首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heuristic approach to deriving models for gene finding.   总被引:21,自引:2,他引:19       下载免费PDF全文
Computer methods of accurate gene finding in DNA sequences require models of protein coding and non-coding regions derived either from experimentally validated training sets or from large amounts of anonymous DNA sequence. Here we propose a new, heuristic method producing fairly accurate inhomogeneous Markov models of protein coding regions. The new method needs such a small amount of DNA sequence data that the model can be built 'on the fly' by a web server for any DNA sequence >400 nt. Tests on 10 complete bacterial genomes performed with the GeneMark.hmm program demonstrated the ability of the new models to detect 93.1% of annotated genes on average, while models built by traditional training predict an average of 93.9% of genes. Models built by the heuristic approach could be used to find genes in small fragments of anonymous prokaryotic genomes and in genomes of organelles, viruses, phages and plasmids, as well as in highly inhomogeneous genomes where adjustment of models to local DNA composition is needed. The heuristic method also gives an insight into the mechanism of codon usage pattern evolution.  相似文献   

2.
Parametric methods for identifying laterally transferred genes exploit the directional mutational biases unique to each genome. Yet the development of new, more robust methods—as well as the evaluation and proper implementation of existing methods—relies on an arbitrary assessment of performance using real genomes, where the evolutionary histories of genes are not known. We have used the framework of a generalized hidden Markov model to create artificial genomes modeled after genuine genomes. To model a genome, “core” genes—those displaying patterns of mutational biases shared among large numbers of genes—are identified by a novel gene clustering approach based on the Akaike information criterion. Gene models derived from multiple “core” gene clusters are used to generate an artificial genome that models the properties of a genuine genome. Chimeric artificial genomes—representing those having experienced lateral gene transfer—were created by combining genes from multiple artificial genomes, and the performance of the parametric methods for identifying “atypical” genes was assessed directly. We found that a hidden Markov model that included multiple gene models, each trained on sets of genes representing the range of genotypic variability within a genome, could produce artificial genomes that mimicked the properties of genuine genomes. Moreover, different methods for detecting foreign genes performed differently—i.e., they had different sets of strengths and weaknesses—when identifying atypical genes within chimeric artificial genomes.  相似文献   

3.
A frequently used approach for detecting potential coding regions is to search for stop codons. In the standard genetic code 3 out of 64 trinucleotides are stop codons. Hence, in random or non-coding DNA one can expect every 21st trinucleotide to have the same sequence as a stop codon. In contrast, the open reading frames (ORFs) of most protein-coding genes are considerably longer. Thus, the stop codon frequency in coding sequences deviates from the background frequency of the corresponding trinucleotides. This has been utilized for gene prediction, in particular, in detecting protein-coding ORFs. Traditional methods based on stop codon frequency are based on the assumption that the GC content is about 50%. However, many genomes show significant deviations from that value. With the presented method we can describe the effects of GC content on the selection of appropriate length thresholds of potentially coding ORFs. Conversely, for a given length threshold, we can calculate the probability of observing it in a random sequence. Thus, we can derive the maximum GC content for which ORF length is practicable as a feature for gene prediction methods and the resulting false positive rates. A rough estimate for an upper limit is a GC content of 80%. This estimate can be made more precise by including further parameters and by taking into account start codons as well. We demonstrate the feasibility of this method by applying it to the genomes of the bacteria Rickettsia prowazekii, Escherichia coli and Caulobacter crescentus, exemplifying the effect of GC content variations according to our predictions. We have adapted the method for predicting coding ORFs by stop codon frequency to the case of GC contents different from 50%. Usually, several methods for gene finding need to be combined. Thus, our results concern a specific part within a package of methods. Interestingly, for genomes with low GC content such as that of R. prowazekii, the presented method provides remarkably good results even when applied alone.  相似文献   

4.
MOTIVATION: It has been speculated that CpG dinucleotide deficiency in genomes is a consequence of DNA methylation. However, this hypothesis does not adequately explain CpG deficiency in bacteria. The hypothesis based on DNA structure constraint as an alternative explanation was therefore examined. RESULTS: By comparing real bacterial genomes and Markov artificial genomes in the second order, we found that the core structure of a restricted pattern, the TTCGAA pattern, was under represented in low GC content bacterial genomes regardless of CpG dinucleotide level. This is in contrast to the AACGTT pattern, indicating that the counterselection is context-dependent. Further study discovered nine underrepresented patterns that were supposed to be capable of inducing DNA structure constraint. In summary, most of them are in TTCGNA and TTCGAN patterns in both DNA strands. An explanation is also proposed for the strong correlation between GC content and CpG deficiency. The result of random sequence simulation showed that the occurrences of these patterns were correlated with GC content, as well as the percentage of CpG dinucleotides being trapped in these patterns. Finally, we suggest that the degree of counter-selection against these restricted patterns could be influenced by global GC content of a genome.  相似文献   

5.
The phenomenon of codon usage bias is known to exist in many genomes and it is mainly determined by mutation and selection. To understand the patterns of codon usage in nemertean mitochondrial genomes, we use bioinformatic approaches to analyze the protein-coding sequences of eight nemertean species. Neutrality analysis did not find a significant correlation between GC12 and GC3. ENc-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENc values are below it. ENc-plot suggested that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally and we propose that codons containing A or U at third position are used preferentially in nemertean species, regardless of whether corresponding tRNAs are encoded in the mitochondrial DNA. Context-dependent analysis indicated that the nucleotide at the second codon position slightly affects synonymous codon choices. These results suggested that mutational and selection forces are probably acting to codon usage bias in nemertean mitochondrial genomes.  相似文献   

6.
【目的】识别原核生物全基因组中的16S rRNA基因。【方法】本文依据基因序列的GC碱基含量、碱基3-周期性和马尔可夫链3个方面的特性,构建了识别原核生物全基因组中16S rRNA基因的三层过滤模型。【结果】经检验,模型的特异性、敏感性和马修斯相关系数分别为99.58%、91.60%和91.49%。【结论】结果表明,本文所提出的方法可以高效、准确地识别出16S rRNA基因。  相似文献   

7.
Liu L  Ho YK  Yau S 《DNA and cell biology》2007,26(7):477-483
The inhomogeneous Markov chain model is used to discriminate acceptor and donor sites in genomic DNA sequences. It outperforms statistical methods such as homogeneous Markov chain model, higher order Markov chain and interpolated Markov chain models, and machine-learning methods such as k-nearest neighbor and support vector machine as well. Besides its high accuracy, another advantage of inhomogeneous Markov chain model is its simplicity in computation. In the three states system (acceptor, donor, and neither), the inhomogeneous Markov chain model is combined with a three-layer feed forward neural network. Using this combined system 3175 primate splice-junction gene sequences have been tested, with a prediction accuracy of greater than 98%.  相似文献   

8.
目的 获得中国地鼠线粒体基因组序列,为线粒体疾病模型提供分子数据.方法 参照近缘物种的线粒体基因组序列,设计27对特异引物,采用TD-PCR及测序技术获得了中国地鼠的线粒体全基因组序列,分析了其基因组特点和各基因的定位.还结合GenBank中已发表的其他5种啮齿类动物的线粒体基因组序列,探讨啮齿类动物不同科间的系统进化关系.结果 中国地鼠线粒体基因组全长为16 283 bp,碱基组成为33.53%A、30.50%T、12.98%G、22.80%C,包括13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码基因控制区.中国地鼠和金黄地鼠亲缘关系最近.结论 中国地鼠线粒体基因组各基因长度、位置与典型的啮齿类动物相似,其编码蛋白质区域和rRNA基因与其他啮齿类动物具有很高的同源性,显示线粒体基因组在进化上十分保守.5种动物的分子系统进化树与传统分类地位一致.  相似文献   

9.
针对集胞藻PCC6803的1927个待定编码基因进行了两侧序列的PCR扩增。4个亚株基因组在sll0267-sll0269区域的PCR扩增产物与Kazusa DNA数据存在差异,以叶绿素合成基因chlH和chlL为例,显示三片段连接PCR产物可有效用于集胞藻6803基因组定向插入失活。  相似文献   

10.
An exact expression for the variance of random frequency thata given word has in text generated by a Markov chain is presented.The result is applied to periodic Markov chains, which describethe protein-coding DNA sequences better than simple Markov chains.A new solution to the problem of word overlap is proposed. Itwas found that the expected frequency and overlapping propertiesdetermine most of the variance. The expectation and varianceof counts for triplets are compared with experimental countsin Escherichia coli coding sequences.  相似文献   

11.
Construction of DNA fragment libraries for next-generation sequencing can prove challenging, especially for samples with low DNA yield. Protocols devised to circumvent the problems associated with low starting quantities of DNA can result in amplification biases that skew the distribution of genomes in metagenomic data. Moreover, sample throughput can be slow, as current library construction techniques are time-consuming. This study evaluated Nextera, a new transposon-based method that is designed for quick production of DNA fragment libraries from a small quantity of DNA. The sequence read distribution across nine phage genomes in a mock viral assemblage met predictions for six of the least-abundant phages; however, the rank order of the most abundant phages differed slightly from predictions. De novo genome assemblies from Nextera libraries provided long contigs spanning over half of the phage genome; in four cases where full-length genome sequences were available for comparison, consensus sequences were found to match over 99% of the genome with near-perfect identity. Analysis of areas of low and high sequence coverage within phage genomes indicated that GC content may influence coverage of sequences from Nextera libraries. Comparisons of phage genomes prepared using both Nextera and a standard 454 FLX Titanium library preparation protocol suggested that the coverage biases according to GC content observed within the Nextera libraries were largely attributable to bias in the Nextera protocol rather than to the 454 sequencing technology. Nevertheless, given suitable sequence coverage, the Nextera protocol produced high-quality data for genomic studies. For metagenomics analyses, effects of GC amplification bias would need to be considered; however, the library preparation standardization that Nextera provides should benefit comparative metagenomic analyses.  相似文献   

12.
The advances of next-generation sequencing technology have facilitated metagenomics research that attempts to determine directly the whole collection of genetic material within an environmental sample (i.e. the metagenome). Identification of genes directly from short reads has become an important yet challenging problem in annotating metagenomes, since the assembly of metagenomes is often not available. Gene predictors developed for whole genomes (e.g. Glimmer) and recently developed for metagenomic sequences (e.g. MetaGene) show a significant decrease in performance as the sequencing error rates increase, or as reads get shorter. We have developed a novel gene prediction method FragGeneScan, which combines sequencing error models and codon usages in a hidden Markov model to improve the prediction of protein-coding region in short reads. The performance of FragGeneScan was comparable to Glimmer and MetaGene for complete genomes. But for short reads, FragGeneScan consistently outperformed MetaGene (accuracy improved ∼62% for reads of 400 bases with 1% sequencing errors, and ∼18% for short reads of 100 bases that are error free). When applied to metagenomes, FragGeneScan recovered substantially more genes than MetaGene predicted (>90% of the genes identified by homology search), and many novel genes with no homologs in current protein sequence database.  相似文献   

13.
DNA composition dynamics across genomes of diverse taxonomy is a major subject of genome analyses. DNA composition changes are characteristics of both replication and repair machineries. We investigated 3,611,007 single nucleotide polymorphisms (SNPs) generated by comparing two sequenced rice genomes from distant inbred lines (subspecies), including those from 242,811 introns and 45,462 protein-coding sequences (CDSs). Neighboring-nucleotide effects (NNEs) of these SNPs are diverse, depending on structural content-based classifications (genomewide, intronic, and CDS) and sequence context-based categories (A/C, A/G, A/T, C/G, C/T, and G/T substitutions) of the analyzed SNPs. Strong and evident NNEs and nucleotide proportion biases surrounding the analyzed SNPs were observed in 1-3 bp sequences on both sides of an SNP. Strong biases were observed around neighboring nucleotides of protein-coding SNPs, which exhibit a periodicity of three in nucleotide content, constrained by a combined effect of codon-related rules and DNA repair mechanisms. Unlike a previous finding in the human genome, we found negative correlation between GC contents of chromosomes and the magnitude of corresponding bias of nucleotide C at -1 site and G at +1 site. These results will further our understanding of the mutation mechanism in rice as well as its evolutionary implications.  相似文献   

14.
Microbial gene identification using interpolated Markov models.   总被引:37,自引:8,他引:29       下载免费PDF全文
This paper describes a new system, GLIMMER, for finding genes in microbial genomes. In a series of tests on Haemophilus influenzae , Helicobacter pylori and other complete microbial genomes, this system has proven to be very accurate at locating virtually all the genes in these sequences, outperforming previous methods. A conservative estimate based on experiments on H.pylori and H. influenzae is that the system finds >97% of all genes. GLIMMER uses interpolated Markov models (IMMs) as a framework for capturing dependencies between nearby nucleotides in a DNA sequence. An IMM-based method makes predictions based on a variable context; i.e., a variable-length oligomer in a DNA sequence. The context used by GLIMMER changes depending on the local composition of the sequence. As a result, GLIMMER is more flexible and more powerful than fixed-order Markov methods, which have previously been the primary content-based technique for finding genes in microbial DNA.  相似文献   

15.
MOTIVATION: As the number of fully sequenced prokaryotic genomes continues to grow rapidly, computational methods for reliably detecting protein-coding regions become even more important. Audic and Claverie (1998) Proc. Natl Acad. Sci. USA, 95, 10026-10031, have proposed a clustering algorithm for protein-coding regions in microbial genomes. The algorithm is based on three Markov models of order k associated with subsequences extracted from a given genome. The parameters of the three Markov models are recursively updated by the algorithm which, in simulations, always appear to converge to a unique stable partition of the genome. The partition corresponds to three kinds of regions: (1) coding on the direct strand, (2) coding on the complementary strand, (3) non-coding. RESULTS: Here we provide an explanation for the convergence of the algorithm by observing that it is essentially a form of the expectation maximization (EM) algorithm applied to the corresponding mixture model. We also provide a partial justification for the uniqueness of the partition based on identifiability. Other possible variations and improvements are briefly discussed.  相似文献   

16.
Machine learning or deep learning models have been widely used for taxonomic classification of metagenomic sequences and many studies reported high classification accuracy. Such models are usually trained based on sequences in several training classes in hope of accurately classifying unknown sequences into these classes. However, when deploying the classification models on real testing data sets, sequences that do not belong to any of the training classes may be present and are falsely assigned to one of the training classes with high confidence. Such sequences are referred to as out-of-distribution (OOD) sequences and are ubiquitous in metagenomic studies. To address this problem, we develop a deep generative model-based method, MLR-OOD, that measures the probability of a testing sequencing belonging to OOD by the likelihood ratio of the maximum of the in-distribution (ID) class conditional likelihoods and the Markov chain likelihood of the testing sequence measuring the sequence complexity. We compose three different microbial data sets consisting of bacterial, viral, and plasmid sequences for comprehensively benchmarking OOD detection methods. We show that MLR-OOD achieves the state-of-the-art performance demonstrating the generality of MLR-OOD to various types of microbial data sets. It is also shown that MLR-OOD is robust to the GC content, which is a major confounding effect for OOD detection of genomic sequences. In conclusion, MLR-OOD will greatly reduce false positives caused by OOD sequences in metagenomic sequence classification.  相似文献   

17.
18.
By considering three DNA sequences simultaneously there is sufficient information to recover a full Markov model with three transition matrices from the root to each of the sequences. It is necessary to have relatively long sequences because, for nucleotides, the full model requires 39 parameters that are estimated from 63 observable values. This triplet Markov method is evaluated for the protein coding genes of mammalian vertebrate mitochondrial genomes, and, in addition, version for two-state-characters (such as R/Y coding) is implemented. A key finding is that some changes in mutational mechanism differentially affect the mutation rate between pairs of nucleotides: there does not appear to be a universal change in "rate" of evolution. It remains to be explored whether detecting changes in certain nucleotide interchanges can be localized to a particular part of the DNA replication/repair system. In order to estimate divergence dates it may eventually be advantageous to use the nucleotide interchanges that show little rate change.  相似文献   

19.
In this study we compare commonly used coiled-coil prediction methods against a database derived from proteins of known structure. We find that the two older programs COILS and PairCoil/MultiCoil are significantly outperformed by two recent developments: Marcoil, a program built on hidden Markov models, and PCOILS, a new COILS version that uses profiles as inputs; and to a lesser extent by a PairCoil update, PairCoil2. Overall Marcoil provides a slightly better performance over the reference database than PCOILS and is considerably faster, but it is sensitive to highly charged false positives, whereas the weighting option of PCOILS allows the identification of such sequences.  相似文献   

20.

Background

The increasing number of sequenced prokaryotic genomes contains a wealth of genomic data that needs to be effectively analysed. A set of statistical tools exists for such analysis, but their strengths and weaknesses have not been fully explored. The statistical methods we are concerned with here are mainly used to examine similarities between archaeal and bacterial DNA from different genomes. These methods compare observed genomic frequencies of fixed-sized oligonucleotides with expected values, which can be determined by genomic nucleotide content, smaller oligonucleotide frequencies, or be based on specific statistical distributions. Advantages with these statistical methods include measurements of phylogenetic relationship with relatively small pieces of DNA sampled from almost anywhere within genomes, detection of foreign/conserved DNA, and homology searches. Our aim was to explore the reliability and best suited applications for some popular methods, which include relative oligonucleotide frequencies (ROF), di- to hexanucleotide zero'th order Markov methods (ZOM) and 2.order Markov chain Method (MCM). Tests were performed on distant homology searches with large DNA sequences, detection of foreign/conserved DNA, and plasmid-host similarity comparisons. Additionally, the reliability of the methods was tested by comparing both real and random genomic DNA.

Results

Our findings show that the optimal method is context dependent. ROFs were best suited for distant homology searches, whilst the hexanucleotide ZOM and MCM measures were more reliable measures in terms of phylogeny. The dinucleotide ZOM method produced high correlation values when used to compare real genomes to an artificially constructed random genome with similar %GC, and should therefore be used with care. The tetranucleotide ZOM measure was a good measure to detect horizontally transferred regions, and when used to compare the phylogenetic relationships between plasmids and hosts, significant correlation (R 2 = 0.4) was found with genomic GC content and intra-chromosomal homogeneity.

Conclusion

The statistical methods examined are fast, easy to implement, and powerful for a number of different applications involving genomic sequence comparisons. However, none of the measures examined were superior in all tests, and therefore the choice of the statistical method should depend on the task at hand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号