首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An automated approach for the rapid analysis of protein structure has been developed and used to study acid-induced conformational changes in human growth hormone. The labeling approach involves hydrogen/deuterium exchange (H/D-Ex) of protein backbone amide hydrogens with rapid and sensitive detection by mass spectrometry (MS). Briefly, the protein is incubated for defined intervals in a deuterated environment. After rapid quenching of the exchange reaction, the partially deuterated protein is enzymatically digested and the resulting peptide fragments are analyzed by liquid chromatography mass spectrometry (LC-MS). The deuterium buildup curve measured for each fragment yields an average amide exchange rate that reflects the environment of the peptide in the intact protein. Additional analyses allow mapping of the free energy of folding on localized segments along the protein sequence affording unique dynamic and structural information. While amide H/D-Ex coupled with MS is recognized as a powerful technique for studying protein structure and protein–ligand interactions, it has remained a labor-intensive task. The improvements in the amide H/D-Ex methodology described here include solid phase proteolysis, automated liquid handling and sample preparation, and integrated data reduction software that together improve sequence coverage and resolution, while achieving a sample throughput nearly 10-fold higher than the commonly used manual methods.  相似文献   

2.
3.
4.
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.     相似文献   

5.
The bacterial protease ClpP consists of 14 subunits that assemble into two stacked heptameric rings. The central degradation chamber can be accessed via axial pores. In free ClpP, these pores are obstructed by the N-terminal regions of the seven subunits at either end of the barrel. Acyldepsipeptides (ADEPs) are antibacterial compounds that bind in hydrophobic clefts surrounding the pore region, causing the pores to open up. The ensuing uncontrolled degradation of intracellular proteins is responsible for the antibiotic activity of ADEPs. Recently published X-ray structures yielded conflicting models regarding the conformation adopted by the N-terminal regions in the open state. Here, we use hydrogen/deuterium exchange (HDX) mass spectrometry to obtain complementary insights into the ClpP behavior with and without ADEP1. Ligand binding causes rigidification of the equatorial belt, accompanied by destabilization in the vicinity of the binding clefts. The N-terminal regions undergo rapid deuteration with only minor changes after ADEP1 binding, revealing a lack of stable H-bonding. Our data point to a mechanism where the pore opening mechanism is mediated primarily by changes in the packing of N-terminal nonpolar side chains. We propose that a “hydrophobic plug” causes pore blockage in ligand-free ClpP. ADEP1 binding provides new hydrophobic anchor points that nonpolar N-terminal residues can interact with. In this way, ADEP1 triggers the transition to an open conformation, where nonpolar moieties are clustered around the rim of the pore. This proposed mechanism helps reconcile the conflicting models that had been put forward earlier.  相似文献   

6.
7.
8.
The aspartic protease pepsin is less specific than other endoproteinases. Because aspartic proteases like pepsin are active at low pH, they are utilized in hydrogen deuterium exchange mass spectrometry (HDX MS) experiments for digestion under hydrogen exchange quench conditions. We investigated the reproducibility, both qualitatively and quantitatively, of online and offline pepsin digestion to understand the compliment of reproducible pepsin fragments that can be expected during a typical pepsin digestion. The collection of reproducible peptides was identified from > 30 replicate digestions of the same protein and it was found that the number of reproducible peptides produced during pepsin digestion becomes constant above 5–6 replicate digestions. We also investigated a new aspartic protease from the stomach of the rice field eel (Monopterus albus Zuiew) and compared digestion efficiency and specificity to porcine pepsin and aspergillopepsin. Unique cleavage specificity was found for rice field eel pepsin at arginine, asparagine, and glycine. Different peptides produced by the various proteases can enhance protein sequence coverage and improve the spatial resolution of HDX MS data. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

9.
  1. Download : Download high-res image (302KB)
  2. Download : Download full-size image
Highlights
  • •DEqMS is a method for statistical analysis of quantitative MS-data.
  • •Variance estimates based on the actual MS-data structure.
  • •Improved statistical power and accuracy in protein differential analysis.
  • •DEqMS is available as a user-friendly R package in Bioconductor.
  相似文献   

10.
We propose a feature vector approach to characterize the variation in large data sets of biological sequences. Each candidate sequence produces a single feature vector constructed with the number and location of amino acids or nucleic acids in the sequence. The feature vector characterizes the distance between the actual sequence and a model of a theoretical sequence based on the binomial and uniform distributions. This method is distinctive in that it does not rely on sequence alignment for determining protein relatedness, allowing the user to visualize the relationships within a set of proteins without making a priori assumptions about those proteins. We apply our method to two large families of proteins: protein kinase C, and globins, including hemoglobins and myoglobins. We interpret the high-dimensional feature vectors using principal components analysis and agglomerative hierarchical clustering. We find that the feature vector retains much of the information about the original sequence. By using principal component analysis to extract information from collections of feature vectors, we are able to quickly identify the nature of variation in a collection of proteins. Where collections are phylogenetically or functionally related, this is easily detected. Hierarchical agglomerative clustering provides a means of constructing cladograms from the feature vector output.  相似文献   

11.
The ribosome from Escherichia coli requires a specific concentration of Mg2+ to maintain the 70 S complex formation and allow protein synthesis, and then the structure must be stable and flexible. How does the ribosome acquire these conflicting factors at the same time? Here, we investigated the hydrogen/deuterium exchange of 52 proteins in the 70 S ribosome, which controlled stability and flexibility under various Mg2+ concentrations, using mass spectrometry. Many proteins exhibited a sigmoidal curve for Mg2+ concentration dependence, incorporating more deuterium at lower Mg2+ concentration. By comparing deuterium incorporation with assembly, we have discovered a typical mechanism of complexes for acquiring both stability and flexibility at the same time. In addition, we got information of the localization of flexibility in ribosomal function by the analysis of related proteins with stalk protein, tRNA, mRNA, and nascent peptide, and demonstrate the relationship between structure, assembly, flexibility, and function of the ribosome.  相似文献   

12.
The detailed structures of prion disease-associated, partially protease-resistant forms of prion protein (e.g. PrPSc) are largely unknown. PrPSc appears to propagate itself by autocatalyzing the conformational conversion and oligomerization of normal prion protein (PrPC). One manifestation of PrPSc templating activity is its ability, in protein misfolding cyclic amplification reactions, to seed the conversion of recombinant prion protein (rPrP) into aggregates that more closely resemble PrPSc than spontaneously nucleated rPrP amyloids in terms of proteolytic fragmentation and infrared spectra. The absence of posttranslational modifications makes these rPrP aggregates more amenable to detailed structural analyses than bona fide PrPSc. Here, we compare the structures of PrPSc-seeded and spontaneously nucleated aggregates of hamster rPrP by using H/D exchange coupled with mass spectrometry. In spontaneously formed fibrils, very slow H/D exchange in region ∼163–223 represents a systematically H-bonded cross-β amyloid core structure. PrPSc-seeded aggregates have a subpopulation of molecules in which this core region extends N-terminally as far as to residue ∼145, and there is a significant degree of order within residues ∼117–133. The formation of tightly H-bonded structures by these more N-terminal residues may account partially for the generation of longer protease-resistant regions in the PrPSc-seeded rPrP aggregates; however, part of the added protease resistance is dependent on the presence of SDS during proteolysis, emphasizing the multifactorial influences on proteolytic fragmentation patterns. These results demonstrate that PrPSc has a distinct templating activity that induces ordered, systematically H-bonded structure in regions that are dynamic and poorly defined in spontaneously formed aggregates of rPrP.Transmissible spongiform encephalopathies (TSEs),2 or prion diseases, are a group of infectious neurodegenerative disorders that affect many mammalian species and include Creutzfeldt-Jakob disease in humans, scrapie in sheep, chronic wasting disease in cervids, and bovine spongiform encephalopathy (“mad cow” disease) (17). All of these diseases appear to be intimately associated with conformational conversion of the normal host-encoded prion protein, termed PrPC, to a pathological isoform, PrPSc (15). According to the “protein-only” model, PrPSc itself represents the infectious prion agent (1, 8); it is believed to self-propagate by an autocatalytic mechanism involving binding to PrPC and templating the conversion of the latter protein to the PrPSc state (9, 10). Although molecular details of such a mechanism of disease propagation remain largely unknown, the general principle of protein-based infectivity is supported by a wealth of experimental data (17).PrPC is a monomeric glycophosphatidylinositol-linked glycoprotein that is highly protease-sensitive and soluble in nonionic detergents. High resolution NMR data show that the recombinant PrP (rPrP), a nonglycosylated model of PrPC, consists of a flexible N-terminal region and a folded C-terminal domain encompassing three α-helices and two short β-strands (1113). Conversely, the PrPSc isoform is aggregate in nature, rich in β-sheet structure, insoluble in nonionic detergents, and partially resistant to proteinase K (PK) digestion, with a PK-resistant core encompassing the C-terminal ∼140 residues (15, 14, 15). Little specific structural information is available, however, for this isoform beyond low resolution biochemical and spectroscopic characterization. Thus, the structure of PrPSc conformer(s) associated with prion infectivity remains one of the best guarded mysteries, hindering efforts to understand the molecular basis of TSE diseases.Many efforts have been made over the years to recapitulate PrPSc formation and prion propagation in vitro. Early studies have shown that PrPC can be converted with remarkable species and strain specificities to a PrPSc-like conformation (as judged by PK resistance) simply by incubation with PrPSc from prion-infected animals (16, 17). The yields of these original cell-free conversion experiments were low, and no new infectivity could be attributed to the newly converted material (18). An important more recent study showed that both PrPSc and TSE infectivity can be amplified indefinitely in crude brain homogenates using successive rounds of sonication and incubation (19), a procedure called protein misfolding cyclic amplification (PMCA) (20). Similar amplification of the TSE infectivity was also accomplished by PMCA employing purified PrPC as a substrate, although only in the presence of polyanions such as RNA and copurified lipids (21). Unfortunately, the quantities of infectious PrPSc generated by PMCA using purified brain-derived PrPC are very small, precluding most structural studies.In contrast to brain-derived PrPC, large scale purification can be readily accomplished for bacterially expressed rPrP, a form of PrP lacking glycosylation and the glycophosphatidylinositol anchor. The latter protein can spontaneously polymerize into amyloid fibrils, and much insight has been gained into mechanistic and structural aspects of this reaction (2228). However, although rPrP fibrils were shown to cause or accelerate a transmissible neurodegenerative disorder in transgenic mice overexpressing a PrPC variant encompassing residues 89–231, the infectivity titer of these “synthetic prions” was extremely low (29) or absent altogether (4). This low infectivity coincides with much shorter PK-resistant core of rPrP amyloid fibrils compared with brain-derived PrPSc (26, 30), raising questions regarding the relationship between these fibrils and the authentic TSE agent. In this context, an important recent development was the finding that the PrPSc-seeded PMCA method can be extended to rPrP, yielding protease-resistant recombinant PrP aggregates (rPrPPMCA or rPrP-res(Sc)) (31). These aggregates display a PK digestion pattern that is much more closely related to PrPSc than that of previously studied spontaneously formed rPrP fibrils, offering a potentially more relevant model for biochemical and biophysical studies. Here, we provide, for the first time, a direct insight into the structure of rPrPPMCA. H/D exchange data coupled with MS analysis (HXMS) allowed us to identify systematically H-bonded core region(s) of these aggregates, shedding a new light on the mechanisms underlying formation of PK-resistant structures.  相似文献   

13.
Thermal proteome profiling is a powerful energetic‐based chemical proteomics method to reveal the ligand‐protein interaction. However, the costly multiplexed isotopic labeling reagent, mainly Multiplexed isobaric tandem mass tag (TMT), and the long mass spectrometric time limits the wide application of this method. Here a simple and cost‐effective strategy by using dimethyl labeling technique instead of TMT labeling is reported to quantify proteins and by using the peptides derived from the same protein to determine significantly changed proteins in one LC‐MS run. This method is validated by identifying the known targets of methotrexate and geldanamycin. In addition, several potential off‐targets involved in detoxification of reactive oxygen species pathway are also discovered for geldanamycin. This method is further applied to map the interactome of adenosine triphosphate (ATP) in the 293T cell lysate by using ATP analogue, adenylyl imidodiphosphate (AMP‐PNP), as the ligand. As a result, a total of 123 AMP‐PNP‐sensitive proteins are found, of which 59 proteins are stabilized by AMP‐PNP. Approximately 53% and 20% of these stabilized candidate protein targets are known as ATP and RNA binding proteins. Overall, above results demonstrated that this approach could be a valuable platform for the unbiased target proteins identification with reduced reagent cost and mass spectrometric time.  相似文献   

14.
15.
16.
A two-component system consisting of the histidine kinase vancomycin-resistance-associated sensor and the response regulator vancomycin-resistance-associated regulator (VraR) allows Staphylococcus aureus to sense antibiotic-related cell wall stress and to mount a suitable response. An experimental structure of full-length VraR is not available yet, but previous work points to similarities between VraR and the well-characterized NarL. This work employs hydrogen exchange mass spectrometry to gain insights into the phosphorylation-induced activation of VraR, a process that primes the protein for dimerization and DNA binding. Whereas VraR is highly dynamic, phosphorylated VraR shows less extensive deuteration. This rigidification is most dramatic within the receiver domain, which carries the phosphorylation site D55. Alterations in the DNA-binding domain are much less pronounced. Changes in deuteration within the receiver domain are consistent with a Y-T coupling mechanism. In analogy to NarL, the activation of VraR is thought to involve separation and subsequent reorientation of the two domains, thereby allowing the α8-turn-α9 element to engage in DNA binding. The current work suggests that this structural transition is triggered by a reduction in the effective length of the linker through enhanced hydrogen bonding. In addition, separation of the two domains may be favored by the establishment of noncovalent protein-protein interactions and intradomain contacts at the expense of previously existing interdomain bonds. α9 appears to be packed against the receiver domain in nonactivated VraR. Support is presented for α1 as a dimerization interface in phosphorylated VraR, whereas protein-protein interactions for nonphosphorylated VraR are impeded by extensive disorder in this region.  相似文献   

17.
The ΔF508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and ΔF508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because ΔF508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and ΔF508 constructs, and the ΔF508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide 1H/2H exchange rates in matched F508 and ΔF508 constructs reveal that ΔF508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the ΔF508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-ΔF508 structures but completely solvent exposed in all ΔF508 structures. These results reinforce the importance of the perturbation ΔF508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo.  相似文献   

18.
Recent developments in chromatography, such as ultra-HPLC and superficially porous particles, offer significantly improved peptide separation. The narrow peak widths, often only several seconds, can permit a 15-min liquid chromatography run to have a similar peak capacity as a 60-min run using traditional HPLC approaches. In theory, these larger peak capacities should provide higher protein coverage and/or more protein identifications when incorporated into a proteomic workflow. We initially observed a decrease in protein coverage when implementing these faster chromatographic approaches, due to data-dependent acquisition (DDA) settings that were not properly set to match the narrow peak widths resulting from newly implemented, fast separation techniques. Oversampling of high-intensity peptides lead to low protein-sequence coverage, and tandem mass spectra (MS/MS) from lower-intensity peptides were of poor quality, as automated MS/MS events were occurring late on chromatographic peaks. These observations led us to optimize DDA settings to use these fast separations. Optimized DDA settings were applied to the analysis of Trypanosome brucei peptides, yielding peptide identifications at a rate almost five times faster than previously used methodologies. The described approach significantly improves protein identification workflows that use typical available instrumentation.  相似文献   

19.
以尿激酶的为材料,探索一种从SDS-PAGE胶上回收蛋白 做MALDI-TOF质谱的方法,所用的回收方法包括电洗脱、脱盐、除SDS等过程,电洗脱用的是高盐阻断法,脱盐用的超滤技术,去除SDS用的是冷丙沉淀法,结果证明,此方法至少对一些蛋白质是可行的。  相似文献   

20.
一种SDS-PAGE与MALDI-TOF质谱联用的方法   总被引:2,自引:0,他引:2  
以尿激酶原为材料,探索一种从SDS-PAGE胶上回收蛋白质做MALDI-TOF质谱的方法.所用的回收方法包括电洗脱、脱盐、除SDS等过程.电洗脱用的是高盐阻断法,脱盐用的是超滤技术,去除SDS用的是冷丙酮沉淀法.结果证明,此方法至少对一些蛋白质(如尿激酶原和牛血清白蛋白)是可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号