首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological characteristics of the blood oxygen transport system and muscle metabolism indicate a high dependence on aerobic pathways in the blue gourami, Trichogaster trichopterus. Haemoglobin concentration and haematocrit were modest and the blood oxygen affinity (P50=2.31 kPa at pH 7.4 and 28 degrees C) and its sensitivity to pH (Bohr factor, phi=-0.34) favour oxygen unloading at a relatively high oxygen pressure (PO2). The intracellular buffering capacity (44.0 slykes) and lactate dehydrogenase (LDH) activity (154.3 iu g(-1)) do not support exceptional anaerobic capabilities. Air-breathing frequency in the blue gourami is expected to increase when aquatic oxygen tensions decline. Under threat of predation, however, this behaviour must be modified at a potential cost to aerobic metabolism. We therefore tested the hypothesis that metabolic responses to predatory challenge and aquatic hypoxia are subject to behavioural modulation. Computer-generated visual stimuli consistently reduced air-breathing frequency at 19.95, 6.65 and 3.33 kPa PO2. Bi-directional rates of spontaneous activity were similarly reduced. The metabolic cost of this behaviour was estimated and positively correlated with PO2 but not with visual stimulation thus indicating down-regulation of spontaneous activity rather than breath-holding behaviour. Neither PO2 nor visual stimulation resulted in significant change to muscle lactate and ATP concentrations and confirm that aerobic breath-hold limits were maintained following behavioural modulation of metabolic demands.  相似文献   

2.
3.
Borrowing from metabolic control analysis the concept of control coefficients or ci values, defined as fractional change in MMR/fractional change in the capacity of any given step in ATP turnover, we used four performance phenotypes to compare mechanisms of control of aerobic maximum metabolic rate (MMR): (i) untrained sedentary (US) subjects, as a reference group against which to compare (ii) power trained (PT), (iii) endurance trained (ET), and (iv) high altitude adapted native (HA) subject groups. Sprinters represented the PT group; long distance runners illustrated the ET group; and Andean natives represented the HA group. Numerous recent studies have identified contributors to control on both the adenosine triphosphate (ATP) supply side and the ATP demand side of ATP turnover. From the best available evidence it appears that at MMR all five of the major steps in energy delivery (namely, ventilation, pulmonary diffusion, cardiac output, tissue capillary--mitochondrial O2 transfer, and aerobic cell metabolism per se) approach an upper functional ceiling, with control strength being distributed amongst the various O2 flux steps. On the energy demand side, the situation is somewhat simplified since at MMR approximately 90% of O2-based ATP synthesis is used for actomyosin (AM) and Ca2+ ATPases; at MMR these two ATP demand rates also appear to be near an upper functional ceiling. In consequence, at MMR the control contributions or ci values are distributed amongst all seven major steps in ATP supply and ATP demand pathways right to the point of fatigue. Relative to US (the reference group), in PT subjects at MMR control strength shifts towards O2 delivery steps (ventilation, pulmonary diffusion, and cardiac output); here physiological regulation clearly dominates MMR control. In contrast in ET and HA subjects at MMR control shifts towards the energy demand steps (AM and Ca2+ ATPases), and more control strength is focussed on tissue level ATP supply and ATP demand. One obvious advantage of the ET and HA biochemical-level control is improved metabolite homeostasis. Additionally, with some reserve capacity in the O2 delivery steps, the focussing of control on ATP turnover at the tissue level has allowed nature to improve on an 'endurance machine' design.  相似文献   

4.
The changes in cerebral metabolism in mice in severe hypoxia were investigated by analyses of changes in the levels of energy metabolites and near-infrared spectrophotometric assessment of the states of hemoglobin and cytochrome oxidase. Under 4.4% O2, the contribution of anaerobic ATP production was at most about 20% of the demand. However, the cerebral ATP level was kept at the control level until about 1 min before death. Pentobarbital anesthesia, which reduced the cerebral rate of metabolism, prolonged the survival time, although anaerobic ATP production still did not support ATP demand. Under these conditions, deoxygenation of hemoglobin and reduction of cytochrome oxidase proceeded rapidly within 1 min. Hemoglobin reached the maximum state of deoxygenation in the middle phase of hypoxia, with no further change until death. However, cytochrome oxidase was reduced slowly with one phase of partial reoxidation due to increase of cerebral blood volume, and reached the completely reduced state at death. From these results it was concluded that the aerobic ATP synthesis, which supplied more than 80% of the cerebral demand, decreased gradually because of limitation of oxygen supply, and that the failure of oxidative phosphorylation to meet demand triggered the decrease in the cellular ATP level that led to death.  相似文献   

5.
In this analysis, four performance phenotypes were used to compare mechanisms of control of aerobic maximum metabolic rate (MMR): (i) untrained sedentary (US) subjects, as a reference group against which to compare (ii) power trained (PT), (iii) endurance trained (ET) and (iv) high altitude adapted native (HA) subject groups. Sprinters represented the PT group; long distance runners illustrated the ET group; and Quechuas represented the HA group. Numerous recent studies have identified contributors to control on both the adenosine triphosphate (ATP) supply side and the ATP demand side of ATP turnover. Control coefficients or c(i) values were defined as fractional change in MMR/fractional change in the capacity of any given step in ATP turnover. From the best available evidence it appears that at MMR all five of the major steps in energy delivery (namely, ventilation, pulmonary diffusion, cardiac output, tissue capillary - mitochondrial O(2) transfer, and aerobic cell metabolism per se) approach an upper functional ceiling, with control strength being distributed amongst the various O(2) flux steps. On the energy demand side, the situation is somewhat simplified since at MMR approximately 90% of O(2)-based ATP synthesis is used for actomyosin (AM) and Ca(2+) ATPases; at MMR these two ATP demand rates also appear to be near an upper functional ceiling. In consequence, at MMR the control contributions or c(i) values are rather evenly divided amongst all seven major steps in ATP supply and ATP demand pathways right to the point of fatigue. Relative to US (the reference group), in PT subjects at MMR control strength shifts towards O(2) delivery steps (ventilation, pulmonary diffusion and cardiac output). In contrast in ET and HA subjects at MMR control shifts towards the energy demand steps (AM and Ca(2+) ATPases), and more control strength is focussed on tissue level ATP supply and ATP demand. One obvious advantage of the ET and HA control pattern is improved metabolite homeostasis. Another possibility is that, with some reserve capacity in the O(2) delivery steps and control focussed on ATP turnover at the tissue level, nature has designed the ideal 'endurance machine'.  相似文献   

6.
Most models of metabolic control concentrate on the regulation of ATP production and largely ignore the regulation of ATP demand. We describe a model, based on the results of Hogan et al. (J. Appl. Physiol. 73: 728-736, 1992), that incorporates the effects of ATP demand. The model is developed from the premise that a unique set of intracellular conditions can be measured at each level of ATP turnover and that this relationship is best described by energetic state. Current concepts suggest that cells are capable of maintaining oxygen consumption in the face of declines in the concentration of oxygen through compensatory changes in cellular metabolites. We show that these compensatory changes can cause significant declines in ATP demand and result in a decline in oxygen consumption and ATP turnover. Furthermore we find that hypoxia does not directly affect the rate of anaerobic ATP synthesis and associated lactate production. Rather, lactate production appears to be related to energetic state, whatever the PO2. The model is used to describe the interaction between ATP demand and ATP supply in determining final ATP turnover.  相似文献   

7.
Kemp GJ 《Mitochondrion》2004,4(5-6):629-640
In peripheral vascular disease, impaired muscle energy metabolism is assumed to be due mainly to defective vascular O2 supply, the resulting cellular hypoxia inhibiting oxidative ATP synthesis. Older work suggested a compensatory increase in muscle aerobic enzymes, but more recent studies suggest a relative decrease in some mitochondrial components and an accumulation of damage in mitochondrial DNA, perhaps due to reactive oxygen species. However, to establish whether in vivo muscle mitochondria suffer from anything other than a low concentration of O2 will require more knowledge of the mitochondrial behaviour at low PO2, and the actual cell PO2 during exercise.  相似文献   

8.
Oxygen delivery to muscle, its consumption and glycolytic flux, all of each affect and restrict aerobic performance, are discussed. Energy supply of intensive exercise till exhaustion lasting 3 to 4 min is provided mainly by oxidative metabolism, simultaneously glycolytic flux may be increased considerably. Other conditions being equal, capacity of oxygen delivery determines oxygen partial pressure in myoplasm of exercising/contracting muscle. With PO2 in myoplasm increasing from 0 to 1-2 mm Hg oxygen consumption (VO2) in mitochondria enhances dramatically, with further increase of PO2 its rise slows down. At the ascending part of VO2-PO2 relationship for mitochondria the increase of VO2 is noticeably restricted by oxygen delivery to contracting muscle. When PO2 approaches plateau of the VO2-PO2 relationship, an increase of VO2 is restricted by mitochondria capacity to accumulate oxygen and augmented oxygen delivery will not lead to a significant increase of muscle VO2. On the other hand considerable accumulation of glycolytic metabolites in contracting muscle causes a decrease of contractility which in its turn may restrict aerobic performance. Noteworthy no strict relationship between glycolytic flux and PO2 in myoplasm exists. That is why correct evaluation of factors limiting aerobic performance presupposes simultaneous evaluation of both glycolytic flux and oxygen consumption in muscle which in its turn depends on oxygen delivery to mitochondria and its utilization.  相似文献   

9.
Previously, by measuring myoglobin-associated PO(2) (P(Mb)O(2)) during maximal exercise, we have demonstrated that 1) intracellular PO(2) is 10-fold less than calculated mean capillary PO(2) and 2) intracellular PO(2) and maximum O(2) uptake (VO(2 max)) fall proportionately in hypoxia. To further elucidate this relationship, five trained subjects performed maximum knee-extensor exercise under conditions of normoxia (21% O(2)), hypoxia (12% O(2)), and hyperoxia (100% O(2)) in balanced order. Quadriceps O(2) uptake (VO(2)) was calculated from arterial and venous blood O(2) concentrations and thermodilution blood flow measurements. Magnetic resonance spectroscopy was used to determine myoglobin desaturation, and an O(2) half-saturation pressure of 3.2 Torr was used to calculate P(Mb)O(2) from saturation. Skeletal muscle VO(2 max) at 12, 21, and 100% O(2) was 0.86 +/- 0.1, 1.08 +/- 0.2, and 1.28 +/- 0.2 ml. min(-1). ml(-1), respectively. The 100% O(2) values approached twice that previously reported in human skeletal muscle. P(Mb)O(2) values were 2.3 +/- 0.5, 3.0 +/- 0.7, and 4.1 +/- 0.7 Torr while the subjects breathed 12, 21, and 100% O(2), respectively. From 12 to 21% O(2), VO(2) and P(Mb)O(2) were again proportionately related. However, 100% O(2) increased VO(2 max) relatively less than P(Mb)O(2), suggesting an approach to maximal mitochondrial capacity with 100% O(2). These data 1) again demonstrate very low cytoplasmic PO(2) at VO(2 max), 2) are consistent with supply limitation of VO(2 max) of trained skeletal muscle, even in hyperoxia, and 3) reveal a disproportionate increase in intracellular PO(2) in hyperoxia, which may be interpreted as evidence that, in trained skeletal muscle, very high mitochondrial metabolic limits to muscle VO(2) are being approached.  相似文献   

10.
Frogs submerged at 3 degrees C in hypoxic water (Po2=60 mmHg) depress their metabolic rate to 25% of that seen in control animals with access to air. The hypometabolic state of the skeletal muscle in such cold-submerged frogs is thought to be the most important contributor to the overall metabolic depression. The aim of this study was to determine whether the aerobic capacity of frog skeletal muscle became altered during 1-4 mo of hibernation to match the reduction in adenosine triphosphate (ATP) demand. To this end, the activities of key mitochondrial enzymes were measured in the skeletal muscle and in isolated mitochondria of frogs at different stages during hibernation. We also measured the activity of lactate dehydrogenase (LDH) as an indicator of glycolytic capacity. The activities of cytochrome c oxidase, citrate synthase, and LDH were significantly lower in frog skeletal muscle after 4 mo of hibernation compared with control conditions. The reduction in skeletal muscle aerobic capacity is apparently due to changes in the intrinsic properties of the mitochondria. Overall, these results indicate an important reorganisation of ATP-producing pathways during long-term metabolic depression to match the lowered ATP demand.  相似文献   

11.
The dourado, Salminus maxillosus, is an active and migratory teleost found in lotic waters of Southern Brazil. We have studied the relationships of gas transport in dourado to the specific ecophysiology of this-species. Measurements were performed of blood gases, O2 uptake, gill ventilation and perfusion at normoxia and various levels of hypoxia. Thus, the study aimed at a detailed assessment of the causes of O2 transport failure, using recent models for gas transport in vertebrates. Oxygen uptake was maintained down to a critical water partial O2 pressure of 42 mmHg, below which it markedly decreased. This could be explained based on ventilatory and cardiovascular responses: Ventilation increased sufficiently to match decreases of water O2 partial pressure during moderate hypoxia (partial pressure of O2 > 42 mmHg) but failed to meet O2 demands below this value. Likewise, the cardiovascular responses were insufficient to maintain an adequate transport below moderatelevels of hypoxia. Thus, combined failure of ventilation and blood gas transport account for the abrupt decreases of O2 transport. The species proved highly vulnerable to hypoxia, which is consistent with the normally well-aerated habitat and the active mode of life of the species.  相似文献   

12.
13.
Blood-O(2) affinity, Hill number and predicted arterial-O(2) saturation did not differ between diploid (2N) and triploid (3N) rainbow trout Oncorhynchus mykiss blood when compared under various temperature and CO(2) partial pressure combinations. These results suggest that reduced hypoxia and warm-water tolerance and aerobic capacity of 3N fishes are not due to altered blood-O(2) affinity. Further investigation into O(2) transport-diffusion capacity and intracellular pH within 3N fishes may further unravel the mechanisms behind reduced 3N tolerance of suboptimal environments.  相似文献   

14.
Metabolic models of microcirculatory regulation.   总被引:2,自引:0,他引:2  
The functions and integrity of body tissues are critically dependent on an adequate oxygen supply. Because the transport of oxygen to the cells is intimately linked to the microcirculation, the concept of microcirculation-metabolism coupling has received much attention. In essence, the metabolic theory of intrinsic control of the microcirculation states that microvascular tone is locally modulated to maintain adequate oxygen levels in the parenchymal cells. We propose a two-component control system for the regulation of tissue O2 delivery in accordance with metabolic needs. A precapillary sphincter control mechanism maintains tissue PO2 by governing the number of perfused capillaries. Functional capillary density in turn determines surface area available for diffusion and capillary-to-cell diffusion distance. On the other hand, the arteriolar control system modulates local blood flow in accordance with parenchymal O2 utilization and thereby minimizes changes in capillary PO2 when the O2 availability/demand ratio is decreased. We propose that the precapillary sphincters are more sensitive to changes in tissue PO2 than are the flow-regulating arterioles. Consequently, for mild stresses, adequate tissue oxygenation is maintained mainly by precapillary sphincter control of diffusion parameters without the need for changes in blood flow. However, as metabolic stresses become greater, blood flow regulation becomes the dominant factor in the control of tissue O2 delivery. Thus, by working in concert, the local mechanisms regulating microvascular resistance and effective capillary density provide a wide margin of safety against the development of cellular hypoxia.  相似文献   

15.
16.
Interaction of factors determining oxygen uptake at the onset of exercise.   总被引:10,自引:0,他引:10  
Considerable debate surrounds the issue of whether the rate of adaptation of skeletal muscle O2 consumption (QO2) at the onset of exercise is limited by 1) the inertia of intrinsic cellular metabolic signals and enzyme activation or 2) the availability of O2 to the mitochondria, as determined by an extrinsic inertia of convective and diffusive O2 transport mechanisms. This review critically examines evidence for both hypotheses and clarifies important limitations in the experimental and theoretical approaches to this issue. A review of biochemical evidence suggests that a given respiratory rate is a function of the net drive of phosphorylation potential and redox potential and cellular mitochondrial PO2 (PmitoO2). Changes in both phosphorylation and redox potential are determined by intrinsic metabolic inertia. PmitoO2 is determined by the extrinsic inertia of both convective and diffusive O2 transport mechanisms during the adaptation to exercise and the rate of mitochondrial O2 utilization. In a number of exercise conditions, PmitoO2 appears to be within a range capable of modulating muscle metabolism. Within this context, adjustments in the phosphate energy state of the cell would serve as a cytosolic "transducer," linking ATP consumption with mitochondrial ATP production and, therefore, O2 consumption. The availability of reducing equivalents and O2 would modulate the rate of adaptation of QO2.  相似文献   

17.
The relationship between biochemical and physiological responses and tissue O2 during hypoxia was investigated in vivo in the dog brain by 31P nuclear magnetic resonance (NMR) spectroscopy. Our findings demonstrate how ATP synthesis in the brain can be maintained during hypoxia because of compensatory changes in NADH, ADP, and Pi. Eleven beagle dogs were anesthetized and mechanically ventilated, and a steady-state graded hypoxia was induced by decreasing the fraction of inspired O2 (FIO2) stepwise at 20-min intervals. Biochemical metabolites were measured using 31P-NMR and fluorescence spectroscopy. When sagittal sinus O2 partial pressure (PVO2) had decreased to 15 Torr, NADH increased by 30%, Pi increased by 50%, and phosphocreatine (PCr) decreased by 20%. In contrast, ATP remained constant. There was a 10% increase in ADP in dogs that maintained a steady temperature, but ADP decreased by as much as 30% in dogs in which body temperature decreased with the falling PVO2. PCr/Pi was logarithmically related to the phosphorylation potential during steady-state hypoxia. Compensation for the O2 lack is attributed to increases in ADP, Pi, and NADH as a result of the reciprocal relationship of the Michaelis-Menten equation. If the Michaelis-Menten constants (Km) of ADP, Pi, and O2 are the same as determined in vitro in mitochondria, the minimum brain cytosolic O2 capable of maintaining a steady-state ATP is near its Km (0.1 Torr) at a PVO2 of 7.5 Torr. At this critical O2 level, PCr/Pi is 0.9, intracellular pH is 6.75, phosphorylation potential is 38.5 mM-1, and the calculated maximum velocity of ATP formation by oxidative phosphorylation is 55% of normal.  相似文献   

18.
Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC‐MS‐based isotope tracer studies with oxygen uptake measurements in a quantitative redox‐balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine‐driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine‐driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.  相似文献   

19.
The in vivo kinetics in Saccharomyces cerevisiae CEN.PK 113-7D was evaluated during a 300-second transient period after applying a glucose pulse to an aerobic, carbon-limited chemostat culture. We quantified the responses of extracellular metabolites, intracellular intermediates in primary metabolism, intracellular free amino acids, and in vivo rates of O(2) uptake and CO(2) evolution. With these measurements, dynamic carbon, electron, and ATP balances were set up to identify major carbon, electron, and energy sinks during the postpulse period. There were three distinct metabolic phases during this time. In phase I (0 to 50 seconds after the pulse), the carbon/electron balances closed up to 85%. The accumulation of glycolytic and storage compounds accounted for 60% of the consumed glucose, caused an energy depletion, and may have led to a temporary decrease in the anabolic flux. In phase II (50 to 150 seconds), the fermentative metabolism gradually became the most important carbon/electron sink. In phase III (150 to 300 seconds), 29% of the carbon uptake was not identified in the measurements, and the ATP balance had a large surplus. These results indicate an increase in the anabolic flux, which is consistent with macroscopic balances of extracellular fluxes and the observed increase in CO(2) evolution associated with nonfermentative metabolism. The identified metabolic processes involving major carbon, electron, and energy sinks must be taken into account in in vivo kinetic models based on short-term dynamic metabolome responses.  相似文献   

20.
Most vertebrates die within minutes when deprived of molecular oxygen (anoxia), in part because of cardiac failure, which can be traced to an inadequate matching of cardiac ATP supply to ATP demand. Cardiac power output (PO; estimated from the product of cardiac output and central arterial pressure and an indirect measure of cardiac ATP demand) is directly related to cardiac ATP supply up to some maximal level during both normoxia (ATP supply estimated from myocardial O(2) consumption) and anoxia (ATP supply estimated from lactate production rates). Thus, steady state PO provides an excellent means to examine anoxia tolerance strategies among ectothermic vertebrates by indicating a matching of cardiac glycolytic ATP supply and demand. Here, we summarize in vitro measurements of PO data from rainbow trout, freshwater turtles and hagfishes to provide a reasonable benchmark PO of 0.7 mW g(-1) for maximum glycolytic potential of ectothermic hearts at 15 degrees C, which corresponds to a glycolytic ATP turnover rate of about 70 nmol ATP g(-1) s(-1). Using this benchmark to evaluate in vivo PO data for hagfishes, carps and turtles, we identify two cardiac survival strategies, which in conjunction with creative waste management techniques to reduce waste accumulation, allow for long-term cardiac survival during anoxia in these anoxia-tolerant species. Hagfish and crucian carp exemplify a strategy of evolving such a low routine PO that routine cardiac ATP demand lies within the range of the maximum cardiac glycolytic potential. Common carp and freshwater turtles exemplify an active strategy of temporarily and substantially decreasing cardiac and whole body metabolism so that PO is below maximum cardiac glycolytic potential during chronic anoxia despite being quite close to this potential under normoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号