by subcutaneous injection of turpentine. In earlier, qualitative experiments an increase in plasma levels of alpha 1-PI(E), but not alpha 1-PI(T), during the acute-phase reaction had been shown. It is now shown that stimulation of plasma alpha 1-PI(E) levels reaches a maximum of 35-50% above baseline 12 h after induction of the acute-phase response using either a functional or immunological assay to measure protease inhibitor activity. Consistent with earlier observations, little or no change in plasma levels of alpha 1-PI(T) is seen. Determination of mRNA levels in the mouse liver specific for alpha 1-PI(E) and alpha 1-PI(T) was accomplished using a cell-free translation system followed by immunoprecipitation of the 35S-labeled protease inhibitors. The apparent Mr's of alpha 1-PI(E) and alpha 1-PI(T) synthesized in vitro are 42K and 46K, respectively. Apparent Mr's of the native proteins in plasma are 55K and 65K. Unexpectedly, mRNA levels for both alpha 1-PI(E) and alpha 1-PI(T) were found to increase after induction of the acute-phase reaction. Maximal stimulation for both mRNAs was approximately 300% and occurred 9 h after turpentine administration. Under these conditions, levels of translatable albumin mRNA in the mouse liver decreased to 40% of baseline in 6-9 h.  相似文献   

18.
The conversion of the reactive center bond of the serpin alpha1-proteinase inhibitor (alpha1-PI, also known as alpha1-antitrypsin) from Met-Ser to Arg-Ser decreases the rate at which it inhibits neutrophil elastase and endows it with the ability to inhibit thrombin and activated protein C (APC). Another serpin, heparin cofactor II (HCII), contains a unique N-terminal extension that binds thrombin exosite 1. We fused residues 1-75 of HCII to the N-terminus of alpha1-PI M358R, forming an HCII-alpha1-PI chimera (HAPI M358R). It inhibited alpha-thrombin 21-fold faster than alpha1-PI M358R, with second-order rate constants of 2.3 x 10(8) M(-1) min(-1) versus 1.1 x 10(7) M(-1) min(-1), respectively. When gammaT-thrombin, which lacks an intact exosite 1, was substituted for alpha-thrombin, the kinetic advantage of HAPI M358R over alpha1-PI M358R was reduced to 9-fold, whereas APC and trypsin, proteases lacking exosite 1-like regions, were inhibited only 1.3- and 2-fold more rapidly by HAPI M358R than by alpha1-PI M358R, respectively. Maximal enhancement of alpha1-PI M358R activity required the acidic residues found between HCII residues 55 and 75, because no enhancement was observed either by fusion of residues 1-54 alone or by fusion of a mutated HCII acidic extension in which all Glu and Asp residues between positions 55 and 75 were neutralized by mutation. Fusing residues 55-75 to alpha1-PI M358R yielded a relative rate enhancement of only 6-fold, suggesting a need for the full tail region to achieve maximal enhancement. Our results suggest that transfer of the N-terminal acidic extension of HCII to alpha1-PI M358R enhanced its inhibition of thrombin by conferring the ability to bind exosite 1 on HAPI M358R. This enhancement may aid in efforts to tailor this inhibitor for therapeutic use.  相似文献   

19.
The nonspecific alkaline phosphatase of yeast (Saccharomyces strain 1710) has been purified by ion exchange, hydrophobic, and affinity chromatography. This vacuolar enzyme has a molecular weight of 130,000 and is composed of subunits (probably of 66,000 molecular weight). It also has a small quantity of covalently associated carbohydrate; hydrolysis yielded mannose and glucosamine. The endo-beta-N-acetylglucosaminidase of Streptomyces plicatus released carbohydrate indicating that the latter was attached to protein through an N-acetylglucosaminylasparginyl bond. Synthesis of active alkaline phosphatase by yeast protoplasts is not depressed by tunicamycin, an inhibitor of dolichol-mediated protein glycosylation. Unlike the enzyme normally produced, the alkaline phosphatase which is formed in the presence of the antibiotic does not interact with concanavalin A and, therefore is deficient in or lacking carbohydrate. We infer that there is no regulatory link in yeast between the glycosylation of a protein and its synthesis. The fact that other Asn-GlcNAc-type glycoprotein enzymes of yeast such as acid phosphatase are not produced in their active forms by tunicamycin-treated protoplasts may mean that, as unglycosylated proteins, they cannot be correctly folded or processed. Protoplasts derepressed for phosphatase production contained substantial amounts of a second alkaline phosphatase which differed from the purified enzyme in substrate specificity, sensitivity to calcium, and reactivity with concanavalin A.  相似文献   

20.
A Guzdek  J Potempa  A Dubin  J Travis 《FEBS letters》1990,272(1-2):125-127
Variant forms of human alpha-1-proteinase inhibitor (alpha-1-PI), obtained by the treatment of human Hep G2 cells with specific inhibitors of glycosylation were tested for both inhibitory activity and heat stability. All were found to have the same second-order association rate with human neutrophil elastase, indicating a lack of importance of the carbohydrate moiety. In contrast, incompletely glycosylated forms of alpha-1-PI were found to be heat sensitive relative to the mature protein, suggesting a role for carbohydrate in protein stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号