首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane vesicles were isolated from purified liver lysosomes of rats treated with Triton WR-1339. In order to preserve ATP-dependent acidification activity, proteolysis of membranes was minimized by adding protease inhibitors and by centrifuging to form dilute bands of vesicles rather than highly concentrated pellets. The membrane vesicle fraction represented about 20% of the total lysosomal protein, 80% of the ATPase activity, and 3% of the solute proteins as marked by N-acetylglucosaminidase. About one-half of the membranes were oriented right side out. The space unavailable to [14C]sucrose corresponded to 3 microliters/mg of membrane protein which indicates that the membranes form vesicles about one-tenth the size of lysosomes. Uptake of either [14C]methylamine or [14C]chloroquine by lysosomal membrane vesicles was ATP-dependent, indicating acidification of the intravesicle space. The acidification activity was inhibited when either 1.5 microM carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, 100 microM dicyclohexylcarbodiimide, or millimolar concentrations of such permeant weak bases as ammonium sulfate and dansyl cadaverine were added. Acidification of lysosomal vesicles by ATP occurred electroneutrally. This acidification activity was not dependent on added salts but was inhibited by the anion transport inhibitors pyridoxal phosphate and diisothiocyanostilbene disulfonic acid, thus suggesting co-transport of protons and anions. Results which indicate that phosphate is the transported anion included (a) ATP-dependent uptake of [32P]phosphate by lysosomal membrane vesicles and (b) stimulation of ATP-dependent acidification of these vesicles by added phosphate. These observations provide further evidence that maintenance of the acid intralysosomal pH necessary for activation of lysosomal hydrolases is due to an ATP-driven proton pump located in the lysosomal membrane.  相似文献   

2.
The energy requirement for the processing of newly-synthesized proteins by the Golgi was examined. Rat liver Golgi preparations enriched more than 100-fold have high ATPase activity that co-purified with the Golgi marker enzyme galactosyl transferase. The ATPase activity was 80% inhibited by dicyclohexylcarbodiimide and may represent a proton pump. Evidence is presented for a functional role of the ATPase in Golgi. First, measurement of [14C]methylamine uptake demonstrated ATP-dependent acidification. Second, inhibition of the ATPase with dicyclohexylcarbodiimide resulted in a 3-fold accumulation of newly-synthesized protein in the Golgi.  相似文献   

3.
ATP-driven proton fluxes across membranes of secretory organelles   总被引:5,自引:0,他引:5  
The ATP-dependent proton uptake by chromaffin granule membranes, lysosomes, and synaptosomes was examined. In synaptosomes the reaction was absolutely dependent on the presence of chloride, while in chromaffin granules chloride had a profound effect and in lysosomes only a minor effect. The presence of chloride markedly increases the rate of collapse of delta pH by carbonyl cyanide p-trifluoromethoxyphenylhydrazone in all three organelles. Ascorbate with phenazine methosulfate uncoupled the ATP-dependent proton uptake by chromaffin granules, but had no effect on lysosomes and synaptosomes. Proton uptake by submitochondrial particles was about 50-fold more sensitive to dicyclohexylcarbodiimide than the proton uptake by chromaffin granule membranes. Chromaffin granule membranes were treated with 2 M sodium bromide to inactivate the mitochondrial ATPase. The treatment caused a complete inhibition of the ATP-dependent proton uptake. Solubilization of these membranes by sodium cholate, followed by reconstitution by cholate dilution revealed the ATP-dependent proton uptake of the system. It is concluded that the genuine ATPase enzyme of chromaffin granules is a proton translocator.  相似文献   

4.
Proton-translocating ATPase and lysosomal cystine transport   总被引:6,自引:0,他引:6  
A proton-translocating ATPase was identified in highly purified lysosomes from Epstein-Barr virus-transformed human lymphoblasts. Activity of this ATPase caused acidification of highly purified, fluorescein isothiocyanate dextran-loaded lysosomes and correlated with the ATP-dependent efflux of lysosomal cystine. The lysosomal ATPase was distinct from mitochondrial F1-ATPase in its responses to a variety of inhibitors. Although ATP-dependent lysosomal cystine efflux is not demonstrable in cultured lymphoblasts from individuals with nephropathic cystinosis, ATPase activity and acidification in lysosomes from these cells is comparable to that in noncystinotic lysosomes. ATPase activity in lymphoblasts from normal individuals was 543 +/- 79 nmol/mg/min while in lymphoblasts from cystinotic individuals this activity was 541 +/- 25 nmol/mg/min. ATP-dependent acidification of lysosomes from normals was -0.5 +/- 0.1 pH units compared to -0.5 +/- 0.1 pH units in cystinotic lysosomes. Activity of the lysosomal proton-translocating ATPase is a necessary, but not sufficient, condition for lysosomal cystine efflux.  相似文献   

5.
Previous studies characterizing an ATP-dependent proton pump in microsomal membrane vesicles of corn coleoptiles led to the conclusion that the proton pump was neither mitochondrial nor plasma membrane in origin (Mettler, Mandala, Taiz 1982 Plant Physiol 70: 1738-1742). To facilitate positive identification of the vesicles, corn coleoptile microsomal membranes were fractionated on linear sucrose and dextran gradients, with ATP-dependent [14C]methylamine uptake as a probe for proton pumping. On sucrose gradients, proton pumping activity exhibited a density of 1.11 grams/cubic centimeter and was coincident with the endoplasmic reticulum (ER). In the presence of high magnesium, the ER shifted to a heavier density, while proton pumping activity showed no density shift. On linear dextran gradients, proton pumping activity peaked at a lighter density than the ER. The proton pump appears to be electrogenic since both [14C]SCN uptake and 36Cl uptake activities coincided with [14C] methylamine uptake on dextran gradients. On the basis of density and transport properties, we conclude that the proton pumping vesicles are probably derived from the tonoplast. Nigericin-stimulated ATPase activity showed a broad distribution which did not coincide with any one membrane marker.  相似文献   

6.
Energy coupling of L-glutamate transport in brain synaptic vesicles has been studied. ATP-dependent acidification of the bovine brain synaptic vesicles was shown to require CI-, to be accelerated by valinomycin and to be abolished by ammonium sulfate, nigericin or CCCP plus valinomycin, and K+. On the other hand, ATP-driven formation of a membrane potential (positive inside) was found to be stimulated by ammonium sulfate, not to be affected by nigericin and to be abolished by CCCP plus valinomycin and K+. Like formation of a membrane potential, ATP-dependent L-[3H]glutamate uptake into vesicles was stimulated by ammonium sulfate, not affected by nigericin and abolished by CCCP plus valinomycin and K+. The L-[3H]glutamate uptake differed in specificity from the transport system in synaptic plasma membranes. Both ATP-dependent H+ pump activity and L-glutamate uptake were inhibited by bafilomycin and cold treatment (common properties of vacuolar H(+)-ATPase). ATP-dependent acidification in the presence of L-glutamate was also observed, suggesting that L-glutamate uptake lowered the membrane potential to drive further entry of H+. These results were consistent with the notion that the vacuolar H(+)-ATPase of synpatic vesicles formed a membrane potential to drive L-glutamate uptake. ATPase activity of the vesicles was not affected by the addition of Cl-, glutamate or nigericin, indicating that an electrochemical H+ gradient had no effect on the ATPase activity.  相似文献   

7.
Characterization of a proton pump from pea stem microsomes   总被引:1,自引:1,他引:0  
Abstract The present work deals with the characterization of an ATP-dependent proton translocation monitored by the ΔpH probe acridine orange. The ATP-dependent proton translocation has an optimum activity at pH 6.5 and is substrate specific for ATP. It is stimulated by Cl, HCO3 and Br, but is insensitive to several monovalent cations. Divalent cations (Mg2+ or Mn2+) are required for proton translocation, while in the presence of Ca2+ no uptake is observed. NO3, NO2 and citrate strongly inhibit proton uptake. On the contrary, F, SO42−, malate, pyruvate, succinate, oxalate and acetate have no inhibitory effect. Proton uptake is stimulated by valinomycin and unaffected by molybdate. Two thiols, dithioerythritol and dithiothreitol, are able partially to prevent the FCCP-abolished proton uptake or partially restore the ATP-dependent proton translocation in FCCP-collapsed vesicles. It is suggested that pea stem microsomes possess an electrogenic ATPase, acting as a proton pump, which, on the basis of its characteristics, can be tentatively associated with membranes of tonoplast origin.  相似文献   

8.
Multivesicular bodies (MVB), prelysosomal organelles in the endocytic pathway, were prepared from estrogen-treated rat livers and examined for the presence of ATP-dependent proton transport. Vesicle acidification, assessed by acridine orange fluorescence quenching, was ATP dependent (ATP much greater than GTP, UTP), was enriched 25-fold over homogenate, was abolished by pretreatment with protonophores or a nonionic detergent, exhibited a pH optimum of 7.5, was inhibited by N-ethylmaleimide (NEM) (IC50 approximately 5 microM) and N,N'-dicyclohexylcarbodiimide (IC50 approximately 5 microM), and was resistant to inhibition by vanadate, ouabain, and oligomycin. Acidification exhibited no specific cation requirement; however, maximal rates of acidification depended upon the presence of Cl- (Km approximately 20 mM). Other anions were less effective in supporting acidification (Cl- greater than Br- greater than much greater than gluconate, NO-3, SO2-4, and mannitol), and indeed NO-3 inhibited acidification even in the presence of 150 mM Cl-. The proton transport mechanism appeared to be electrogenic based on: (a) enhancement of acidification by valinomycin in the presence of K gluconate, and (b) ATP-dependent fluorescence quenching of bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol, a membrane potential-sensitive anionic dye. Furthermore, the magnitude of the pH and electrical gradients generated by the proton transport mechanism appeared to vary inversely in the presence and absence of Cl-. Finally, MVB exhibited ATPase activity that was resistant to ouabain and oligomycin, but was inhibited 32.3% by 1 mM NEM, 33.7% by 200 microM dicyclohexylcarbodiimide, and 18.7% by KNO3. In isolated MVB, therefore, the NEM-sensitive ATPase activity may represent the enzymatic equivalent of a proton pump. These studies identify and characterize an ATP-dependent electrogenic proton transport process in rat liver MVB which shares many of the properties of the proton pump described in clathrin-coated vesicles, endosomes, lysosomes, Golgi, and endoplasmic reticulum from liver and other tissues. Acidification of MVB differed somewhat from that of rat liver clathrin-coated vesicles in response to Br- and NO-3, suggesting that membrane properties of these two organelles might differ.  相似文献   

9.
Inhibitors of lysosomal acidification (4,4'-di-isothiocyanostilbene-2,2'-disulphonate, NN'-dicyclohexylcarbodi-imide, carbonyl cyanide m-chlorophenylhydrazone, NH4Cl and methylamine hydrochloride) did not alter cystine egress or countertransport in polymorphonuclear-leucocyte lysosome-rich granular fractions at pH 7.0. Together, 2 mM-MgCl2/MgATP and 90 mM-KCl stimulated cystine egress 2-fold, but this effect also was not influenced by inhibitors of ATP-dependent lysosomal acidification. MgCl2/MgATP stimulated cystine transport at pH 5.5, but the effect also occurred with MgCl2, MgSO4 or MnCl2 alone, was prevented by chelation, and was not seen with NaATP; therefore, it was considered a bivalent-cation, not an ATP, effect. Proton-pump-mediated acidification of lysosomes does not appear to be required for cystine transport in normal polymorphonuclear-leucocyte granular fractions, as reported for lymphoblast lysosomes.  相似文献   

10.
The subcellular distribution of cytochrome b and ubiquinone in resting human neutrophils was investigated by rate zonal sedimentation of postnuclear supernatants on continuous sucrose gradients. Both cytochrome b and ubiquinone were mainly localized in small organelles, tertiary granules, that were resolved from the specific and azurophilic granules as well as from the cell membrane fraction. This cytochrome b- and ubiquinone-rich granule was shown to contain dicyclohexylcarbodiimide (DCCD)-sensitive, Mg2+-dependent ATPase as well as low amounts, less than a third, of the acid hydrolases beta-glucuronidase and N-acetyl-beta-glucosaminidase. Cytochrome b was also found in smaller proportions in plasma membranes and specific granules. A significant proportion of the ubiquinone was located in the region of the gradients where specific granules and mitochondria sedimented. However, quantitative measurements of oligomycin-sensitive ATPase indicated that this second localization of ubiquinone could not be entirely attributed to mitochondrial contamination. Plasma membrane contained small amounts of ubiquinone. In addition, the existence and location of a putative proton pump ATPase were also investigated. The ATPase was mainly located in the plasma membrane and in the upper half of the gradients (tertiary and specific granules), with the highest specific activity occurring in the tertiary granules. This activity was inhibited by 100 microM DCCD. Furthermore, ATP-dependent uptake of [14C]methylamine by tertiary and specific granules was observed. These results suggest that the DCCD-sensitive ATPase may function as a proton pump. DCCD inhibited the release of enzymes from specific granules that occurred when human neutrophils were activated by phorbol myristate acetate. However, higher concentrations of DCCD were required to achieve the same degree of inhibition of O2 uptake (I50 of 0.4 mM for secretion versus 1 mM for O2 uptake). These results suggest that specific granules do not play a crucial role in oxygen metabolism.  相似文献   

11.
Processing of human cathepsin D in lysosomes in vitro   总被引:7,自引:0,他引:7  
The proteolytic maturation of cathepsin D polypeptides was studied in lysosomes isolated from metabolically labeled fibroblasts. In lysosomes isolated from fibroblasts labeled with [35S]methionine, 70-95% of labeled cathepsin D polypeptides were represented by a Mr = 47,000 polypeptide after a 20-min pulse and 75-min chase. When these lysosomes were incubated in vitro, up to 70% of the Mr = 47,000 polypeptide was processed to mature cathepsin D polypeptides. The processing was dependent on the integrity of the lysosomes, had an optimum between pH 6 and 7, and could be stimulated by dithiothreitol and ATP. The noncleavable ATP analogue, adenosine 5'-(beta, gamma-imido)triphosphate, and GTP, CTP, and UTP could not substitute for ATP. The ATP-dependent stimulation was associated with an acidification of lysosomes. It was inhibited by agents that dissipate the lysosomal pH gradient (carbonyl cyanide p-trifluoromethoxyphenylhydrazone, N,N'-dicyclohexylcarbodiimide, nigericin, NH4Cl). A stimulatory effect of ATP was observed also at pH 5.5. The stimulation at pH 5.5 was not associated with acidification of lysosomes and was resistant to protonophores. Inhibitors of lysosomal cysteine proteinases and N-ethylmaleimide inhibited the processing. In the presence of ATP the processing activity was partially protected from inhibition by N-ethylmaleimide. In conclusion, the maturation of cathepsin D in lysosomes depends on cysteine proteinases and is stimulated by the ATP-driven acidification of lysosomes. In addition, ATP stimulates maturation at pH 5.5 by a mechanism not involving the proton pump.  相似文献   

12.
Oxalase-supported, ATP-dependent Ca2+ uptake by cardiac and skeletal muscle sarcoplasmic reticulum (SR) exhibits a pH profile with the maximal rate of Ca2+ uptake at pH 6.6-6.8 and marked inhibition (90-95%) at pH 7.4-7.6, a point at which Ca2+-dependent ATPase activity is optimal. These observations are noted when the SR is first preincubated in media containing no added Ca2+. This alkaline pH inhibition is not caused by an irreversible perturbation since the Ca2+ uptake rate is fully restored by changing the alkaline pH preincubation medium to pH 6.8. When SR is preincubated with added Ca2+, Ca2+ uptake at alkaline pH (7.4-7.6) is only inhibited by 10-30%. Ca2+ uptake at pH 6.8 is the same regardless of preincubation conditions. A depressed oxalate permeability is not a factor in the observed alkaline pH inhibition of Ca2+ uptake. At alkaline pH, the relationship between the preincubation Ca2+ concentration and the rate of Ca2+ uptake is hyperbolic; the half-maximal free Ca2+ concentration for stabilization of Ca2+ uptake is 8-15 microM with a Vmax equal to the velocity at the optimal pH. The Hill coefficient is 1.0, implying a single class of Ca2+-requiring sites for stabilization at alkaline pH. In contrast to its effect on Ca2+ uptake, the presence of Ca2+ during preincubation does not alter the pH sensitivity of Ca2+-dependent ATPase activity. Thus, the presence of Ca2+ during preincubation may stabilize a state of the CaATPase, conducive to the coupling of net Ca2+ translocation to Ca2+-dependent ATPase activity, which is ordinarily opposed by alkaline pH. The data suggest a single class of Ca2+-requiring sites which favors this coupled state.  相似文献   

13.
To study acidification mechanisms in the distal nephron, microsomes were prepared from rat renal medulla by differential centrifugation. Microsomes were enriched in the enzyme marker gamma-glutamyl transferase and contained an ATP-dependent proton pump, as evidenced by ATP-dependent, 3,3',4',5-tetrachlorosalicylanilide-reversible quenching of acridine orange fluorescence. Acidification was vanadate-insensitive, but was completely inhibited by micromolar N-ethylmaleimide. Maximal acidification was achieved in the presence of halide (Cl-, Br-) only and was not attainable with potassium-valinomycin diffusion potentials without halide ion. Microsomal ATPase activity was neither chloride- nor N-ethylmaleimide-sensitive. A chloride conductance was observed only with vesicles which had undergone ATP-dependent acidification. An ATP-dependent, N-ethylmaleimide-inhibitable, 3,3',4',5-tetrachlorosalicylanilide-reversible, and chloride-attenuated quench of bis(1,3-dibutylbarbituric acid-(5] pentamethinoxonol fluorescence was seen, consistent with net transfer of positive charge into the vesicles. Nonetheless, positive intravesicular potentials increased the ATP-dependent initial acidification rate, perhaps by increasing availability of chloride ion to the transport site. Our results are consistent with an electrogenic, ATP-dependent proton pump regulated by a voltage-sensitive chloride site.  相似文献   

14.
R Rees-Jones  Q Al-Awqati 《Biochemistry》1984,23(10):2236-2240
Rat liver smooth and rough microsomal membranes exhibit an ATP-dependent H+ transport which can be inhibited by sulfhydryl reagents and dicyclohexylcarbodiimide but is resistant to oligomycin. On the basis of inhibitor sensitivities and substrate specificities, this H+ pump was found to be different from that of mitochondria, lysosomes, gastric H+-K+-ATPase, and yeast plasma membrane H+-ATPase but to resemble that of endocytic vesicles and the H+ pump responsible for urinary acidification. The transport process is accelerated by valinomycin in the presence of potassium, suggesting that it is an electrogenic pump. The same fractions were enriched in an ATPase with inhibitor sensitivities similar to those of the transport activity. It is possible that the proton electrochemical gradients generated by this pump may play a role in the translocation of proteins and sugars, two of the major functions of these structures.  相似文献   

15.
Abstract. The effect of Cercospora beticola toxin (CBT) on ATP-dependent and nigericin-induced proton translocation, monitored by acridine orange uptake in pea stem microsomal vesicles, was studied. CBT inhibits ATP-dependent proton translocation, but not the nigericin-induced H+/K+ exchange. The inhibitory effect is dependent on CBT concentration, time of preincubation with CBT and protein concentration of the vesicle suspension.
The previously observed effects of CBT on membrane transport phenomena, in the light of the present results, are in agreement with the hypothesis that the primary effect of the toxin is exerted on an ATPase of plasmalemma and/or tonoplast, acting as a proton pump.  相似文献   

16.
Characterization of a vacuolar proton ATPase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
Of the total ATPase activity in homogenates of the ameba, Dictyostelium discoideum, approximately one-third was inhibited at pH 7 by 25 microM 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Upon isopycnic sucrose density gradient centrifugation, the bulk of the NBD-CI-sensitive ATPase activity was recovered in a major membrane fraction with a broad peak at 1.16 g/ml, well-resolved from markers for plasma membranes, mitochondria, lysosomes and contractile vacuoles. The gradient peak had a specific activity of 0.5 mumol/min per mg protein. The activity was half-inhibited by 1 microM silicotungstate, 2 microM diisothiocyanatostilbene disulfonate (DIDS), 2.5 microM dicyclohexylcarbodiimide (DCCD), 4 microM NBD-CI and 20 microM N-ethylmaleimide (NEM) but was resistant to conventional inhibitors of mitochondrial and plasma membrane ATPase. That this ATPase activity constituted a proton pump was shown by the MgATP-dependent uptake and quenching of Acridine orange fluorescence by partially purified vacuoles. The Acridine orange uptake was specifically blocked by the aforementioned inhibitors. The generation of proton electrochemical gradients was suggested by the stimulation of enzyme activity by protonophores (fatty acids) and cation exchangers (nigericin). Uncoupling stimulated the ATPase activity as much as 20-fold, revealing an unusually high impermeability of the membranes to protons. ATPase activity was also stimulated by halide ions, apparently through a parallel conductance pathway. Under a variety of sensitive test conditions, the reverse enzyme reaction (i.e., incorporation of 32Pi into ATP) was not detected. We conclude that this major H+-ATPase serves to acidify the abundant prelysosomal vacuoles found in D. discoideum (Padh et al. (1989) J. Cell Biol. 108, 865-874). The finding of a vacuolar H+-ATPase in a protist suggests the ubiquity of this enzyme among the eukaryotic kingdoms.  相似文献   

17.
Cholinergic synaptic vesicles from the electric organ of Torpedo marmorata are associated with a Mg2+-ATPase insensitive to ouabain and oligomycin. Treatment of vesicle membranes with dichloromethane releases a Mg2+-ATPase with apparent molecular mass of around 250 kDa as determined by gel filtration. The vesicular ATPase resembles the mitochondrial F1-ATPase in these properties. Gel electrophoresis of the solubilized ATPase shows however that only a single 50-kDa band is present as compared to the alpha-subunit (52 kDa) and beta-subunit (50 kDa) of electric organ mitochondrial F1-ATPase present in this range of molecular mass range. In agreement, covalent photoaffinity labelling of isolated vesicles with azido-ATP shows a 50-kDa band. Vesicle ghosts were found to accumulate [14C]methylamine in an ATP-dependent manner indicating the presence of an inwardly directed proton pump. We conclude that cholinergic vesicles contain a proton pump probably driven by the Mg2+-ATPase here described, which generates an electrochemical gradient across the vesicle membrane and is necessary for uptake and storage of acetylcholine within the vesicles.  相似文献   

18.
ATP stimulated the accumulation of 45Ca2+ by chromaffin granule ghosts which contained 5 mM oxalate to trap transported calcium within the lumen. Inasmuch as the ATP-dependent 45Ca2+ transport was resistant to 25 mM ammonium acetate as well as the proton ionophore, carbonylcyanide-m-chlorophenylhydrazone, the chromaffin granule proton translocating ATPase does not provide the energy for this process. Instead, we suggest that chromaffin granules contain a calcium translocating ATPase which catalyzes the 45Ca2+ uptake directly. The observation that chromaffin granules bind to a monoclonal antibody raised against a calcium pump from bovine brain supports this hypothesis.  相似文献   

19.
In this paper we demonstrate that a vacuolar-type H(+)-ATPase energizes secondary active transport in an insect plasma membrane and thus we provide an alternative to the classical concept of plasma membrane energization in animal cells by the Na+/K(+)-ATPase. We investigated ATP-dependent and -independent vesicle acidification, monitored with fluorescent acridine orange, in a highly purified K(+)-transporting goblet cell apical membrane preparation of tobacco hornworm (Manduca sexta) midgut. ATP-dependent proton transport was shown to be catalyzed by a vacuolar-type ATPase as deduced from its sensitivity to submicromolar concentrations of bafilomycin A1. ATP-independent amiloride-sensitive proton transport into the vesicle interior was dependent on an outward-directed K+ gradient across the vesicle membrane. This K(+)-dependent proton transport may be interpreted as K+/H+ antiport because it exhibited the same sensitivity to amiloride and the same cation specificity as the K(+)-dependent dissipation of a pH gradient generated by the vacuolar-type proton pump. The vacuolar-type ATPase is exclusively a proton pump because it could acidify vesicles independent of the extravesicular K+ concentration, provided that the antiport was inhibited by amiloride. Polyclonal antibodies against the purified vacuolar-type ATPase inhibited ATPase activity and ATP-dependent proton transport, but not K+/H+ antiport, suggesting that the antiporter and the ATPase are two different molecular entities. Experiments in which fluorescent oxonol V was used as an indicator of a vesicle-interior positive membrane potential provided evidence for the electrogenicity of K+/H+ antiport and suggested that more than one H+ is exchanged for one K+ during a reaction cycle. Both the generation of the K+ gradient-dependent membrane potential and the vesicle acidification were sensitive to harmaline, a typical inhibitor of Na(+)-dependent transport processes including Na+/H+ antiport. Our results led to the hypothesis that active and electrogenic K+ secretion in the tobacco hornworm midgut results from electrogenic K+/nH+ antiport which is energized by the electrical component of the proton-motive force generated by the electrogenic vacuolar-type proton pump.  相似文献   

20.
Endocytic vesicles possess an electrogenic proton pump, and measurements of ATPase activity suggest that Cl- may stimulate proton pump activity. This study was undertaken to measure the steady-state pH, potential (delta psi), and total proton electrochemical gradients established by the rat liver multivesicular body (MVB) proton pump and to examine the effects of Cl- (0.5-140 mM) on these gradients. Radiolabeled [( 14C] methylamine and 36Cl-) and fluorescent (fluorescein isothiocyanate-conjugated low density lipoproteins) probes were used to assess internal pH (pHi) and delta psi. In the absence of ATP, pHi averaged 7.37 +/- 0.05 (extracellular pH 7.31 +/- 0.02), and delta psi ranged from -32 to -71 mV; but neither pHi nor delta psi varied consistently with [Cl-]. In the presence of ATP, pHi decreased progressively with increasing [Cl-] to a plateau value of about 5.89 at greater than or equal to 25 mM Cl-, and MVB exhibited an interior positive delta psi that was maximal at the lowest Cl- concentration (+65.5 mV) and decreased as medium Cl- increased. The total ATP-dependent proton electrochemical gradient (proton-motive force (delta p] averaged 118.0 +/- 4.3 mV and did not change in any consistent manner as [Cl-] varied almost 300-fold. However, initial rates of MVB acidification increased with increasing [Cl-]. These studies indicate that: (a) in the absence of ATP, isolated MVB exhibited a negative delta psi, probably a Donnan potential; (b) in the presence of ATP and at a [Cl-] similar to that in hepatocyte cytoplasm (25 mM), MVB pHi was 5.89, and delta psi was +9.6 mV; and (c) over the range of [Cl-] tested, the magnitudes of delta pH and delta psi were inversely related, apparently related to Cl- availability, but the ATP-dependent delta p did not vary. Therefore, it is concluded that Cl- increases the initial rate of vesicle acidification in MVB and also affects the relative chemical and electrical contributions of the steady-state proton pump-determined delta p. Cl-, however, does not alter steady-state delta p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号