首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human hepatoma cell line Hep G2 can be maintained in continuous culture and secretes numerous plasma proteins and lipoproteins into the medium. To better characterize cholesterol homeostasis in these cells we have examined the binding, internalization and degradation of [125I]LDL by cultured Hep G2 cells. Hep G2 cells express high-affinity low-density lipoprotein (LDL) receptors which facilitate the binding, internalization and degradation of [125I]LDL; these receptors can be induced by growth in LDL-depleted medium and repressed by further incubation in medium supplemented with LDL. The degradation of [125I]LDL by derepressed Hep G2 cells was inhibited by greater than 90% by monensin. Incubation of Hep G2 cells in the presence of increasing concentrations of LDL also inhibited cholesterol biosynthesis. Our results indicate that Hep G2 cells possess high affinity LDL receptors which are subject to metabolic regulation and suggest that this cell line affords a valuable model to further examine cholesterol and lipoprotein metabolism in human liver cells.  相似文献   

2.
Administration of estrogens in pharmacologic doses to rats and rabbits induces hepatic low-density lipoprotein (LDL) receptor activity. To determine if estrogens can regulate LDL receptor activity in human cells, 125I-LDL binding and ligand blotting studies were performed with the cell line Hep G2, well-differentiated cells derived from a human hepatoma, and with normal human fibroblasts. Addition of estradiol to Hep G2 cells growing in lipoprotein-deficient medium increased cell surface receptor activity by 141%, whereas fibroblast receptors were slightly reduced. Measurement of LDL internalization and degradation showed that estradiol induced the entire LDL receptor pathway and not simply surface receptors for LDL. Scatchard analysis of specific binding data in Hep G2 cells revealed that increased LDL receptor activity was due to high-affinity binding. When Hep G2 cells were incubated with LDL as well as estradiol, estradiol induction of LDL receptor activity did not occur. Estrogen treatment reduced Hep G2 free cholesterol content by 24% as determined by gas-liquid chromatography but had no significant effect on fibroblast free cholesterol, suggesting that estrogens may induce Hep G2 LDL receptor activity indirectly by lowering intracellular cholesterol. LDL receptor activity in Hep G2 cells grown in the absence of estradiol was resistant to down-regulation by LDL; incubation of cells with LDL for 48 h reduced receptor activity by only 25.8% in Hep G2 cells compared to 80.3% in fibroblasts. The Hep G2 LDL receptor was shown to be biochemically similar to the fibroblast receptor by ligand blotting and immunoblotting with IgG-C7, a monoclonal antibody to the extrahepatic LDL receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Regulation of low-density-lipoprotein-receptor activity by low-density lipoprotein (LDL), cholesteryl-ester-rich beta-migrating very-low-density lipoprotein (beta-VLDL) and non-lipoprotein cholesterol was investigated in the human hepatoma cell line Hep G2. Competition studies indicate that LDL and beta-VLDL are bound to the same recognition site, tentatively the LDL receptor. The regulatory response of the LDL receptor upon prolonged incubation with LDL or beta-VLDL was, however, markedly different. 22 h preincubation of Hep G2 cells with excess LDL caused a partial down regulation to 31% of the initial level of the high-affinity association of LDL and 26% of the high-affinity degradation of LDL, while with beta-VLDL a complete down regulation of the LDL-receptor activity is observed. Preincubation of Hep G2 cells with beta-VLDL for 22 h led to a fourfold increase in intracellular cholesterol esters and a twofold increase in acyl-coA:cholesterol acyltransferase activity. With LDL, the amount of intracellular cholesterol esters is increased 1.6-fold. The more effective down regulation of LDL receptors by beta-VLDL as compared to LDL can be explained by the more effective intracellular cholesterol delivery with beta-VLDL than with LDL. Preincubation of Hep G2 cells for 22 h with acetylated LDL hardly influenced the LDL-receptor activity. Non-lipoprotein cholesterol, however, caused a complete down regulation of LDL-receptor activity at even lower extracellular cholesterol concentrations than with beta-VLDL. The complete down regulation of LDL receptors by non-lipoprotein cholesterol is not accompanied by a significant increase in acyl-coA:cholesterol acyltransferase activity, while the intracellular cholesterol ester concentration is only increased 1.6-fold. It is suggested that the effectiveness of non-lipoprotein cholesterol to regulate LDL receptors is caused by its efficiency to reach the sterol regulatory site. The inability of LDL to down regulate its receptor completely can thus be explained by the inability of LDL to deliver cholesterol adequately at the intracellular regulatory site of the LDL receptor. The observed complete down regulation of the LDL receptor by beta-VLDL may be responsible for the cholesterol-rich-diet induced, complete down regulation of LDL-receptor-mediated clearance of LDL in vivo.  相似文献   

4.
Compactin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase, decreased cholesterol synthesis in intact Hep G2 cells. However, after the inhibitor was washed away, the HMG-CoA-reductase activity determined in the cell homogenate was found to be increased. Also the high-affinity association of LDL (low-density lipoprotein) to Hep G2 cells was elevated after incubation with compactin. Lipoprotein-depleted serum, present in the incubation medium, potentiated the compactin effect compared with incubation in the presence of human serum albumin. Addition of either mevalonate or LDL prevented the compactin-induced rise in activities of both HMG-CoA reductase and LDL receptor in a comparable manner. It is concluded that in this human hepatoma cell line, as in non-transformed cells, both endogenous mevalonate or mevalonate-derived products and exogenous cholesterol are able to modulate the HMG-CoA reductase activity as well as the LDL-receptor activity.  相似文献   

5.
The regulation of the LDL receptor activity in the human hepatoma cell line Hep G2 was studied. In Hep G2 cells, in contrast with fibroblasts, the LDL receptor activity was increased 2.5-fold upon increasing the concentration of normal whole serum in the culture medium from 20 to 100% by volume. Incubation of the Hep G2 cells with physiological concentrations of LDL (up to 700 micrograms/ml) instead of incubation under serum-free conditions resulted in a maximum 2-fold decrease in LDL receptor activity (10-fold decrease in fibroblasts). Incubation with physiological concentrations of HDL with a density of between 1.16 and 1.20 g/ml (heavy HDL) resulted in an approximately 7-fold increase in LDL receptor activity (1.5-fold increase in fibroblasts). This increased LDL receptor activity is due to an increase in the number of LDL receptors. Furthermore, simultaneous incubation of Hep G2 cells with LDL and heavy HDL (both 200 micrograms/ml) resulted in a 3-fold stimulation of the LDL receptor activity as compared with incubation in serum-free medium. 3-Hydroxy-3-methylglutaryl-CoA reductase activity was also stimulated after incubation of Hep G2 with heavy HDL (up to 3-fold). The increased LDL receptor activity in Hep G2 cells after incubation with heavy HDL was independent of the action of lecithin:cholesterol acyltransferase during that incubation. However, previous modification of heavy HDL by lecithin:cholesterol acyltransferase resulted in an enhanced ability of heavy HDL to stimulate the LDL receptor activity. Our results indicate that in Hep G2 cells the heavy HDL-mediated stimulation of the LDL receptor activity overrules the LDL-mediated down-regulation and raises the suggestion that in man the presence of heavy HDL and the action of lecithin:cholesterol acyltransferase in plasma may be of importance in receptor-mediated catabolism of LDL by the liver.  相似文献   

6.
Receptor-mediated endocytosis of tissue-type plasminogen activator (t-PA) was characterized with the human hepatoma cell line Hep G2. At 4 degrees C binding of 125I-t-PA to Hep G2 cells is rapid, specific, saturable, and reflective of a homogeneous population of 76,000 high-affinity surface sites per cell (Kd = 3.7 nM). The kinetics of 125I-t-PA binding to its receptor are characterized by rate constants for association (k1 = 1.2 x 10(6) min-1 M-1) and dissociation (k-1 = 0.001 min-1). A specific glycosylation pattern does not appear to be required for binding. Binding does not appear to be mediated by other recognized hepatic receptor systems. At 37 degrees C a single cohort of bound 125I-t-PA molecules disappears rapidly from the cell surface. Ligand then accumulates intracellularly. Thereafter, the intracellular concentration of ligand declines simultaneously with the release of ligand degradation products into the media. In the continued presence of 125I-t-PA at 37 degrees C the concentration of cell-associated ligand plateaus after 30 min with the concomitant appearance of low molecular weight 125I-labeled fragments in the media. Cumulative degradation then increases linearly with time. Under steady state conditions half-maximal ligand uptake and degradation is 26.6 nM and maximal rate of catabolism is 1.2 pmol/10(6) cells/h. At saturating ligand concentrations uptake and degradation by Hep G2 cells continue linearly for at least 6 h even in the absence of protein synthesis. During this period the cumulative ligand uptake exceeds the total cellular capacity of binding sites, consistent with receptor recycling. We conclude that t-PA clearance in human Hep G2 cells involves ligand binding, uptake, and degradation mediated by a novel high-capacity, high-affinity specific receptor system.  相似文献   

7.
The catabolism of low-density lipoproteins (LDL), the major cholesterol-carrying lipoproteins in plasma, is mediated in part via a high-affinity uptake pathway in the liver. Non-enzymatic glucosylation of lysine residues of apolipoprotein B, the major protein of LDL, blocks receptor-mediated uptake of LDL by fibroblasts and endothelial cells. We investigated the effect of the degree of glucosylation on the binding, uptake and degradation of radioiodinated LDL by the human hepatoma cell line Hep G2. Human LDL was glucosylated with 250 mM glucose and 30 mM cyanoborohydride at 37 degrees C. Incubations ranging from 3 to 48 h in duration resulted in the formation of 6-27% of glucitol-lysine adducts as demonstrated by coincubation with [14C]glucose. The degree of glucose incorporation corresponded to the extent of inhibition of binding, uptake and degradation of LDL (10-90%). The data are consistent with the view that glucosylation of LDL markedly impairs their catabolism. This phenomenon may be related to the pathophysiology of the premature atherosclerosis observed in diabetes mellitus.  相似文献   

8.
Insulin receptors and bioresponses in a human liver cell line (Hep G-2)   总被引:4,自引:0,他引:4  
A newly developed human hepatoma cell line, designated Hep G-2, expresses high-affinity insulin receptors meeting all the expected criteria for classic insulin receptors. 125I-insulin binding is time-dependent and temperature-dependent and unlabeled insulin competes for the labeled hormone with a half-maximal displacement of 1-3 ng/ml. This indicates a Kd of about 10(-10) M. Since Scatchard analysis of the binding data results in a curvilinear plot and unlabeled insulin accelerates the dissociation of bound hormone, these receptors exhibit the negative cooperative interactions characteristic of insulin receptors in many other cell and tissue types. Proinsulin and des(Ala, Asp)-insulin compete for 125I-insulin binding with 4% and 2%, respectively, of the potency of insulin. Anti-(insulin receptor) antibody competes fully for insulin binding. The two insulin-like growth factors, multiplication-stimulating activity and IGF-I are 2% as potent as insulin against the Hep G-2 insulin receptor. Furthermore, Hep G-2 cells respond to insulin in several bioassays. Glucose uptake, glycogen synthase, uridine incorporation into RNA and acetate incorporation into lipid are all stimulated to varying degrees by physiological concentrations of insulin. In addition, these cells 'down-regulate' their insulin receptor, internalize 125I-insulin and degrade insulin in a manner similar to freshly isolated rodent hepatocytes. This is the first available human liver cell line in permanent culture in which both insulin receptors and biological responses have been carefully examined.  相似文献   

9.
Serum low-density lipoprotein (LDL) concentration is a major determinant of susceptibility to the development of atherosclerosis. A major component of the protein moiety of LDL and its precursor very-low-density lipoprotein is apolipoprotein B (apo B). The human hepatoma cell line, Hep G2, was used as a model for the investigation of mechanisms which control hepatic secretion of the apo B and lipid components of lipoproteins. Using a sensitive immunoradiometric assay for apo B developed in this laboratory, we showed that bovine serum albumin inhibited and glucose, and fatty acids enhanced the rate of accumulation of apo B in the culture medium of Hep G2 cells. However, these substances did not necessarily affect LDL lipids in the same way as apo B. This finding appeared to be due to Hep G2 cells expressing lipase activities which led to triacylglycerol and phospholipid hydrolysis and lipid reuptake. Reuptake of apo B also occurred, but its rate of accumulation in the culture medium suggested it was a closer reflection of its true secretory rate.  相似文献   

10.
Freshly isolated rat hepatocytes bind the solely apolipoprotein B-containing human low density lipoprotein (LDL) with a high-affinity component. After 1 h of incubation less than 30% of the cell-associated human LDL is internalized and no evidence for any subsequent high-affinity degradation was obtained. Scatchard analysis of the binding data for human 125I-labeled LDL indicates that the high-affinity receptor for human LDL on rat hepatocytes possesses a Kd of 2.6 x 10(-8)M, while the binding is dependent on the extracellular Ca2+ concentration. Competition experiments indicate that both the apolipoprotein B-containing lipoproteins (human LDL and rat LDL) as well as the apolipoprotein E-containing lipoproteins (human HDL and rat HDL) do compete for the same surface receptor. It is concluded that hepatocytes freshly isolated from untreated rats do contain, in addition to the earlier described rat lipoprotein receptor which does not interact with human apolipoprotein B-containing LDL, a high-affinity receptor which interacts both with solely apolipoprotein B-containing human LDL and apolipoprotein E-containing lipoproteins.  相似文献   

11.
The regulation of low-density lipoprotein (LDL) receptor activity, protein synthesis, and cellular mRNA content was evaluated in the human hepatoma cell line Hep G2. Incubation of the cells with LDL led to a complete downregulation of LDL receptor mRNA and LDL receptor protein synthesis. This LDL regulation of the LDL receptor and its mRNA was both time- and concentration-dependent. In contrast to protein synthesis and cellular mRNA concentrations of the LDL receptor, which were reduced to undetectable levels by prolonged incubation in the presence of LDL, LDL receptor activity was reduced to only 44% of preincubation levels. These findings support the presence of a second metabolic pathway for LDL uptake in human hepatocytic cells. The effect of LDL on cellular LDL receptor expression was specific for LDL because incubation in the presence of HDL did not affect any of these study end points. The potential coordinate regulation of the expression of the LDL receptor with its principal ligands, apolipoproteins (apo) B and E, was also investigated. In contrast to the LDL receptor mRNA downregulation with LDL incubation, cellular apoB and apoE mRNA concentrations were not affected by either LDL or HDL. Secretion of apoB, however, was significantly increased by incubating Hep G2 cells with LDL. These findings indicate that, in contrast to LDL receptor which is regulated at the mRNA level, the ligands for the LDL receptor are regulated either co- or post-translationally.  相似文献   

12.
Since it is currently believed that the biosynthesis of human sex steroid binding plasma protein (SBP) takes place in the liver, the secretion of this protein and its hormonal control were studied in a human hepatoma cell line. The human hepatoma-derived cell line, Hep G2, and a clone, H5A, isolated from Hep G2, were both found to secrete SBP-like protein. This protein had the same dihydrotestosterone binding parameters as plasma SBP, with a Kd ranging from 0.3 to 1 nM at 4 degrees C, and it cross-reacted with a monospecific goat anti-human SBP antiserum. In a chemically defined medium, SBP-like protein secretion was stimulated approx 2-fold by estradiol (1 microM) whereas a smaller concentration of estrogen (100 nM) has only a slight effect. A combined incubation with estradiol (100 nM) and triiodothyronine (10 nM) increased SBP-like protein secretion more than estradiol (1 microM) alone. In response to dexamethasone (100 nM) or tamoxifen (100 nM) treatment, a 3-fold increase is obtained. Therefore, these human parenchymal cells should provide a potent material for investigation of the hormonal regulation of SBP gene.  相似文献   

13.
The cell surface expression of three endocytic receptors was studied in human hepatoma Hep G2 cells treated with brefeldin A (BFA). Ligand binding and cell surface iodination revealed that BFA increased the number of mannose 6-phosphate/insulin-like growth factor II receptors twofold and decreased the amount of asialoglycoprotein and transferrin receptors by 40-60%. The altered expression of receptors at the cell surface was paralleled by changes in the respective ligand uptake. The implications of this finding on our understanding of intracellular trafficking are discussed.  相似文献   

14.
Heat shock induction of heme oxygenase mRNA in human Hep 3B hepatoma cells   总被引:2,自引:0,他引:2  
Heat shock treatment of human Hep 3B hepatoma cells led to the induction of mRNA for microsomal heme oxygenase. The maximum induction of heme oxygenase mRNA (5----7-fold) was observed with treatment of cells at 43.5 degrees C, for 60 min. The heat-mediated induction of heme oxygenase mRNA was blocked by simultaneous treatment of cells with actinomycin D or cycloheximide. In contrast to Hep 3B cells, cells of another human hepatoma line, Hep G2, showed little induction of heme oxygenase mRNA by heat treatment. These findings suggest that heat shock treatment induces heme oxygenase mRNA in certain human hepatoma cells, but not in others.  相似文献   

15.
Previous work has shown that low-density lipoproteins (LDL) secreted by hepatoma-derived cell lines have an unusual composition compared to plasma LDL; rather than cholesteryl ester, the hepatoma cell-secreted LDL have a triacylglycerol core. We have found that they also have an increased negative charge, as judged by agarose electrophoresis. Since apolipoprotein B is a glycoprotein containing carbohydrate chains terminated with negatively charged sialic acid residues, we examined whether increased glycosylation of the apolipoprotein B from three hepatoma cell lines (Hep G2, Hep 3B and Huh 7) might account for the differences in LDL charge. The weight percent carbohydrate for Hep G2, Hep 3B and Huh 7 LDL-protein (1.1 +/- 0.2; 1.7 +/- 0.8; 0.4 +/- 0.1) was found to be extremely low compared with the 2.8-9% range we found for plasma LDL-protein, while the amount of LDL-lipid associated carbohydrate from hepatoma LDL was similar to that we found in plasma LDL. Furthermore, desialation of hepatoma cell-secreted LDL with neuraminidase did not normalize the negative charge to that of neuraminidase-treated plasma LDL. Western blots of thrombin proteolytic fragments indicated that, in addition to the T1-T4 fragments seen in plasma apolipoprotein B, apolipoprotein B of hepatoma-derived LDL produced four to five new fragments (T5-T9), suggesting increased exposure of proteolytic sites. Western blotting of the new fragments with antibodies specific for known apolipoprotein B sequences suggests that many of the new cleavage sites cluster in or near the putative LDL receptor recognition site.  相似文献   

16.
The effects of the calcium channel blocker of the arylalkylamine series verapamil have been investigated on high-density lipoprotein (HDL3) catabolism in the human hepatoma cell line Hep G2. It was found that verapamil markedly enhanced HDL3 binding, uptake and degradation in Hep G2 cells preloaded with nonlipoprotein cholesterol. This effect was dose-dependent, and a 1.5-2-fold increase of the three studied parameters was observed in cells pretreated 24 h with 100 microM verapamil. No significant effect of the drug was found in cells not preincubated with cholesterol. Verapamil induced an increase in the cellular cholesterol content in preloaded cells. Other calcium antagonists such as diltiazem, nifedipine, nitrendipine or amphiphilic drugs such as phenothiazines and propranolol also enhanced HDL3 uptake by Hep G2 cells. These effects of verapamil on HDL3 metabolism could be related to its amphiphilic characteristics, and to its calcium antagonist properties.  相似文献   

17.
The Ah receptor, a soluble cytoplasmic receptor that regulates induction of cytochrome P450IA1 and mediates toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was detected and characterized in the continuous human liver cell line Hep G2. The mean concentration of specific binding sites for TCDD was 112 +/- 26 (SEM) fmol/mg cytosol protein as determined in eight separate cytosol preparations in the presence of sodium molybdate. This is equivalent to 14,000 binding sites per cell, approximately 40% of the sites per cell found in the mouse hepatoma line Hepa-1. The cytosolic Ah receptor from Hep G2 cells sedimented at 9 S and was specific for those halogenated and nonhalogenated aromatic compounds known to be agonists for the Ah receptor in rodent tissues and cells. Specific binding in the 9 S region was detected with both [3H]TCDD and 3-[3H]methylcholanthrene. 3-[3H]Methylcholanthrene did not bind to any component besides that at approximately 9 S. Phenobarbital, dexamethasone, and estradiol did not compete with [3H]TCDD for binding to the Hep G2 Ah receptor. Specific binding of [3H]triamcinolone acetonide to glucocorticoid receptor could also be demonstrated in Hep G2 cytosol. The apparent equilibrium dissociation constant (Kd) for binding of [3H]TCDD to Hep G2 Ah receptor was 9 nM by Woolf plot analysis, about an order of magnitude weaker than the affinity of [3H]TCDD for the mouse Hepa-1 Ah receptor or for the C57BL/6 murine hepatic Ah receptor. [3H]TCDD.Ah receptor complex, which was extracted from nuclei of Hep G2 cells incubated with [3H]TCDD at 37 degrees C in culture, sedimented at approximately 6 S under conditions of high ionic strength. Aryl hydrocarbon hydroxylase (AHH) activity was significantly induced after 24 h of incubation with polycyclic aromatic hydrocarbons: the EC50 for AHH induction was 5.3 microM for benz(a)anthracene and 1.3 microM for 3-methylcholanthrene. Modification of the preparative technique for cell cytosol, especially inclusion of 20 mM sodium molybdate in homogenizing and other buffers, was necessary to detect cytosolic Hep G2 Ah receptor. Hep G2 cells appear to conserve drug-metabolizing activity associated with cytochrome P450IA1 as well as the receptor mechanism which regulates its induction.  相似文献   

18.
N B Javitt 《FASEB journal》1990,4(2):161-168
Hep G2, a liver cell line derived from a human hepatoblastoma that is free of known hepatotropic viral agents, has been found to express a wide variety of liver-specific metabolic functions. Among these functions are those related to cholesterol and triglyceride metabolism. Confluent Hep G2 monolayers express normal low-density lipoprotein (LDL) receptors and continue to internalize and metabolize chylomicrons, very low-density lipoproteins (VLDL), LDL, and high-density lipoproteins. In lipoprotein-free medium, apolipoproteins A-I, A-II, B, C, and E accumulate in the medium together with cholesterol, cholesteryl ester, triglyceride, and all the primary bile acids. The regulation of their synthesis and secretion is not fully known and their interrelationships have not been established. Because Hep G2 cells express these and other components of cholesterol and triglyceride metabolism, they are a microcosm for studying the central role of the liver.  相似文献   

19.
20.
Long-term and large scale cultivation of an anchorage-dependent cell line using an industrial scale hollow fiber perfusion bioreactor is described. Hep G2 cells (a human hepatoma cell line) were cultivated in an Acysyst-P® (Endotronic) with a total fiber surface area of 7.2 m2 (6×1.2 m2) to produce Hep G2 crude conditioned medium (CCM). Pretreatment of the cellulose acetate hollow fibers with collagen enhances the attachment of the anchorage-dependent cells. We have succeeded in growing the Hep G2 cells in an antibiotics-and serum-free IMDM medium, supplemented with 50g/ml of Hep G2 CCM protein at inoculation. The Hep G2 cells replicate and secrete CCM protein in quantities comparable to those produced in DMEM containing 10% fetal calf serum (FCS). The highest CCM protein productivity during the 80-day cultivation was 1.1 g/day with a total of 30 g of protein accumulated. Hep G2 CCM (20–40 g protein/ml) was comparable to or even better than 10% FCS in supporting the growth of Molt-4 (a human T leukemia cell line) and FO (a mouse myeloma cell line) cells in vitro. The availability of this large amount of Hep G2 CCM will aid the further purification and characterization of growth factor(s) which could be used as serum substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号