首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Most cytosine residues are subject to methylation in the zeta-eta (zeta-eta) region of Neurospora crassa. The region consists of a tandem direct duplication of a 0.8-kilobase-pair element including a 5S rRNA gene. The repeated elements have diverged about 15% by the occurrence of numerous CG to TA mutations, which probably resulted from deamination of methylated cytosines. Most but not all common laboratory strains of N. crassa have methylated duplicated DNA at the zeta-eta locus. However, many strains of N. crassa and strains of N. tetrasperma, N. sitophila, and N. intermedia have one instead of two copies of the homologous DNA and it is not methylated. A cross of strains differing at the zeta-eta locus produced progeny which all had duplicated, methylated, or unique, unmethylated DNA, like the parental strains. We conclude that a signal causing unprecedented heavy DNA methylation is present in the zeta-eta region.  相似文献   

2.
3.
Ribosomal RNA genes were isolated from the germinated conidial and mycelial cells of N. crassa by repeated cycles of 3H-DNA:rRNA reactions followed by hydroxyapatite chromatography. Specificity of multiple copies of those rDNAs with respect to N. crassa cell types was studied. The fraction of N. crassa germinated conidial in vitro labelled 3H-DNA recovered in the presence of rRNA isolated from the same cell type was about 2.2%, when compared with approximately 1.2% rDNAs obtained in mycelial cells. These isolated rDNAs reacted specifically to 26S and 17S rRNAs of eukaryotic (N. crassa) organisms and did not react with 4S tRNAs. rRNA:rDNA reassociation kinetics studies indicate that 90% of the rRNA genes were homogeneous and not identical with the other 10% rRNA genes isolated from N. crassa mycelia. These studies suggest that the possible heterogeneity of rDNA sequences of N. crassa cannot be attributed to inclusion of any tDNA sequences as has been shown in the heterogeneity of rDNA sequences of the bacterium Escherichia coli. The heterogeneity of multiple copies of N. crassa rDNAs could be due to differences in internal or external spacer regions of N. crassa rRNA genes.  相似文献   

4.
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.  相似文献   

5.
We have developed a sib selection procedure for cloning Neurospora crassa nuclear genes by complementation of mutants. This procedure takes advantage of a modified N. crassa transformation procedure that gives as many as 10,000 to 50,000 stable transformants per microgram of DNA with recombinant plasmids containing the N. crassa qa-2+ gene. Here, we describe the use of the sib selection procedure to clone genes corresponding to auxotrophic mutants, nic-1 and inl. The identities of the putative clones were confirmed by mapping their chromosomal locations in standard genetic crosses and using restriction site polymorphisms as genetic markers. Because we can obtain very high N. crassa transformation frequencies, cloning can be accomplished with as few as five subdivisions of an N. crassa genomic library. The sib selection procedure should, for the first time, permit the cloning of any gene corresponding to an N. crassa mutant for which an appropriate selection can be devised. Analogous procedures may be applicable to other filamentous fungi before the development of operational shuttle vectors.  相似文献   

6.
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suc 0 and N. crassa inv strains transformed with p NC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suc 0 ( p NC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa , although S. cerevisiae suc + did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI -restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.  相似文献   

7.
A cobalt-resistant strain of Neurospora crassa (cor) was obtained by repeated subculturing of the wild type on cobalt-containing agar medium. N. crassa cor is twentyfold more resistant to cobalt ions compared with the wild type. Resistance was stable on repeated subculturing of cor on cobalt-free media. N. crassa cor is also cross-resistant to nickel (fourfold), but not to zinc or copper. Higher concentrations of iron and magnesium ions are required to reverse growth inhibition due to cobalt toxicity in N. crassa cor, compared with the wild type. Germinating conidia and mycelia of the cor strain accumulated lower levels of cobalt ions compared with the parent N. crassa. The partial transport block for cobalt uptake is shown to be primarily due to decreased surface binding of cobalt to mycelia and cell walls. Efflux of mycelial cobalt was also observed in wild type and cobalt-resistant N. crassa. The characteristics of cor in comparison with wild type N. crassa are discussed in relation to the mechanisms of cobalt resistance.  相似文献   

8.
9.
Bok JW  Ishida K  Griffiths AJ 《Mycologia》2003,95(3):500-505
In N. crassa and N. intermedia, the kalilo plasmid triggers senescence by insertion into mitochondrial DNA. To investigate the cell death pathway induced by this plasmid, juvenile and senescent subcultures of several senescent strains were examined by light and transmission electron microscopy, and at the DNA level. There were no signs of apoptotic events, such as shrinkage of the cytoplasm away from the cell wall, apoptotic bodies, internucleosomal DNA fragmentation or condensation of the cytoplasm while retaining mitochondria and endomembrane structure. Instead, swollen mitochondria lacking cristae and containing amorphous inclusions, and disruption of nuclear and mitochondrial membranes indicated a necrotic mode of cell death.  相似文献   

10.
A 22.2-kb insert of Neurospora crassa DNA containing at least two of the genes from the inducible catabolic quinic acid pathway has been cloned into the cosmid vehicle pHC79 resulting in a recombinant plasmid, pMSK308. The qa-2+ locus (which encodes catabolic dehydroquinase) is functionally expressed in both Escherichia coli and qa-2 mutants of N. crassa transformed with pMSK308 plasmid DNA. Expression of the qa-3 gene (which encodes quinate dehydrogenase) is only detected upon reintroduction into N. crassa. Results were also obtained which suggested that the qa-4 gene, which maps between qa-2 and qa-3, may also be present on both pMSK308 and the previously described plasmid pVK88. Certain anomalies in the types of N. crassa transformants obtained with pMSK308 plasmid DNA were noted.  相似文献   

11.
An arg-2 mutant of Neurospora crassa was transformed to prototrophy with a pBR322-N. crassa genomic DNA library. Repeated attempts to recover the integrated transforming DNA or segments thereof by digestion, ligation, and transformation of Escherichia coli, with selection for the plasmid marker ampicillin resistance, were unsuccessful. Analyses of a N. crassa transformant demonstrated that the introduced DNA was heavily methylated at cytosine residues. This methylation was shown to be responsible for our inability to recover transformants in standard strains of E. coli; transformants were readily obtained in a strain which is deficient in the two methylcytosine restriction systems. Restriction of methylated DNA in E. coli may explain the general failure to recover vector or transforming sequences from N. crassa transformants.  相似文献   

12.
Repeat-induced point mutation (RIP) is a homology-based process that mutates repetitive DNA and frequently leads to epigenetic silencing of the mutated sequences through DNA methylation. Consistent with the hypothesis that RIP serves to control selfish DNA, an analysis of the Neurospora crassa genome sequence reveals a complete absence of intact mobile elements. As in most eukaryotes, the centromeric regions of N. crassa are rich in sequences that are related to transposable elements; however, in N crassa these sequences have been heavily mutated. The analysis of the N. crassa genome sequence also reveals that RIP has impacted genome evolution significantly through gene duplication, which is considered to be crucial for the evolution of new functions. Most if not all paralogs in N. crassa duplicated and diverged before the emergence of RIP. Thus, RIP illustrates the extraordinary extent to which genomes will go to defend themselves against mobile genetic elements.  相似文献   

13.
From a sample of 122 natural isolates of Neurospora intermedia collected recently from around the world, five variants had erratic stop-start growth patterns reminiscent of the phenotype of "stopper" laboratory extranuclear mutants of Neurospora crassa. Like laboratory isolated mutants, the natural "stopper" variants were sterile as protoperithecial parents and transmitted the variant growth phenotypes very inefficiently, if at all, as male parents. Heterokaryon tests could not be made because of strain incompatibilities. Four of the variants have mitochondrial cytochrome aa3 and b deficiencies. These four variants are all defective in mitochondrial ribosome assembly and have abnormal ratios of large to small subunits. Restriction enzyme analyses revealed some similarity of N. intermedia to N. crassa mtDNA. One normal and four variant strains had additional DNA in comparison to a standard normal strain. Cumulatively, the results indicate that the genetic alterations which cause stopper phenotypes of these natural isolates of N. intermedia are of mitochondrial rather than nuclear origin.  相似文献   

14.
Repeated DNA sequences in fungi   总被引:4,自引:1,他引:3       下载免费PDF全文
Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10-20% repeated DNA sequences. There are approximately 100-110 copies of repeated DNA sequences of approximately 4 × 107 daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5°C difference of Te50 (temperature at which 50% duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA.  相似文献   

15.
Extracts of a wild-type strain of Neurospora crassa, electrophoresed on SDS-polyacrylamide gels and electroblotted onto nitrocellulose sheets, were hybridized to an end-labelled pyruvate kinase (PK) gene fragment containing the 5' noncoding sequence and a large part of the coding region. A 30-kDa protein was found to bind strongly to the PK gene DNA, while binding weakly to plasmid pUC12 DNA and to total N. crassa DNA. Probing of blots with individual restriction fragments derived from the PK gene showed that the protein binding occurred primarily to the 5' noncoding region. Nonspecific DNA from pUC12, PK gene DNA from the recombinant plasmid pNP460 (pUC12 containing a 1.8-kilobase EcoRI insert of the PK gene DNA), along with a 0.7-kilobase EcoRI-AccI restriction fragment containing the 5' flanking region, were used in filter-binding experiments to analyze the kinetics of binding. Formation of protein-DNA complexes was demonstrated by monitoring the electrophoretic mobility of this fragment on nondenaturing gels.  相似文献   

16.
17.
The expression of thymidine kinase in fungi, which normally lack this enzyme, will greatly aid the study of DNA metabolism and provide useful drug-sensitive phenotypes. The herpes simplex virus type-1 thymidine kinase gene ( tk ) was expressed in Neurospora crassa. tk was expressed as a fusion to N.crassa arg-2 regulatory sequences and as a hygromycin phosphotransferase-thymidine kinase fusion gene under the control of cytomegalovirus and SV40 sequences. Only strains containing tk showed thymidine kinase enzyme activity. In strains containing the arg-2 - tk gene, both the level of enzyme activity and the level of mRNA were reduced by growth in arginine medium, consistent with control through arg-2 regulatory sequences. Expression of thymidine kinase in N.crassa facilitated radioactive labeling of replicating DNA following addition of [3H]thymidine or [14C]thymidine to the growth medium. Thymidine labeling of DNA enabled demonstration that hydroxyurea can be used to block replication and synchronize the N.crassa mitotic cycle. Strains expressing thymidine kinase were also more sensitive than strains lacking thymidine kinase to anticancer and antiviral nucleoside drugs that are activated by thymidine kinase, including 5-fluoro-2'-deoxyuridine, 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouridine and trifluorothymidine. Finally, expression of thymidine kinase in N. crassa enabled incorporation of bromodeoxyuridine into DNA at levels sufficient to separate newly replicated DNA from old DNA using equilibrium centrifugation.  相似文献   

18.
Sequences coding for histone H3 and H4 of Neurospora crassa could be identified in genomic digests with the use of the corresponding genes from sea urchin and X. laevis as hybridization probes. A 2.6 kb HindIII-generated N. crassa DNA fragment, showing homology with the heterologous histone H3-gene probes was cloned in a charon 21A vector. Using DNA from this clone as a homologous hybridization probe a 6.9 kb SalI-generated DNA fragment was isolated which in addition to the histone H3-gene also contains the gene coding for histone H4. Several lines of evidence demonstrate the presence of only a single histone H3- as well as a single histone H4-gene in N. crassa. The two genes are physically linked on the genome. DNA sequencing of the N. crassa histone H3- and H4-genes confirmed their identity and, in addition, revealed the presence of one short intron (67 bp) within the coding sequence of the H3-gene and even two introns (68 and 69 bp) within the H4-gene. The amino acid sequences of the N. crassa histones H3 and H4, as deduced from the DNA sequences, and those of the corresponding yeast histones differ only at a few positions. Much larger sequence differences, however, are observed at the DNA level, reflecting a diverging codon usage in the two lower eukaryotes.  相似文献   

19.
H Yajima  M Takao  S Yasuhira  J H Zhao  C Ishii  H Inoue    A Yasui 《The EMBO journal》1995,14(10):2393-2399
Many eukaryotic organisms, including humans, remove ultraviolet (UV) damage from their genomes by the nucleotide excision repair pathway, which requires more than 10 separate protein factors. However, no nucleotide excision repair pathway has been found in the filamentous fungus Neurospora crassa. We have isolated a new eukaryotic DNA repair gene from N.crassa by its ability to complement UV-sensitive Escherichia coli cells. The gene is altered in a N.crassa mus-18 mutant and responsible for the exclusive sensitivity to UV of the mutant. Introduction of the wild-type mus-18 gene complements not only the mus-18 DNA repair defect of N.crassa, but also confers UV-resistance on various DNA repair-deficient mutants of Saccharomyces cerevisiae and a human xeroderma pigmentosum cell line. The cDNA encodes a protein of 74 kDa with no sequence similarity to other known repair enzymes. Recombinant mus-18 protein was purified from E.coli and found to be an endonuclease for UV-irradiated DNA. Both cyclobutane pyrimidine dimers and (6-4)photoproducts are cleaved at the sites immediately 5' to the damaged dipyrimidines in a magnesium-dependent, ATP-independent reaction. This mechanism, requiring a single polypeptide designated UV-induced dimer endonuclease for incision, is a substitute for the role of nucleotide excision repair of UV damage in N.crassa.  相似文献   

20.
The Neurospora crassa nuclear mutant cyt-21-1 (originally 297-24; Pittenger, T.H., and West, D.J. (1979) Genetics 93, 539-555) has a defect leading to gross deficiency of mitochondrial small ribosomal subunits. Here, we have cloned the cyt-21+ gene from a N. crassa genomic library, using the sib selection procedure (Akins, R. A., and Lambowitz, A. M. (1985) Mol. Cell Biol. 5, 2272-2278). The genomic clone contains a short split gene encoding a basic protein of 107 amino acid residues. This protein shows strong homology to Escherichia coli ribosomal protein S-16. Comparison of mutant and wild-type mitochondrial ribosomal proteins (Kuiper, M. T. R., Holtrop, M., Vennema, H., Lambowitz, A. M., and de Vries, H. (1988) J. Biol. Chem. 263, 2848-2852) indicates that the cyt-21 gene encodes N. crassa mitochondrial ribosomal protein S-24. The expression of the cyt-21+ gene is regulated such that the level of the putative cyt-21+ mRNA is increased about 5-fold when mitochondrial protein synthesis is inhibited. We suggest that this reflects part of a general mechanism for coordinately activating Neurospora nuclear genes that encode mitochondrial constituents in response to impaired mitochondrial function. This is the first report of the cloning and characterization of a mitochondrial ribosomal protein gene from N. crassa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号