首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of 19 male children (mean age 12.1 years SEM 1.6 years) occupationally exposed to an excessively hot environment for an average duration of 2.5 years SEM 1.7 years in the glass bangle factory in Firozabad, India, were studied to evaluate the physiological strain induced by the thermal radiation (mean radiant temperature 46.2 degrees SEM 5.1 degrees C) and high ambient temperature (38.2 degrees SEM 3.4 degrees C) prevailing in the factory. Over a work-shift the mean increase in oral temperature was 0.90 degrees C in the exposed children, in comparison with the 0.40 degrees C increase recorded in the control children (p less than 0.05). The maximum increase in oral temperature was recorded in 'gulliwalas' (0.90 degrees C) and the minimum in 'battiwalas' (0.80 degrees C). The mean peak value of oral temperature (37.5 degrees C) was observed at 1600 hours. A significant increase in the pulse rate (25.9 beats.min-1) during the work-shift was observed in the exposed children in comparison with a mean increase of 9.4 beats.min-1 in the control group. Ventilatory studies showed pulmonary hyperventilation in the exposed workers. The increase in pulmonary ventilation was in the form of an increase in tidal volume and respiratory frequency induced by high environmental temperatures and thermal radiation. The cardio-respiratory responses showed physiological strain induced by the high ambient temperature and radiant heat prevailing in the glass bangle factory.  相似文献   

2.
A preliminary survey of the few units of the small-scale glass bangle industry in Firozabad, Agra District, Uttar Pradesh, indicated that the workers were exposed to severe degrees of heat stress during various operations in the manufacturing processes. A more detailed study in eight glass bangle units was therefore undertaken to make quantitative estimates of heat stress on exposed workers in the summer season. The thermal data collected confirmed that the heat stress on the workers was severe but measurement of certain physiological indicators revealed relatively low levels of strain amongst the exposed workers. The findings could be attributable to high degrees of acclimatization, but further observations in the field supplemented by studies on simulated exposures of volunteers in a climatic chamber seem to be warranted.  相似文献   

3.
To find out whether endurance training influences the kinetics of the increases in heart rate (fc) during exercise driven by the sympathetic nervous system, the changes in the rate of fc adjustment to step increments in exercise intensities from 100 to 150 W were followed in seven healthy, previously sedentary men, subjected to 10-week training. The training programme consisted of 30-min cycle exercise at 50%-70% of maximal oxygen uptake (VO2max) three times a week. Every week during the first 5 weeks of training, and then after the 10th week the subjects underwent the submaximal three-stage exercise test (50, 100 and 150 W) with continuous fc recording. At the completion of the training programme, the subjects' VO2max had increased significantly (39.2 ml.min-1.kg-1, SD 4.7 vs 46 ml.min-1.kg-1, SD 5.6) and the steady-state fc at rest and at all submaximal intensities were significantly reduced. The greatest decrease in steady-state fc was found at 150 W (146 beats.min-1, SD 10 vs 169 beats.min-1, SD 9) but the difference between the steady-state fc at 150 W and that at 100 W (delta fc) did not decrease significantly (26 beats.min-1, SD 7 vs 32 beats.min-1, SD 6). The time constant (tau) of the fc increase from the steady-state at 100 W to steady-state at 150 W increased during training from 99.4 s, SD 6.6 to 123.7 s, SD 22.7 (P less than 0.01) and the acceleration index (A = 0.63.delta fc.tau-1) decreased from 0.20 beats.min-1.s-1, SD 0.05 to 0.14 beats.min-1.s-1, SD 0.04 (P less than 0.02). The major part of the changes in tau and A occurred during the first 4 weeks of training. It was concluded that heart acceleration following incremental exercise intensities slowed down in the early phase of endurance training, most probably due to diminished sympathetic activation.  相似文献   

4.
The effect of pyridostigmine on thermoregulatory responses was evaluated during exercise and heat stress. Eight heat acclimated, young adult male subjects received four doses of pyridostigmine (30 mg) or identical placebo tablets every 8 h, in a double blind, randomized, cross-over trial. A 30.3%, SD 4.6% inhibition of the circulating cholinesterase (ChE) activity was induced in the pyridostigmine-treated group. The subjects were exposed to 170-min exercise and heat-stress (dry bulb temperature, 33 degrees C; relative humidity 60%) consisting of 60 min in a sitting position and two bouts of 50-min walking (1.39 m.s-1, 5% gradient) which were separated by 10-min rest periods. No differences were found between treatments in the physiological responses and heat balance parameters at the end of exposure: heart rate (fc) was 141 beats.min-1, SD 16 and 150 beats.min-1, SD 12, rectal temperature (Tre) was 38.5 degrees C, SD 0.4 degrees and 38.6 degrees C, SD 0.3 degrees, heat storage was 60 W.m-2, SD 16 and 59 W.m-2, SD 15 and sweat rate was 678 g.h-1, SD 184 and 661 g.h-1, SD 133, in the pyridostigmine and placebo treatments, respectively. The changes in Tre and fc over the heat-exercise period were parallel in both study and control groups. Pyridostigmine caused a slight slowing of fc (5 beats.min-1) which was consistent throughout the entire exposure (P less than 0.001) but was of no clinical significance. The overall change in fc was similar for both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A characteristic notch in the heart rate (fc) on-response at the beginning of square-wave exercise is described in 7 very fit marathon runners and 12 sedentary young men, during cycle tests at 30% and 60% of maximal oxygen consumption (VO2max). The fc notch revealed a fc overshoot with respect to the fc values predicted from exponential beat-by-beat fitted models. While at 30% of VO2max all subjects showed a fc overshoot, at 60% of VO2max it occurred in the marathon runners but not in the sedentary subjects. The mean time of occurrence of the fc overshoot from the onset of the exercise was 16.7 (SD 4.7) s and 12.2 (SD 3.2) s at 30% of VO2max in the runners and the sedentary subjects respectively, and 23.8 (SD 8.8) s at 60% of VO2max in the runners. The amplitude of the overshoot, with respect to rest, was 41 (SD 12) beats.min-1 and 31 (SD 4) beats.min-1 at 30% of VO2max in the runners and the sedentary subjects respectively, and 46 (SD 19) beats.min-1 at 60% of VO2max in the runners. The existence and the amplitude of the fc overshoot may have been related to central command and muscle heart reflex mechanisms and thus may have been indicators of changes in the balance between sympathetic and parasympathetic activity occurring in fit and unfit subjects.  相似文献   

6.
The present study aimed at evaluating the aerobic capacities of forestry workers and the physical demands of their occupation. A submaximal cycle ergometer test was conducted on 22 male forestry workers and 15 male sedentary office workers aged 40-59 years. The slope of the regression line of heart rates on given exercise intensities was significantly smaller in the forestry workers than in the office workers. The mean heart rate of the forestry workers was 9 beats.min-1 less than that of the office workers at the initial exercise intensity of 50 W. This difference increased to 25 beats.min-1 at 175 W. For 6 of the 22 forestry workers, heart rates were recorded continuously during a usual workday. The metabolic rates, as multiples of basal metabolic rate (in met) of various forestry activities were estimated from the average heart rate during the activity of interest and a predicted maximal oxygen consumption of the subject obtained from a submaximal cycle ergometer test. The mean energy expenditure was 4.5 met with a range of 3.3-6.3 met for an average of 509 min at a worksite. These results indicated that the forestry workers had high aerobic capacities and this was ascribed to the high physical demands of their occupation.  相似文献   

7.
The purpose of this study was to measure the cardiac output using the CO2 rebreathing method during submaximal and maximal arm cranking exercise in six male paraplegic subjects with a high level of spinal cord injury (HP). They were compared with eight able bodied subjects (AB) who were not trained in arm exercise. Maximal O2 consumption (VO2max) was lower in HP (1.11.min, SD 0.1; 17.5 ml.min-1.kg-1, SD 4) than in AB (2.5 l.min-1, SD 0.6; 36.7 ml.min-1.kg, SD 10.7). Maximal cardiac output was similar in the groups (HP, 14 l.min-1, SD 2.6; AB, 16.8 l.min-1, SD 4). The same result was obtained for maximal heart rate (fc,max) (HP, 175 beats.min-1, SD 18; AB, 187 beats.min-1, SD 16) and the maximal stroke volume (HP, 82 ml, SD 13; AB, 91 ml, SD 27). The slopes of the relationship fc/VO2 were higher in HP than AB (P less than 0.025) but when expressed as a %VO2max there were no differences. The results suggest a major alteration of oxygen transport capacity to active muscle mass in paraplegics due to changes in vasomotor regulation below the level of the lesion.  相似文献   

8.
The effect of low muscle temperature on the response to dynamic exercise was studied in six healthy men who performed 42 min of exercise on a cycle ergometer at an intensity of 70% of their maximal O2 uptake. Experiments were performed under control conditions, i.e. from rest at room temperature, and following 45 min standing with legs immersed in a water bath at 12 degrees C. The water bath reduced quadriceps muscle temperature (at 3 cm depth) from 36.4 (SD 0.5) degrees C to 30.5 (SD 1.7) degrees C. Following cooling, exercise heart rate was initially lower, the mean difference ranged from 13 (SD 4) beats.min-1 after 6 min of exercise, to 4 (SD 2) beats.min-1 after 24 min of exercise. Steady-state oxygen uptake was consistently higher (0.2 l.min-1). However, no difference could be discerned in the kinetics of oxygen uptake at the onset of exercise. During exercise after cooling a significantly higher peak value was found for the blood lactate concentration compared to that under control conditions. The peak values were both reached after approximately 9 min of exercise. After 42 min of exercise the blood lactate concentrations did not differ significantly, indicating a faster rate of removal during exercise after cooling. We interpreted these observations as reflecting a relatively higher level of muscle hypoxia at the onset of exercise as a consequence of a cold-induced vasoconstriction. The elevated steady-state oxygen uptake may in part have been accounted for by the energetic costs of removal of the extra lactate released into the blood consequent upon initial tissue hypoxia.  相似文献   

9.
The mechanism of ventilatory stimulation that accompanies increases in cardiac output is unknown. Previous studies addressing this issue have been inconclusive. However, only steady pulmonary blood flow was used. The effect of flow pulsatility merits consideration, because increasing cardiac output raises not only mean pulmonary arterial pressure but also pulse pressure; mechanoreceptors with an important dynamic component to their responses may cause a response to pulsatile, but not steady, flow. Studies were done on anesthetized cats (n = 4) and dogs (n = 4). The right pulmonary artery was cannulated within the pericardium, and systemic blood was pumped from the left atrium to the right pulmonary artery. The right pulmonary circulation was perfused at different levels of flow, which was either steady or pulsatile. Steady-state flow of up to 150 ml.kg-1.min-1 (270 ml.kg-1.min-1 when corrected for the proportion of lung tissue perfused) did not affect breathing pattern. When high pulmonary flow was made pulsatile (pulse pressure approximately 23 mmHg), breath duration decreased from 3.7 +/- 0.72 to 3.4 +/- 0.81 (SD) s (P less than 0.01), representing a change in frequency of only 9%. There was no change in peak inspiratory activity. It was concluded that pulmonary vascular mechanoreceptors are not likely to contribute significantly to the increase in ventilation in association with increases in cardiac output.  相似文献   

10.
In the present study, after a total of 51 observations of a 30-min cycle exercise performed by 17 men ranging in age from 60 to 65 years, the following formula was finally obtained for evaluating total O2 uptake (TVO2) during exercise: TVO2 (ml.kg-1) = SR125 X (49.5 X mean HR + 3760) X THB X 10(-4), where mean HR and THB are mean heart rate (beats.min-1) and total heart beats in exercise, respectively, and SR125 is the slope of the regression line of accumulative O2 uptake on accumulative heart beats during exercise at a mean HR of 125 beats.min-1. SR125 was significantly correlated not only to predicted VO2max but also score (X) in the step test for 2 min (25 steps.min-1 on 35-cm stool), yielding a formula, SR125 = -0.00131X + 0.3660. Consequently, both formulae indicate that total O2 uptake of any exercising elderly man can be estimated from total heart beats and mean HR during exercise, regardless of intensity of exercise when SR125 was determined by the step test. The discrepancy between total O2 uptake evaluated by the estimation method for elderly men and that determined by the Douglas bag method was 10.2 +/- 7.3%.  相似文献   

11.
The effect of general anaesthesia on skin blood flow in the left hand, measured by a new non-invasive probe using the thermal clearance method was examined. A mercury silastic gauge was placed around the third left finger and the plethysmographic wave amplitude was recorded to measure changes in finger pulse amplitude. Heart rate (HR), mean arterial blood pressure (MABP) and skin temperature were also recorded. General anaesthesia was induced by droperidol and phenoperidine injection and propanidid infusion in eight female patients. Skin thermal clearance, plethysmographic wave amplitude, HR, MABP and skin temperature were 0.40 +/- 0.02 w X m-1 degree C-1, 9 +/- 1 mm, 98 +/- 5 beats X min-1, 12.50 +/- 0.93 kPa and 33.3 +/- 3.4 degrees C respectively. The minimal value of MABP was 9.58 +/- 1.06 kPa, whereas skin thermal clearance, plethysmographic wave amplitude, HR and skin temperature increased to 0.45 +/- 0.02 w X m-1 degree C-1, 29 +/- 3 mm, 110 +/- 4 beats X min-1 and 34.4 +/- 0.4 degrees C. Changes in skin thermal clearance correlated well with plethysmographic wave amplitude. Statistically significant changes in these two parameters occurred before significant change in HR, MABP or skin temperature. The results show that the new non-invasive probe using the thermal clearance method appears to be a useful device for measuring cutaneous microcirculation in anaesthetized humans, and responds more quickly than change in skin temperature, which is a delayed effect of skin blood flow change. Our results also show that the intensity of cutaneous vasodilatation induced by general anaesthesia did not relate to the vascular tone before anaesthesia.  相似文献   

12.
Adenosine infusion (100 micrograms X kg-1 X min-1) in humans stimulates ventilation but also causes abdominal and chest discomfort. To exclude the effects of symptoms and to differentiate between a central and peripheral site of action, we measured the effect of adenosine infused at a level (70-80 micrograms X kg-1 X min-1) below the threshold for symptoms. Resting ventilation (VE) and progressive ventilatory responses to isocapnic hypoxia and hyperoxic hypercapnia were measured in six normal men. Compared with a control saline infusion given single blind on the same day, adenosine stimulated VE [mean increase: 1.3 +/- 0.8 (SD) l/min; P less than 0.02], lowered resting end-tidal PCO2 (PETCO2) (mean fall: -3.9 +/- 0.9 Torr), and increased heart rate (mean increase: 16.1 +/- 8.1 beats/min) without changing systemic blood pressure. Adenosine increased the hypoxic ventilatory response (control: -0.68 +/- 0.4 l X min-1 X %SaO2-1, where %SaO2 is percent of arterial O2 saturation; adenosine: -2.40 +/- 1.2 l X min-1 X %SaO2-1; P less than 0.01) measured at a mean PETCO2 of 38.3 +/- 0.6 Torr but did not alter the hypercapnic response. This differential effect suggests that adenosine may stimulate ventilation by a peripheral rather than a central action and therefore may be involved in the mechanism of peripheral chemoreception.  相似文献   

13.
This study attempted to quantify the difference in heart rate and exercise stage at which blood lactate threshold (T(bla)) occurs using 3 different modes of exercise: running, double poling (DP) on roller skis, and skating (SK) on roller skis. Nine elite collegiate cross-country ski racers (4 men, 5 women) served as test subjects. Testing was conducted on a motorized FitNex treadmill, specially designed for roller skiing. Heart rate was monitored via telemetry with values averaged over the last 30 seconds of each stage. A 40-micro l blood sample was obtained at the fingertip at the end of each 4-minute stage, and 25 micro l was analyzed for whole blood lactate concentration. The T(bla) was determined by the first exercise stage that elicited a concentration over 4.0 mmol.L(-1). The same test protocol was used for all 3 exercise modes. Mean heart rate, in beats per minute (b.min(-1)), at T(bla) was not significantly different (P < or = 0.05) for SK (mean 187 +/- 14 b.min(-1) SD) vs. running (mean 187 +/- 12 b.min(-1) SD); however, heart rate was significantly lower at T(bla) for DP (mean 161 +/- 17 b.min(-1) SD) vs. running and DP vs. SK. The mean exercise protocol stage that induced a blood lactate value which exceeded T(bla) was significantly different (P < or = 0.05) for running (5.22 +/- 1.20 mmol.L(-1) SD) vs. DP (1.89 +/- 0.78 mmol.L(-1) SD), running vs. SK (3.67 +/- 0.71 mmol.L(-1) SD), and SK vs. DP. It was concluded that T(bla) occurs at a lower heart rate and exercise stage during DP as compared with SK or running. Therefore, it stands to reason that the heart rate at T(bla) may vary based on mode of exercise, and when using heart rate to estimate blood lactate concentration, coaches and athletes should be aware that different modes of exercise elicit a different blood lactate concentration at a given heart rate depending on exercise mode used.  相似文献   

14.
Urinary benzene is used as biomarker of exposure to evaluate the uptake of this solvent both in non-occupationally exposed population and in benzene-exposed workers. The quantitative determination of benzene in urine is carried out in a three steps procedure: urine collection, sample analysis by head space/solid phase microextraction/gas chromatography/mass spectrometry and analyte quantification. The adopted quantification method influences the initial step, hence the whole procedure. Two quantification approaches were compared as regards precision and accuracy: the calibration curves and the standard addition method. Even if calibration curves obtained by using urine samples from different subjects were always linear, their slopes and intercepts showed noteworthy variations, attributable to the influence of the biological matrix on benzene recovery. The standard addition method showed to be more suitable for compensating matrix effects, and a three-point standard addition protocol was used to quantify benzene in urine samples of 11 benzene-exposed workers (smokers and non-smokers). Urine from occupationally exposed workers was collected before and after work-shift. Besides urinary benzene, the applicability of the method was verified by measuring the urinary concentration of the S-phenylmercapturic acid, a specific benzene metabolite, generally adopted as biomarker in biological monitoring procedures. A similar trend of concentration levels of both analytes measured in urine samples collected before work-shift with respect to the after work-shift ones was found, showing the actual applicability of the standard addition method for biological monitoring purposes.  相似文献   

15.
The efficacy and safety of the combination of medetomidine and ketamine was examined in order to establish an adequate chemical immobilization protocol in the Eurasian otter (Lutra lutra) for use during translocation projects in Spain. Thirty-eight Eurasian otters ranging in body mass from 3 to 8.7 kg (mean 5.3 kg) were successfully anesthetized on 82 occasions. The dosage of ketamine was 5.1+/-0.8 (3.4-6.6) mg/kg (mean +/- SD; range) combined with medetomidine at a dosage of 51+/-8 Rg/kg (34-66 microg/kg). In most cases anaesthetic effect occurred within 3 min and the mean induction time was 5.5+/-3.2 min. The mean pulse rate was 95 beats/min. The mean respiratory rate was 32 respirations/min while the relative oxyhemoglobin saturation was 93%. According to these results, this anesthetic protocol is considered safe and can be recommended in wild caught Eurasian otters for immobilization during translocation projects. It is safe, rapid and can be reversed when needed with atipamezole. However caution is required as heart depression resulting in bradychardia may occur.  相似文献   

16.
The present study was undertaken to investigate the respiratory system as an exercise limiting factor. Breathing and cycle endurance (i.e. the time until exhaustion at a given performance level) as well as physical working capacity 170 (i.e. the exercise intensity corresponding to a heart rate of 170 beats.min-1 on a cycle ergometer) were determined in four healthy sedentary subjects. Subsequently, the subjects trained their respiratory system for 4 weeks by breathing daily about 90 l.min-1 for 30 min. Otherwise they continued their sedentary lifestyle. Immediately after the respiratory training and 18 months later, all performance tests carried out at the beginning of the study were repeated. The respiratory training increased breathing endurance from 4.2 (SD 1.9) min to 15.3 (SD 3.8) min. Cycle endurance was improved from 26.8 (SD 5.9) min to 40.2 (SD 9.2) min whereas physical working capacity 170 remained essentially the same. During the endurance cycling test in the respiratory untrained state, the subjects continuously increased their ventilation up to hyperventilation [ventilation at exhaustion = 96.9 (SD 23.6) l.min-1] while after the respiratory training they reached a respiratory steady-state without hyperventilation [ventilation at exhaustion = 63.3 (SD 14.5) l.min-1]. The absence of this marked hyperventilation was the cause of the impressive increase of cycle endurance in normal sedentary subjects after respiratory training. The effects gained by the respiratory training were completely lost after 18 months. Our results indicated that the respiratory system was an exercise limiting factor during an endurance test in normal sedentary subjects.  相似文献   

17.
Electrocardiograms were recorded hourly for five days in 16 caged Macaca fascicularis by means of a miniaturized ECG transmitter connected to two chest leads. The lowest heart rates were 135 +/- 35 (mean +/- SD, n= 31) beats/min at 5 a.m., and the highest were 192 +/- 22 (n = 29) beats/min at 3 p.m. Sinus arrhythmia was common. Eight of the animals were trained to exercise in a specially designed enclosed treadmill; their heart rates were recorded daily during two 10-min periods of running at 3.4 km/h. Transfer of the monkeys (n k0) to the treadmill increased heart rate from 186 +/- 24 to 228 +/- 23 beats/min; exercise further increased it to 271 +/- 8 beats/min.  相似文献   

18.
Ten women [mean maximal O2 uptake (VO2max), 2.81 l X min-1] exercised for 15 min on a cycle ergometer in the middle of the luteal phase (L) and in the early follicular phase (F) of the menstrual cycle at the same constant work rates (mean 122 W) and an ambient temperature of 18 degrees C. Serum progesterone averaged 44.7 nmol X l-1 in L and 0.7 nmol X l-1 in F. After a 4-h resting period, exercise was performed between 3 and 4 A.M., when the L-F core temperature difference is maximal. Preexercise esophageal (Tes), tympanic (Tty), and rectal (Tre) temperatures averaged 0.6 degrees C higher in L. During exercise Tes, Tty, and Tre averaged 0.5 degrees C higher. The thresholds for chest sweating and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were elevated in L by an average of 0.47 degrees C, related to mean body temperature (Tb(es) = 0.87Tes + 0.13Tskin), Tes, Tty, or Tre. The above-threshold chest sweat rate and cutaneous heat clearances were also increased in L. The mean exercise heart rate was 170.0 beats X min-1 in L and 163.8 beats X min-1 in F. The mean exercise VO2 in L (2.21 l X min-1) was 5.2% higher than in F (2.10 l X min-1), the metabolic rate was increased in L by 5.6%, but the net efficiency was 5.3% lower. No significant L-F differences in the respiratory exchange ratio and postexercise plasma lactate were demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The purpose of this study was to assess the rate of training-induced cardiorespiratory adaptations in older men [mean (SD), 66.5 (1.2) years]. The eight subjects trained an average of 4.3 (0.3) times each week. The walk/jog training was in two phases with 4 weeks (phase 1) at a speed to elicit 70% of pre-training maximal oxygen consumption (VO2max), and 5 weeks (phase 2) at 80%. Maximal exercise treadmill tests and a standardized submaximal protocol were performed prior to training, at weekly intervals during the training programme, and after training. VO2max (ml.kg-1.min-1) increased significantly over both phases: 6.6% after the first 4 weeks, and an additional 5.2% after the final 5 weeks. The weekly changes in VO2max over phase 1 were well fitted by an exponential association curve (r = 0.75). The half-time for the rate of adaptation was 13.8 days, or 8.3 training sessions. Over phase 2, the change in VO2max did not plateau and a time course could not be determined. Submaximal exercise heart rate (fc) was reduced a significant 10 beats.min-1 after the first 4 weeks, and further 6 beats.min-1 over the final 5 weeks. The fc reductions showed half-times of 9.1 days (phase 1) and 9.8 days (phase 2) (or 5-6 training sessions). The anaerobic ventilation threshold was increased 13.9% over the 9 weeks of training and the respiratory exchange ratio during constant load heavy exercise was significantly reduced; however, these changes could not be described by an exponential time course. Thus, short-term exercise training of older men resulted in significant and rapid cardiorespiratory improvements.  相似文献   

20.
The purpose of the present study was to contrive a new practical method for estimating total O2 uptake during exercise from total heart beats after individual evaluation of aerobic fitness levels. Twenty healthy male subjects participated in cycle ergometer tests, maximal O2 uptake (VO2max) tests and various simple tests including simple endurance tests. From the cycle ergometer results, the following formula for estimating total O2 uptake in exercise was determined: TVO2 (ml X kg-1) = SR125 X (45.8 X mean HR + 4268) X THB X 10(-4) where TVO2, THB, and mean HR are total O2 uptake, total heart beats, and mean heart rate (beats X min-1) in exercise, respectively, and SR125 is the slope of the regression line between accumulated heart beats and accumulated O2 uptake during exercise at 125 beats X min-1 of mean HR. SR125 had a significant correlation not only with VO2max but also with each score (X) in any simple endurance tests such as, for example, a step test for 2 min. In this case, accordingly, SR125 can be found as; SR125 = -0.00118X + 0.3478. These formulae indicate that the total O2 uptake of any exercising subject can be estimated from his total heart beats regardless of intensities of exercise when his aerobic fitness level is evaluated by the simple endurance test. The total O2 uptake estimated by our method was compared to that measured by the Douglas bag method, and the discrepancy between the two results was less than the errors of values estimated by traditional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号