首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《Experimental mycology》1991,15(1):44-54
DormantPilobolus longipes spores metabolized fructose primarily to ethanol, CO2, and trehalose. Cyclic AMP-induced spore activation was accompanied by a large stimulation of glycolytic activity. Mobilization of reserves, which was cyclic AMP dependent, accounted for a portion of the glycolytic product. The remaining product was derived from exogenous fructose. Increases in both fructose transport activity and hexose 6-phosphate levels were associated with 6-deoxyglucose-induced spore activation. Phosphofructokinase-1 activity in spore extracts was almost totally dependent upon fructose, 2,6-bisphosphate. High fructose 2,6-bisphosphate levels were correlated with rapid fructose metabolism. However, fructose alone caused a rise in fructose 2,6-bisphosphate content (sufficient to fully stimulate phosphofructokinase-1 activity) but there was no concurrent stimulation of glycolysis. These results suggest that glycolytic rates are determined mainly by hexose 6-phosphate levels and that cyclic AMP regulation of transport is an important determinant of hexose 6-phosphate concentration.  相似文献   

2.
The effect of ACTH on glycolysis has been studied in Y-1 tumor adrenal cells. ACTH caused a sustained increase in the liberation of lactate as well as a stimulation of both basal and glucose-induced fructose 2,6-bisphosphate content. ACTH produces changes also in the activities of phosphofructokinase-1 and phosphofructokinase-2. The addition of Ca2+ or dibutyryl cyclic AMP did not modify neither lactate production nor fructose 2,6-bisphosphate levels. The results suggest that fructose 2,6-bisphosphate regulates ACTH-induced glycolysis at the phosphofructokinase-1 step, although the biochemical mechanism of phosphofructokinase-2 activation remains elusive.  相似文献   

3.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

4.
Experimental hypothyroidism was induced in rats by the administration of NaClO4. Hearts from normal and hypothyroid rats were homogenized, and the extracts were assayed for phosphofructokinase-1 and phosphofructokinase-2 activity and fructose 2,6-bisphosphate concentrations. Hypothyroidism was associated with a drastic loss of phosphofructokinase-1 activity. A hyperbolic relationship between plasma thyroxine concentrations and phosphofructokinase-1 activity was found. As treatment with NaClO4 progressed, the decrease in blood thyroxine was faster than the decrease in enzyme activity. After prolonged hypothyroidism (a decrease in thyroxine of more than 10-fold), a 4-fold decrease in phosphofructokinase-1 activity was observed. In this metabolic condition 2-fold decreases in phosphofructokinase-2 activity and in fructose 2,6-bisphosphate were observed. A similar decrease in phosphofructokinase-1 activity in a partially purified preparation was found. The addition of L-thyroxine in the diet had little effect on phosphofructokinase-1 activity. However, exposure of minced pieces of hearts of hypothyroid rats to tri-iodothyronine for 5 h resulted in a clear increase in phosphofructokinase-1 activity, which was partially prevented by the simultaneous addition of cycloheximide. These results could account for the decrease in carbohydrate metabolism in heart from hypothyroid rats.  相似文献   

5.
L Hue  F Sobrino    L Bosca 《The Biochemical journal》1984,224(3):779-786
Incubation of isolated rat hepatocytes from fasted rats with 0-6 mM-glucose caused an increase in [fructose 2,6-bisphosphate] (0.2 to about 5 nmol/g) without net lactate production. A release of 3H2O from [3-3H]glucose was, however, detectable, indicating that phosphofructokinase was active and that cycling occurred between fructose 6-phosphate and fructose 1,6-bisphosphate. A relationship between [fructose 2,6-bisphosphate] and lactate production was observed when hepatocytes were incubated with [glucose] greater than 6 mM. Incubation with glucose caused a dose-dependent increase in [hexose 6-phosphates]. The maximal capacity of liver cytosolic proteins to bind fructose 2,6-bisphosphate was 15 nmol/g, with affinity constants of 5 X 10(6) and 0.5 X 10(6) M-1. One can calculate that, at 5 microM, more than 90% of fructose 2,6-bisphosphate is bound to cytosolic proteins. In livers of non-anaesthetized fasted mice, the activation of glycogen synthase was more sensitive to glucose injection than was the increase in [fructose 2,6-bisphosphate], whereas the opposite situation was observed in livers of fed mice. Glucose injection caused no change in the activity of liver phosphofructokinase-2 and decreased the [hexose 6-phosphates] in livers of fed mice.  相似文献   

6.
Fructose 2,6-bisphosphate is a potent endogenous stimulator of glycolysis. A high aerobic glycolytic rate often correlates with increased cell proliferation. To investigate this relationship, we have produced clonal cell lines of Rat-1 fibroblasts that stably express transgenes coding for 6-phosphofructo-2-kinase, which catalyzes the synthesis of fructose 2,6-bisphosphate, or for fructose 2,6-bisphosphatase, which catalyzes its degradation. While serum deprivation in culture reduced the growth rate of control cells, it caused apoptosis in cells overproducing fructose 2,6-bisphosphate. Apoptosis was inhibited by 5-amino-4-imidazolecarboxamide riboside, suggesting that 5'-AMP-activated protein kinase interferes with this phenomenon.  相似文献   

7.
The intragastric administration of ethanol to fed rats caused in their liver, within about 1 h, a 20-fold decrease in the concentration of fructose 2,6-bisphosphate, an activation of fructose 2,6-bisphosphatase, an inactivation of phosphofructo-2-kinase but no change in the concentration of cyclic AMP. Incubation of isolated hepatocytes in the presence of ethanol caused a rapid increase in the concentration of sn-glycerol 3-phosphate and a slower and continuous decrease in the concentration of fructose 2,6-bisphosphate with no change in that of hexose 6-phosphates. There was also a relatively slow activation of fructose 2,6-bisphosphatase and inactivation of phosphofructo-2-kinase. Glycerol and acetaldehyde had effects similar to those of ethanol on the concentration of phosphoric esters in the isolated liver cells. 4-Methylpyrazole cancelled the effect of ethanol but reinforced those of acetaldehyde. High concentrations of glucose or of dihydroxyacetone caused an increase in the concentration of hexose 6-phosphates and counteracted the effect of ethanol to decrease the concentration of fructose 2,6-bisphosphate. As a rule, hexose 6-phosphates had a positive effect and sn-glycerol 3-phosphate had a negative effect on the concentration of fructose 2,6-bisphosphate in the liver, so that, at a given concentration of hexose 6-phosphates, there was an inverse relationship between the concentration of fructose 2,6-bisphosphate and that of sn-glycerol 3-phosphate. These effects could be explained by the ability of sn-glycerol 3-phosphate to inhibit phosphofructo-2-kinase and to counteract the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate. sn-Glycerol 3-phosphate had also the property to accelerate the inactivation of phosphofructo-2-kinase by cyclic AMP-dependent protein kinase whereas fructose 2,6-bisphosphate had the opposite effect. The changes in the activity of phosphofructo-2-kinase and fructose 2,6-bisphosphatase appear therefore to be the result rather than the cause of the decrease in the concentration of fructose 2,6-bisphosphate.  相似文献   

8.
Fructose 2,6-bisphosphate is physiologically one of the most potent activators of yeast 6-phosphofructo-1-kinase. The glycolytic oscillation observed in cell-free cytoplasmic extracts of the yeast Saccharomyces cerevisiae responds to the addition of fructose 2,6-bisphosphate in micromolar concentrations by showing a pronounced decrease of both the amplitude and the period. The oscillations can be suppressed completely by 10 microM and above of this activator but recovers almost fully (95%) to the unperturbed state after 3 h. Fructose 2,6-bisphosphate shifts the phases of the oscillations by a maximal +/- 60 degrees. Oscillations in concentration of endogenous fructose 2,6-bisphosphate in the extract were also observed. Fructose 2,6-bisphosphate alters the dynamic properties of 6-phosphofructo-1-kinase which are vital for its role as the 'oscillophore'. However, the minute amount (approximately 0.3 microM) of endogenous fructose 2,6-bisphosphate and the phase relationship of its oscillations compared with other metabolites indicate that this activator is not an essential component of the oscillatory mechanism. Further support for this conclusion is the observation of sustained oscillations in both the extracts and a population of intact cells of a mutant strain (YFA) of S. cerevisiae with no detectable fructose 2,6-bisphosphate (less than 5 nM).  相似文献   

9.
Fructose 2,6-bisphosphate, the most potent activator of 6-phosphofructo-1-kinase, has been demonstrated to mediate the increase of glycolytic flux induced by mitogens human fibroblasts. In the present work the molecular basis of transmembrane control of fructose 2,6-bisphosphate has been investigated. Prostacyclin and isoprenaline, known to activate adenylate cyclase, are able to increase fructose 2,6-bisphosphate levels, indicating that in human fibroblasts cyclic AMP plays a positive role in the control of the metabolite concentration, opposite to that exerted in hepatocytes. Substances known to activate protein kinase C such as phorbol 12-myristate 13-acetate, or to stimulate phosphoinositide turnover such as thrombin and bradykinin are also effective in raising fructose 2,6-bisphosphate. Therefore, we conclude that cyclic AMP and protein kinase C are likely involved in the control of fructose 2,6-bisphosphate levels in human fibroblasts.  相似文献   

10.
The concentration of fructose 2,6-bisphosphate and the activity of 6-phosphofructo-2-kinase are increased after infection of chick-embryo fibroblasts with the Rous sarcoma virus, or with a temperature-sensitive mutant of this virus at the permissive, but not at the non-permissive, temperature. This is observed after transformation by retroviruses carrying either the v-src or v-fps, but not the v-mil and/or v-myc, oncogenes. Comparison of the effects of the Rous sarcoma virus with those of phorbol myristate acetate on fructose 2,6-bisphosphate suggests that both result from the stimulation of a step which is rate-limiting for 6-phosphofructo-2-kinase activation and which is also controlled by protein kinase C.  相似文献   

11.
The effects of cold exposure and T4 administration on fructose 2,6-bisphosphate levels, phosphofructokinase-2 and pyruvate kinase activities were examined in rat brown adipose tissue. Cold adaptation (14 days) gave rise to a 2-fold increase in the amount of fructose 2,6-bisphosphate and phosphofructokinase-2 activity, and increased the pyruvate kinase activity 4-fold. If, in addition, the cold-acclimated rats were treated with T4, these parameters were again significantly enhanced. The effect on phosphofructokinase-2 was on the Vmax, without modification of the Km (for both fructose 6-phosphate and ATP) of the enzyme. In the hypothyroid state, however, the activity of pyruvate kinase remains unchanged. These data support previous observations on stimulation of glycolytic flux during cold adaptation in brown adipose tissue, and a permissive role of thyroid hormones in the process.  相似文献   

12.
The fructose 2,6-bisphosphate concentrations in unwashed, washed, and leukocyte-free erythrocytes were compared. The concentration in washed red cells was 31 +/- 15 pmol per ml of cells (mean +/- S.D., n = 6). The concentration in unwashed erythrocytes was at least twofold higher, but the value in washed red cells was not due to leukocyte contamination because it did not decrease further when washed cells were passed through an Imgard column, which would have removed any remaining leukocytes. No platelets were detected among the washed erythrocytes. Thus, the concentration in erythrocytes after washing was ascribed solely to these cells. The fructose 2,6-bisphosphate concentration did not change when the glycolytic activity varied with pH, indicating that this compound is not involved in the regulation of carbohydrate metabolism in erythrocytes under these conditions.  相似文献   

13.
Effect of benzoate on the metabolism of fructose 2,6-bisphosphate in yeast   总被引:5,自引:0,他引:5  
When benzoate (2 mM, pH 3.5) was added together with glucose (0.1 M) to a suspension of Saccharomyces cerevisiae in the stationary phase, it caused a relative increase in the concentration of glucose 6-phosphate and fructose 6-phosphate and a decrease in the concentration of fructose 1,6-bisphosphate. These effects are in confirmation of similar observations made by Krebs et al. [Biochem. J. 214, 657-663 (1983)] and are indicative of an inhibition of 6-phosphofructo-1-kinase. Benzoate also caused an about fourfold relative decrease in the concentration of fructose 2,6-bisphosphate, an increase in that of cyclic AMP with no change in that of ATP. It also greatly decreased the activation of 6-phosphofructo-2-kinase, but not that of trehalase, both of which normally occur upon addition of glucose to a yeast suspension. When added 10 min after glucose, benzoate caused a rapid (within 2-3 min) decrease in fructose 2,6-bisphosphate concentration and in 6-phosphofructo-2-kinase activity. In the presence of benzoate, there was also a parallel decrease in the concentration of fructose 2,6-bisphosphate and in the rate of ethanol production when the external pH was dropped from 5.0 to 2.5, with minimal change in the concentration of ATP. Purified 6-phosphofructo-2-kinase was inhibited by benzoate and also by an acid pH. Experiments with cell-free extracts did not provide an explanation for the rapid disappearance of fructose-2,6-bisphosphate or the inactivation of 6-phosphofructo-2-kinase in yeast upon addition of benzoate.  相似文献   

14.
Fructose 2,6-Bisphosphate Changes in Rat Brain During Ischemia   总被引:2,自引:2,他引:0  
Brain ischemia was produced by bilateral ligation of the common carotid arteries of spontaneously hypertensive rats. The concentrations of fructose 2,6-bisphosphate and other glycolytic intermediates as well as of pyridine and adenine nucleotides were measured in frozen brain samples. In contrast to the decrease reported in hepatocytes under anoxic conditions, the fructose 2,6-bisphosphate content was increased by 20-30% during the early stages of ischemia. Elevation in fructose 1,6-bisphosphate level and lactate formation followed the rise in fructose 2,6-bisphosphate content, a finding suggesting that this compound plays a key role in the compensatory acceleration of glycolysis under ischemic conditions in vivo.  相似文献   

15.
B Philippe  G G Rousseau  L Hue 《FEBS letters》1986,200(1):169-172
Epididymal bovine sperm contain fructose-1,6-bisphosphatase activity which is inhibited by AMP and by fructose 2,6-bisphosphate. Sperm phosphofructokinase displays kinetic characteristics that are typical of the F-type and it is stimulated by fructose 2,6-bisphosphate. The concentration of sperm fructose 2,6-bisphosphate remained unaffected at 1-2 microM when the glycolytic rate was either increased by glucose, caffeine or antimycin, or decreased by alpha-chlorohydrin or 6-chloro-6-deoxyglucose.  相似文献   

16.
The presence of adenosine (25-250 microM) or of 2-chloroadenosine (2.5-100 microM) in the incubation medium caused a marked decrease in the concentration of fructose 2,6-bisphosphate in isolated hepatocytes. This effect was accompanied by an increase in the concentration of cyclic AMP, an activation of phosphorylase and of fructose 2,6-bisphosphatase, and an inactivation of pyruvate kinase and of 6-phosphofructo-2-kinase. As a rule, the changes in the fructose 2,6-bisphosphate-modifying system were slower but more persistent than those in the activities of phosphorylase and pyruvate kinase. The effect of the nucleoside to decrease the concentration of fructose 2,6-bisphosphate was not affected by an inhibitor of adenosine transport and could not be obtained in a liver high-speed supernatant. These data indicate that the effect of adenosine to decrease the concentration of fructose 2,6-bisphosphate is mediated by the stimulation of adenylate cyclase, secondary to the binding of adenosine to membranous receptors. Like glucagon, 2-chloroadenosine stimulated gluconeogenesis in isolated hepatocytes, whereas adenosine had an opposite effect.  相似文献   

17.
Injection of insulin to fed rats diminished the concentration of fructose 2,6-bisphosphate in white adipose tissue. Incubation of epididymal fat-pads or adipocytes with insulin stimulated lactate release and sugar detritiation and also decreased fructose 2,6-bisphosphate concentration. Such a decrease was, however, not observed in fat-pads from starved or alloxan-diabetic rats. Incubation of adipocytes from fed rats with various concentrations of glucose or fructose led to a dose-dependent rise in fructose 2,6-bisphosphate which correlated with lactate output and detritiation of 3-3H-labelled sugar. In adipocytes from fed rats, palmitate stimulated the detritiation of [3-3H]glucose without affecting lactate production and fructose 2,6-bisphosphate concentration. Incubation of epididymal fat-pads from fed rats in the presence of antimycin stimulated lactate output but decreased fructose 2,6-bisphosphate concentration. Changes in lipolytic rates brought about by noradrenaline, insulin, adenosine and corticotropin in adipocytes from fed rats were not related to changes in fructose 2,6-bisphosphate or to rates of lactate output. In fed rats, the activity of 6-phosphofructo-2-kinase was not changed after treatment of adipocytes with insulin, noradrenaline or adenosine. It is suggested that the decrease in fructose 2,6-bisphosphate concentration observed after insulin treatment can be explained by the increase in sn-glycerol 3-phosphate, an inhibitor of 6-phosphofructo-2-kinase.  相似文献   

18.
The biogenic amine octopamine was injected into the haemolymph of 20-days old male locusts,Locusta migratoria, and the content of fructose 2,6-bisphosphate, a potent activator of glycolysis, was measured in the flight muscle after various time. Octopamine brought about a transient increase in fructose 2,6-bisphosphate. After the injection of 10 l of 10 mmol·l-1 d, l-octopamine fructose 2,6-bisphosphate was increased by 61% within 2 min. Ten minutes after the injection fructose 2,6-bisphosphate was increased to 6.71±0.89 nmol·g-1 flight muscle, almost 300% over the control value. Flight caused fructose 2,6-bisphosphate in flight muscle to decrease, but this decrease was counteracted by octopamine injected into the haemolymph of flying locusts. Octopamine and fructose 2,6-bisphosphate may act as signals to stimulate the oxidation of carbohydrate and to integrate muscle performance and metabolism. This mechanism appears particularly significant in the initial stage of flight when carbohydrates are the main fuel.Abbreviations F2,6P2 fructose 2,6-bisphosphate - F6P fructose 6-phosphate - PFK1 6-phosphofructokinase (EC 2.7.1.11) - P i inorganic phosphate - PP i -PFK pyrophosphate dependent fructose 6-phosphate phosphotransferase (EC 2.7.1.90)  相似文献   

19.
It has been recently demonstrated that insulin promotes the hydrolysis of a glycosyl-phosphatidylinositol, stimulating the release of a phospho-oligosaccharide which displays several insulin-like effects. In the present study we have investigated whether the compound is able to mimic insulin action on glucose metabolism in human fibroblasts. Similarly to the hormone, the phospho-oligosaccharide elicited a dose dependent increase in lactate output and fructose 2,6-bisphosphate content. The effect of the compound was time dependent with a progressive increase starting from 2 hours of incubation. 1 microM phospho-oligosaccharide had half maximal effect on both parameters, increasing glycolytic flux by approximately 30% and fructose 2,6-bisphosphate content by 70%. Therefore the phospho-oligosaccharide appears to be able to strictly reproduce insulin action on glucose metabolism in human fibroblasts.  相似文献   

20.
A protein has been purified from rat liver (about 5 mg from 100 g) which inactivates rat liver phosphofructokinase-1. According to dodecyl sulfate gel electrophoresis the protein consists of a single peptide chain with a Mr of 19,000. The inactivation of phosphofructokinase-1 by this protein results from a dissociation of phosphofructokinase-1 into its inactive protomers (Mr = 82,000). The inactivation is dependent on zinc ions in micromolar concentration (about 1-2 microM), but is inhibited by higher concentrations (greater than 50 microM). Fructose 1,6-bisphosphate as well as fructose 2,6-bisphosphate inhibit the inactivation reaction. In addition, both compounds as well as ATP can reverse the dissociation of phosphofructokinase-1. The phosphofructokinase-1 inactivating protein has no phosphatase activity with [32P]phosphofructokinase or low molecular weight phospho-compounds and does not possess any detectable proteolytic activity. It has the same affinity for the phospho- and the dephosphoform of phosphofructokinase-1, but preincubation of phosphofructokinase-1 with this inactivating protein reduces the maximum amount of phosphate incorporated into phosphofructokinase-1 and accelerates the velocity of the dephosphorylation reaction. A direct Zn2+-dependent binding of phosphofructokinase-1 to the inactivating protein has been demonstrated in experiments with matrix-bound phosphofructokinase-1 inactivating protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号