首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genomic library of Sinorhizobium sp. strain NGR234 was introduced into Escherichia coli LS5218, a strain with a constitutively active pathway for acetoacetate degradation, and clones that confer the ability to utilize D-3-hydroxybutyrate as a sole carbon source were isolated. Subcloning experiments identified a 2.3 kb EcoRI fragment that retained complementing ability, and an ORF that appeared orthologous with known bdhA genes was located within this fragment. The deduced NGR234 BdhA amino acid sequence revealed 91% identity to the Sinorhizobium meliloti BdhA. Site-directed insertion mutagenesis was performed by introduction of a OmegaSmSp cassette at a unique EcoRV site within the bdhA coding region. A NGR234 bdhA mutant, NGRPA2, was generated by homogenotization, utilizing the sacB gene-based lethal selection procedure. This mutant was devoid of D-3-hydroxybutyrate dehydrogenase activity, and was unable to grow on D-3-hydroxybutyrate as sole carbon source. NGRPA2 exhibited symbiotic defects on Leucaena but not on Vigna, Macroptilium or Tephrosia host plants. Furthermore, the D-3-hydroxybutyrate utilization phenotype of NGRPA2 was suppressed by presence of plasmid-encoded multiple copies of the S. meliloti acsA2 gene. The glpK-bdhA-xdhA gene organization and the bdhA-xdhA operon arrangement observed in S. meliloti are also conserved in NGR234.  相似文献   

2.
3.
D-(-)-3-Hydroxybutyrate (DHB), the immediate depolymerization product of the intracellular carbon store poly-3-hydroxybutyrate (PHB), is oxidized by the enzyme 3-hydroxybutyrate dehydrogenase to acetoacetate (AA) in the PHB degradation pathway. Externally supplied DHB can serve as a sole source of carbon and energy to support the growth of Sinorhizobium meliloti. In contrast, wild-type S. meliloti is not able to utilize the L-(+) isomer of 3-hydroxybutyrate (LHB) as a sole source of carbon and energy. In this study, we show that overexpression of the S. meliloti acsA2 gene, encoding acetoacetyl coenzyme A (acetoacetyl-CoA) synthetase, confers LHB utilization ability, and this is accompanied by novel LHB-CoA synthetase activity. Kinetics studies with the purified AcsA2 protein confirmed its ability to utilize both AA and LHB as substrates and showed that the affinity of the enzyme for LHB was clearly lower than that for AA. These results thus provide direct evidence for the LHB-CoA synthetase activity of the AcsA2 protein and demonstrate that the LHB utilization pathway in S. meliloti is AcsA2 dependent.  相似文献   

4.
The bdhA-xdhA2-xdhB2 mixed-function operon was used to demonstrate the application of crossover PCR to the construction of in-frame, non-polar deletion-insertion mutations in Sinorhizobium meliloti. Replacement of a 474-bp internal portion of the 774-bp coding sequence of bdhA with a 21-bp in-frame synthetic sequence resulted in loss of the bdhA-encoded d-3-hydroxybutyrate dehydrogenase activity. Such mutants retained the xanthine oxidase activity encoded by xdhA2-xdhB2, thus illustrating the non-polar nature of the mutation. This method of constructing unmarked, in-frame deletions should be generally applicable to functional genomics studies in S. meliloti and other alpha-Proteobacteria.  相似文献   

5.
6.
The competitive abilities of Sinorhizobium meliloti mutant strains containing lesions in the PHB synthesis (phbC) and degradation (bdhA) pathways were compared. While the bdhA mutant showed no noticeable symbiotic defects on alfalfa host plants when inoculated alone, in mixed inoculation experiments it was found to be less competitive than the wild type for nodule occupancy. Long-term survival of the bdhA mutant on a carbon-limiting medium was not affected. However, when subjected to competition with the wild-type strain in periodic subculturing through alternating carbon-limiting and carbon-excess conditions, the bdhA mutant performed poorly. A more severe defect in competition for growth and nodule occupancy was observed with a mutant unable to synthesize PHB (phbC). These results indicate that the ability to efficiently deposit cellular PHB stores is a key factor influencing competitive survival under conditions of fluctuating nutrient carbon availability, whereas the ability to use these stores is less important.  相似文献   

7.
The gene encoding Rhizobium meliloti isocitrate dehydrogenase (ICD) was cloned by complementation of an Escherichia coli icd mutant with an R. meliloti genomic library constructed in pUC18. The complementing DNA was located on a 4.4-kb BamHI fragment. It encoded an ICD that had the same mobility as R. meliloti ICD in nondenaturing polyacrylamide gels. In Western immunoblot analysis, antibodies raised against this protein reacted with R. meliloti ICD but not with E. coli ICD. The complementing DNA fragment was mutated with transposon Tn5 and then exchanged for the wild-type allele by recombination by a novel method that employed the Bacillus subtilis levansucrase gene. No ICD activity was found in the two R. meliloti icd::Tn5 mutants isolated, and the mutants were also found to be glutamate auxotrophs. The mutants formed nodules, but they were completely ineffective. Faster-growing pseudorevertants were isolated from cultures of both R. meliloti icd::Tn5 mutants. In addition to lacking all ICD activity, the pseudorevertants also lacked citrate synthase activity. Nodule formation by these mutants was severely affected, and inoculated plants had only callus structures or small spherical structures.  相似文献   

8.
Poly(3-hydroxybutyrate) (PHB) depolymerase from Alcaligenes faecalis T1 is composed of three domains: the catalytic (C) domain, the fibronectin type III-like (F) domain, and the substrate-binding (S) domain. We constructed domain deletion, inversion, chimera, and extra-F-domain mutants and examined their enzyme activity and PHB-binding ability. In addition, we performed substitution of 214Asp and 273His with glycine and aspartate, respectively, to examine their participation in a catalytic triad together with 139Ser. The mutant with both the F and S domains deleted and the trypsin-digested enzyme showed no PHB-hydrolyzing activity and less PHB-binding ability than that of the wild-type enzyme but retained D-(-)-3-hydroxybutyrate trimer-hydrolyzing activity at a level similar to that of the wild-type enzyme. The mutant with the F domain deleted and the mutant which had the order of the F and S domains inverted retained PHB-binding ability and trimer-hydrolyzing activity at levels similar to those of the wild-type enzyme but lost PHB-hydrolyzing activity. The chimera mutant, in which the F domain was substituted with a Thr-rich domain of PHB depolymerase A from Pseudomonas lemoignei, and the extra-F-domain mutant, with an additional F domain, retained trimer- and PHB-hydrolyzing activities and PHB-binding ability at levels similar to those of the wild-type enzyme. Two mutants (D214G and H273D) showed no enzymatic activity toward trimer and PHB, and they were not labeled with [3H]diisopropylfluorophosphate.  相似文献   

9.
A novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase (PhaZd) of Wautersia eutropha (formerly Ralstonia eutropha) H16 which shows similarity with the catalytic domain of the extracellular PHB depolymerase in Ralstonia pickettii T1 was identified. The positions of the catalytic triad (Ser190-Asp266-His330) and oxyanion hole (His108) in the amino acid sequence of PhaZd deduced from the nucleotide sequence roughly accorded with those of the extracellular PHB depolymerase of R. pickettii T1, but a signal peptide, a linker domain, and a substrate binding domain were missing. The PhaZd gene was cloned and the gene product was purified from Escherichia coli. The specific activity of PhaZd toward artificial amorphous PHB granules was significantly greater than that of other known intracellular PHB depolymerase or 3-hydroxybutyrate (3HB) oligomer hydrolases of W. eutropha H16. The enzyme degraded artificial amorphous PHB granules and mainly released various 3-hydroxybutyrate oligomers. PhaZd distributed nearly equally between PHB inclusion bodies and the cytosolic fraction. The amount of PHB was greater in phaZd deletion mutant cells than the wild-type cells under various culture conditions. These results indicate that PhaZd is a novel intracellular PHB depolymerase which participates in the mobilization of PHB in W. eutropha H16 along with other PHB depolymerases.  相似文献   

10.
The gene encoding the multifunctional protein (MFP) of peroxisomal beta-oxidation in Saccharomyces cerevisiae was isolated from a genomic library via functional complementation of a fox2 mutant strain. The open reading frame consists of 2700 base pairs encoding a protein of 900 amino acids. The predicted molecular weight (98,759) is in close agreement with that of the isolated polypeptide (96,000). Analysis of the deduced amino acid sequence revealed similarity to the MFPs of two other fungi but not to that of rat peroxisomes or the multifunctional subunit of the Escherichia coli beta-oxidation complex. The FOX2 gene was overexpressed from a multicopy vector (YEp352) in S. cerevisiae and the gene product purified to apparent homogeneity. A truncated version of MFP lacking 271 carboxyl-terminal amino acids was also overexpressed and purified. Experiments to study the enzymatic properties of the wild-type MFP demonstrated an absence of activities originally assigned to an MFP of S. cerevisiae (crotonase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA epimerase), whereas two other activities were found: 2-enoyl-CoA hydratase 2 (converting trans-2-enoyl-CoA to D-3-hydroxyacyl-CoA) and D-3-hydroxyacyl CoA dehydrogenase (converting D-3-hydroxyacyl-CoA to 3-ketoacyl-CoA). The truncated form contained only the D-3-hydroxyacyl-CoA dehydrogenase activity. These results clearly demonstrate that the beta-oxidation of fatty acids in S. cerevisiae follows a previously unknown stereochemical course, namely it occurs via a D-3-hydroxyacyl-CoA intermediate.  相似文献   

11.
A novel, quantitative method for detecting poly-3-hydroxybutyrate (PHB) amounts in viable cells was developed to allow for high-throughput screening of mutant libraries. The staining technique was demonstrated and optimized for the cyanobacterium Synechocystis sp. strain PCC6803 and the eubacterium Escherichia coli to maximize the fluorescence difference between PHB-accumulating and control cells by flow cytometry. In Synechocystis, the level of nonspecific dye binding was reduced by using nonionic stain buffer that allowed quantitation of fluorescence levels. In E. coli, the use of a mild sucrose shock facilitated uptake of Nile red without significant loss of viability. The optimized staining protocols yielded a linear response for the mean fluorescence against (chemically measured) PHB. The staining protocols are novel methods useful in the high-throughput evaluation of combinatorial libraries of Synechocystis and E. coli using fluorescence-activated cell sorting to identify mutants with increased PHB-accumulating properties.  相似文献   

12.
13.
An intracellular poly[D(-)-3-hydroxybutyrate] (PHB) depolymerase gene (phaZ) has been cloned from Ralstonia eutropha H16 by the shotgun method, sequenced, and characterized. Nucleotide sequence analysis of a 2.3-kbp DNA fragment revealed an open reading frame of 1,260 bp, encoding a protein of 419 amino acids with a predicted molecular mass of 47,316 Da. The crude extract of Escherichia coli containing the PHB depolymerase gene digested artificial amorphous PHB granules and released mainly oligomeric D(-)-3-hydroxybutyrate, with some monomer. The gene product did not hydrolyze crystalline PHB or freeze-dried artificial amorphous PHB granules. The deduced amino acid sequence lacked sequence corresponding to a classical lipase box, Gly-X-Ser-X-Gly. The gene product was expressed in R. eutropha cells concomitant with the synthesis of PHB and localized in PHB granules. Although a mutant of R. eutropha whose phaZ gene was disrupted showed a higher PHB content compared to the wild type in a nutrient-rich medium, it accumulated PHB as much as the wild type did in a nitrogen-free, carbon-rich medium. These results indicate that the cloned phaZ gene encodes an intracellular PHB depolymerase in R. eutropha.  相似文献   

14.
15.
16.
Poly-3-hydroxybutyrate (PHB) granules of Zoogloea ramigera I-16-M contained two major PHB granule-associated proteins (PGA12 and PGA16) as revealed by sodium dodecyl sulfate-polyacrylamide gel elecrophoresis. N-terminal amino acid sequences of these proteins were determined. The genes encoding these proteins were cloned and sequenced. The structural genes of PGA12 and PGA16 were 351 and 447 bp long, which encode polypeptides with deduced molecular masses of 12.3 and 16.0 kDa, respectively. PGA12 and PGA16 were expressed in Escherichia coli. PHB granules were isolated from cells of recombinant strains of E. coli JM109, which harbored and expressed the PHB-synthetic genes of Ralstonia eutropha H16 and PGA12 or PGA16. These PHB granules contained PGA12 or PGA16 as a major protein. The presence of pga12 or pga16 did not affect the amount of PHB synthesized in E. coli. PGA12 and PGA16 bound to crystalline and amorphous PHB granules.  相似文献   

17.
The recently finished genome sequence of Ralstonia eutropha H16 harbors nine genes that are thought to encode functions for intracellular depolymerization (mobilization) of storage poly(3-hydroxybutyrate) (PHB). Based on amino acid similarities, the gene products belong to four classes (PhaZa1 to PhaZa5, PhaZb, PhaZc, and PhaZd1/PhaZd2). However, convincing direct evidence for the in vivo roles of the gene products is poor. In this study, we selected four candidate genes (phaZa1, phaZb, phaZc, and phaZd1) representing the four classes and investigated the physiological function of the gene products (i) with recombinant Escherichia coli strains and (ii) with R. eutropha null mutants. Evidence for weak but significant PHB depolymerase activity was obtained only for PhaZa1. The physiological roles of the other potential PHB depolymerases remain uncertain.  相似文献   

18.
We describe the cloning of an ntrC gene of Agrobacterium tumefaciens C58 by interspecific complementation of an Escherichia coli ntrC mutant. Restriction mapping and Southern blot analysis of the complementing clone identified a 1.7-kb EcoRI-PvuII DNA fragment whose sequence was determined. Analysis of this sequence revealed coding regions corresponding to a complete ntrC gene and the C-terminal region of an ntrB gene. Amino acid sequence comparisons of A. tumefaciens NTRC protein with NTRC sequences from Rhizobium meliloti, Bradyrhizobium sp. (Parasponia), Klebsiella pneumoniae, E. coli, and Salmonella typhimurium show strong sequence conservation supporting DNA hybridization data, demonstrating strong evolutionary homology among ntrC genes of Rhizobiaceae. The C58 NTRC protein has been identified, by 35S-labeling, in a T7 RNA polymerase (pT7-7) expression vector system.  相似文献   

19.
A gene that codes for a novel intracellular poly-3-hydroxybutyrate (PHB) depolymerase has now been identified in the genome of Bacillus thuringiensis subsp. israelensis ATCC 35646. This gene, previously annotated as a hypothetical 3-oxoadipate enol-lactonase (PcaD) gene and now designated phaZ, encodes a protein that shows no significant similarity with any known PHB depolymerase. Purified His-tagged PhaZ could efficiently degrade trypsin-activated native PHB granules as well as artificial amorphous PHB granules and release 3-hydroxybutyrate monomer as a hydrolytic product, but it could not hydrolyze denatured semicrystalline PHB. In contrast, purified His-tagged PcaD of Pseudomonas putida was unable to degrade trypsin-activated native PHB granules and artificial amorphous PHB granules. The B. thuringiensis PhaZ was inactive against p-nitrophenylpalmitate, tributyrin, and triolein. Sonication supernatants of the wild-type B. thuringiensis cells exhibited a PHB-hydrolyzing activity in vitro, whereas those prepared from a phaZ mutant lost this activity. The phaZ mutant showed a higher PHB content than the wild type at late stationary phase of growth in a nutrient-rich medium, indicating that this PhaZ can function as a PHB depolymerase in vivo. PhaZ contains a lipase box-like sequence (G-W-S(102)-M-G) but lacks a signal peptide. A purified His-tagged S102A variant had lost the PHB-hydrolyzing activity. Taken together, these results indicate that B. thuringiensis harbors a new type of intracellular PHB depolymerase.  相似文献   

20.
Review Degradation of microbial polyesters   总被引:1,自引:0,他引:1  
Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号