首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Male sterility mutations are an important tool in the investigation of anther and pollen development and for obtaining hybrid seeds in plant breeding. Cytological analysis of microsporo- and microgameto-genesis in sorghum plants with dominant mutation of male sterility (Mstc) derived from tissue culture has been carried out. Using substitution backcrosses, this mutation was introduced first into the nuclear background of the fertile sorghum line SK-723 and from this line into Volzhskoe-4w (V-4w). The mechanism of Mstc action on anther and pollen development differed in different nuclear backgrounds. In SK-723, phenotypic expression of Mstc began before the beginning of meiosis, which resulted in degeneration of sporogenous tissue in some anthers and in significant disturbances of anther morphology. In microsporocytes that did not degenerate, the frequency of non-specific meiotic abnormalities characteristic of the fertile line SK-723 significantly increased. In addition, in the mutant plants, a number of specific meiotic abnormalities--almost complete desynapsis, and formation of syncytial structures--were observed, apparently the consequence of Mstc action. In mono- or bi-nucleate microspores, degenerative processes resulting in formation of empty or anomalously coloured pollen grains led to almost complete male sterility. In the V-4w nuclear background, changes in anther structure and meiotic disturbances were infrequent. The degenerative processes began at the uni- or binucleate microspore stage and resulted in formation of empty or abnormally coloured pollen grains, and in partial pollen sterility. Thus, the same nuclear male sterility-inducing mutation in different nuclear backgrounds affects different stages of pollen development.  相似文献   

2.
Dinitrogen fixation in male-sterile soybeans   总被引:1,自引:0,他引:1       下载免费PDF全文
Partial male-sterile (ms4/ms4) soybeans (Glycine max L. Merr.) and their fertile isoline (Ms4/Ms4) were grown in adjoining field plots. From 62 until 92 days after emergence, the nitrogenase activity, assayed by acetylene reduction, of the average male-sterile plant was approximately twice that of the average fertile plant. At approximately 100 days after emergence, the assayable nitrogenase activity of the fertile plants fell to zero, whereas the nitrogenase of the partial male-sterile plants continued to be active for two additional weeks. Thus, this male-sterile plant seems to fix dinitrogen both at a higher rate and over a longer duration than does its fertile isoline.  相似文献   

3.
Treatment of sorghum callus cultures with 500–1000 mg/l streptomycin led to a high regeneration frequency of plants with complete or partial male sterility (MS), up to 100% of all green regenerants. The induced MS mutation (ms-str) was preserved in the F1 and BC1 progenies and was genetically unstable: many families produced semisterile and fertile revertants, whose progenies again contained semisterile and sterile mutants. The ms-str mutation was maintained through eight generations via selection and self-pollination of semisterile plants. The mutation was inherited as a recessive nuclear mutation in test crosses of sterile plants segregated in the progenies of fertile and semisterile revertants and was expressed only in single cases in a test cross for ms-str transfer through pollen of hybrids with restored male fertility. Recessive nuclear mutations determining a low plant height (dwarfness) and the lack of waxy bloom on the stem and leaves (bloomless) were found in male-sterile plants with the ms-str mutation. Cytological analysis of sterile plants reveal multiple abnormalities at various pollen development stages and in tapetal cells: cytomyxis, defects of chromosome conjugation, distorted cytokinesis in meiotic division II, a lack of tetrad separation, a defective formation of the microspore coat, generation of microspores with two to four nuclei, and the formation of micronuclei and large vacuoles in tapetal cells. A possible transfer of the induced cytoplasmic MS mutation into the nuclear genome and the causes of the high genetic instability are discussed.  相似文献   

4.
 A male sterile Brassica juncea line based on Moricandia arvensis cytoplasm was developed previously by backcrossing the somatic hybrid M. arvensis+B. juncea, and the gene for restoring fertility was introgressed. The CMS line is very severely chlorotic because of the presence of alien chloroplasts and flowering is delayed by 30–40 days, making it unsuitable for the exploitation of heterosis. We have resorted to another cycle of protoplast fusion between green fertile B. juncea and chlorotic male sterile B. juncea, and developed green male-sterile plants. Molecular analysis revealed that in green male-sterile plants chloroplasts of M. arvensis origin were substituted by those from B. juncea, giving rise to intergeneric cytoplasmic hybrids with mitochondria of M. arvensis origin. With the development of dark-green male-sterile plants, the CMS fertility restoration system is suitable for the production of hybrid mustard. Received: 23 February 1998 / Accepted: 12 May 1998  相似文献   

5.
Valuable agronomic traits are often present but inaccessible in the wild relatives of cultivated crop species. Utilization of wild germplasm depends on the production of fertile interspecific hybrids. Several unsuccessful attempts have been made to hybridize cultivated sorghum with its wild relatives to broaden its genetic base and enhance agronomic value. The successful approach used in this study employed the nuclear male sterility gene ms3 to generate a diploid fertile hybrid between the diploid cultivated sorghum (Sorghum bicolor (L) Pers.) and its weedy tetraploid wild relative Johnsongrass (Sorghum halepense (L.) Pers.). Eight sorghum plants were selected from a Nebraska stiff stalk collection that contains the male sterility gene ms3 and were used as the female parent. About 36,000 florets of male sterile sorghum were pollinated with Johnsongrass pollen to produce an average of one well-developed and 180 severely shriveled seed/18,000 crosses. The well-developed seed gave rise to a self-fertile diploid, while none of the shriveled seed were able to germinate. The F1 hybrid was confirmed by using cultivated sorghum SSR markers and was selfed to produce an F2 population. A sub-sample of 96 segregating F2 plants was examined with 36 sorghum polymorphic SSR markers. Thirty-four markers showed a normal 1:2:1 segregation ratio, evidence of normal recombination across the genome. Preliminary results showed that several desirable traits from Johnsongrass, including resistance to greenbug and chinch bug and adaptability to cold temperatures, were expressed in the resulting progenies. These observations suggest that speciation within the genus Sorghum, giving rise to widely divergent phenotypes, is effected largely by ploidy-maintained crossing barriers but apparently not by extensive genomic divergence.  相似文献   

6.
 The genetics of male-fertility restoration in sorghum in the “9E” and A4 CMS-inducing cytoplasms, was studied by crossing a number of fertility restorer lines of A1 cytoplasm to CMS lines [9E]T×398 and [A4]T×398 and the line [9E]Milo-10, which was obtained by backcrossing Milo-10 to [9E]T×398. It was revealed that both A4 and “9E” cytoplasms are characterized by a sporophytic mode of restoration of male fertility. Depending on the nuclear background of the male parents, fertility restoration was controlled by one or two dominant genes. Fertility-restorer genes of one of the tester lines, KVV-114, were effective in [9E]T×398 but could not restore [9E]Milo-10. A fertile line obtained from the fertile hybrid [9E]T×398/KVV-112, with “9E” cytoplasm, also failed to restore [9E]Milo-10. In a number of hybrid combinations with both A4 and “9E” cytoplasms a novel and unusual phenomenon of gradual restoration of male fertility in subsequent backcross generations was observed. Pollen from the fertile revertants did not transmit fertility restoration in progeny from crosses with the original CMS line and was poorly transmitted in sib-crosses. The appearance of fertile revertants and the different reactions of different CMS lines with the same cytoplasm in test-crosses may be caused by the action of recessive nuclear genes of the recurrent male parents that were accumulated during backcrossing; these may induce changes in cytoplasmic genes controlling CMS. Received: 5 March 1998 / Accepted: 7 April 1998  相似文献   

7.
The monogenetic recessive male-sterile gene ms-IR36 is widely used to facilitate the inter-crossing phase of recurrent selection in rice (Oryza sativa), but its segregation within the progeny disturbs other breeding phases. Marker-assisted early identification of msms and Msms seedlings would help overcome this drawback. Using successively bulked segregant analysis and large F2 populations, we mapped the ms-IR36 gene to a 33-kb region on the short arm of chromosome 2 that includes 10 candidate genes. Sequencing of these candidates together with checking rice genome annotations and expression databases allowed the target to be narrowed down to one candidate gene already isolated and characterized as the tapetum degeneration retardation (TDR) gene and reported to be involved in tapetal programmed cell death. Comparison of the sequence of the TDR gene between male-sterile (MS) and male-fertile (MF) IR36 plants detected one non-synonymous nucleotide substitution affecting the active domain of the encoded protein. Perfect co-segregation was observed between polymorphism at this nucleotide (SNP) and the MS/MF phenotype of 946 F2 plants. Spatial modelling of the active domain of the candidate protein reinforced the candidate status of the only SNP identified. Histological characterization of anther development in MS IR36 revealed defects identical to the ones observed in mutants used for the isolation and characterization of the TDR gene: delayed/non-degradation of tapetum tissue and collapse of the haploid microspores. We concluded that ms-IR36 corresponded to the TDR gene with a different mutation from the earlier one described in the same gene. No significant linkage drag was associated with ms-IR36. A SNP-based marker that enables simple early identification of MS plants and MF plants with the Msms genotype was designed.  相似文献   

8.
9.
The male sterility gene from a male-sterile, green,Gelidium vagum line was introduced to a wild-type line through repeated backcrossing and selection for five generations. The plants from the recurrent parent, the male-sterile green, the backcross-5 fertile and the backcross-5 male-sterile lines were compared for their growth performance. The backcross-5, red, male-sterile plants grew at a significantly higher rate than the plants from other lines, suggesting that male-sterile gametophytes would likely be better candidates for aquaculture than normal wild-type plants of this species. This study also provides evidence that the growth rate ofG. vagum decreases as a consequence of reproduction.  相似文献   

10.
It was found that, in some of the plants in generations C1–C5 of induced tetraploids in the semisterile sorghum line AS-1-30, more than 30% of pollen grains (PGs) have sizes typical of haploid PGs. Pollen of these plants was used to pollinate different lines of sorghum with cytoplasmic male sterility (CMS). Diploid hybrids were obtained, which confirms the presence of haploid PGs in the tetraploids studied. When tetraploid plants with an increased frequency of haploid PGs were pollinated with pollen of plants from fertile diploid lines, diploid hybrids were also obtained. This demonstrates that the tetraploids studied had haploid egg cells. In generation C4, a chimeric plant was found; one of its shoots was diploid (judging from morphological characters) and produced as many as 99% of haploid PGs. It is assumed that haploid gametes in autotetraploids are formed through somatic reduction of chromosomes at different ontogenetic stages.  相似文献   

11.
 Sugar beet hybrids are produced by crossing a cytoplasmic male-sterile (CMS) line with a pollinator. New CMS lines are produced by crossing a fertile plant to an existing CMS line. The fertile plant is also selfed. In the following generation, one of the selfed, fertile progeny is paired and isolated with one of the crossed, CMS progeny, to give a second generation of selfing and crossing. Over a series of such crosses and selfs, a new fertile inbred line and its corresponding, near-isogenic CMS partner are produced. Selection among lines takes place at one or more stages of the backcrossing programme. A method is presented here for calculating the genetic variances and covariances within and between lines and generations based on a derivation of additive genetic relationships modified from an approach widely employed in animal breeding. The genetic variances and covariances are used to predict response to selection from varying strategies, from which optimum schemes can be determined. Results suggest that selection should generally take place after three generations of backcrossing when the fertile plant used to initiate the backcrossing process is not inbred, but can take place after generation two when the fertile plant is inbred. Doubled haploid production is unlikely to provide an extra advantage that would be worthwhile in such a system. The method developed here can be used to explore a wide range of more complex breeding systems. Received: 27 July 1998 / Accepted: 19 October 1998  相似文献   

12.
The genic multiple-allele inherited male-sterile gene Ms in Chinese cabbage (Brassica rapa L.) was identified as a spontaneous mutation. Applying this gene to hybrid seed production, several B. rapa cultivars have been successfully bred in China. A BC1 population (244 plants) was constructed for mapping the Ms gene. Screening 268 simple sequence repeat (SSR) markers which cover the entire genome of Chinese cabbage was performed with bulked segregant analysis (BSA). On the basis of linkage analysis, the Ms gene was located on linkage group R07. In addition, through the amplified fragment length polymorphism (AFLP) and the sequence-characterized amplified region (SCAR) techniques combining BSA, two SCAR markers which were converted from corresponding AFLP markers flanked the Ms gene. Finally, a genetic map of the Ms gene was constructed covering a total interval of 9.0 cM. Two SCAR markers, syau_scr01 and syau_scr04, flanked the Ms gene at distances of 0.8 and 2.5 cM, respectively. All the SSR markers (cnu_m273, cnu_m030, cnu_m295, and syau_m13) were mapped on the same side of the gene as syau_scr04, the nearest one of which, syau_m13, was mapped at a distance of 3.3 cM. These SSR and SCAR markers may be useful in marker-assisted selection and map-based cloning. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
A biochemical analysis through electrophoresis in poly-acrylamide gel of alcohol dehydrogenase loci in three ontogenetic phases of tomatoes’ development was carried out. This subject of investigation were the male-sterile line 6944 aa and the fertile anthocyan line 6944 aa+. Higher levels of isozyme expression in leaves in the cotyledon phase of anthocyan plants, particularly of isozyme No 1 in the Adh-2 locus, was found. The connection between alcohol dehydrogenase, and pollen male sterility and anthocyan staining (aa+) were discussed. A quantitative molecular marker connected to a genetic marker (in this case) for the purposes of identifying sterile from fertile plants in the earliest phase of their development was established.  相似文献   

14.
起源于组织培养的籼稻雄性不育体细胞无性系变异   总被引:4,自引:0,他引:4  
IR8及IR54的成熟种子与幼穗培养在MS培养基,蔗糖6%附加生长刺激素及其它成分的条件下,在再分化植株第一代(R_1)中各发现了1株雄性不育突变(其中来自IR54的1株为育性嵌合体)。在IR24及IR54体细胞无性系第二代(R_2)各发现1个株系分离出雄性不育与育性正常两类植株。上述雄性不育有花粉败育与无花粉型两类。IR24对无花粉型的雄性不育(来自IR54)为半恢复。F_1及R_2代的育性分离完全符合15/16∶1/16的模式,表明雄性不育为两对独立的核基因所控制。通常雄性不育是通过杂交(包括远缘与品种间)理化诱变或自发突变产生的。最近在烟草上通过原生质体融合也获得了雄性不育。但从体细胞培养的无性系及其后代中获得雄性不育的突变,本研究乃属首次。  相似文献   

15.
Anthers of inbred F44 fertile (N) and cytoplasmic male-sterile (T) corn plants (Zea mays L.) were compared cytologically. No differences between fertile and sterile anthers were observed in size and number of mitochondria or plastids until after the start of anther degeneration. A rapid division of mitochondria was observed, however, in the tapetum and sporogenous cells of both fertile and sterile anthers during early growth stages. This rapid increase in mitochondrial numbers per cell (some 20-to 40-fold) preceded tapetal breakdown in sterile anthers and did not occur in other anther cells or in plastids. Limited observations on the megagametophyte and nucellus revealed that mitochondria in ovules remain relatively constant in size and number during gametogenesis and do not undergo degeneration.  相似文献   

16.
Summary Restriction endonuclease patterns of chloroplast DNA (cpDNA) were consistently distinguishable between fertile and male-sterile cytoplasms of sorghum [Sorghum bicolor (L.) Moench], whereas no differences in restriction patterns of cpDNA among male-sterile (A1) lines, including six isocytoplasmic strains, were revealed in this study. It is suggested that chloroplast DNA may contribute to the male sterility of A1 lines used currently in hybrid sorghum production.This research was supported by a research grant from Kansas Grain Sorghum Commission, Kansas Board of Agriculture. Contribution 90-293-J from the Kansas Agricultural Experiment Station  相似文献   

17.
The wheat x maize cross as a technique for haploid induction in wheat was evaluated in a replicated block design comprising 18 wheat F1 hybrids and five Zea mays L. parents. Haploid plants were regenerated at an average of 9.1 (4.4–14.7) plants per 100 florets processed. Genotypic differences for haploid production efficiency were recorded for both wheat and Zea mays L. Interaction between parents was significant for number of plants/100 florets. All 610 of the 1,703 regenerated plantlets that were analyzed by flow cytometry were haploid. At maturity, 70% (60–81 %) of the colchicinetreated haploid plants were fertile, but the frequency of fertile and sterile plants was not consistent over the wheat hybrids from which they were derived. Flow cytometry performed using the first tiller which arose following colchicine treatment enabled prediction of fertility. The 1BL-1RS chromosome was found at the expected ratios in the F2 and in the haploid progenies produced through the wheat x maize cross but deviated from the 11 ratio in the haploid progenies produced by anther culture.  相似文献   

18.
Cultivated common bean (Phaseolus vulgaris L.) and tepary bean (Phaseolus acutifolius A. Gray) genotypes possessing desirable agronomic traits were hybridized. The F1 hybrids were backcrossed twice with the common bean (i.e., recurrent backcrossing). Also, alternate backcrosses with common and tepary beans (i.e., congruity backcrossing) were carried out. Embryo culture was necessary for all initial interspecific crosses, and its requirement was proportionally lower when the common bean was used as the recurrent parent and as the last parent of congruity backcrosses. Modification of the embryo culture technique was necessary to produce congruity hybrids. Effects of both tepary and common bean genotypes on the success rate of hybridization were observed. Tepary accession G 40001 and common bean cultivar ICA Pijao facilitated interspecies hybridization. Growth of hybrid embryos before rescue, recovery of mature hybrid plants, and the vigor and fertility of F1 hybrids all increased with increased recurrent and congruity backcrosses and intermatings between male-sterile F1 and selected fertile F2 plants of the third and fifth congruity backcrosses. Introgression of tepary genes was verified by means of seed protein electrophoretic analysis and morphological markers. The results suggest that congruity backcrossing can help to gradually reduce or overcome P. vulgaris x P. acutifolius hybridization barriers such as genotype incompatibility, early embryo abortion, hybrid sterility, and lower frequencies of hybridization.  相似文献   

19.
Summary Crossing experiments were conducted to determine whether parental genotype affected the rate of transmission of paternal mitochondria to progeny in rapeseed (Brassica napus). Progeny were screened either by RFLP analysis of mitochondrial (mt) DNA or by means of a mt marker that causes male sterility. To date we have transferred paternal mitochondria to progeny in only cross, i.e. a specific female line crossed to a specific male line. The male line carries the polima cytoplasm, the mitochondria of which confer a characteristic malesterile flower morphology when in a napus nuclear background. This line is male fertile due to a restorer gene carried on an extra chromosome from a closely related species, Brassica juncea. The female line has a Brassica campestris cytoplasm with a chloroplast mutation conferring resistance to triazine herbicides. Progeny with mixtures of parental mtDNA display a range of plant phenotype from complete male fertility through varying proportions of male-sterile sectors to complete male sterility. The male sterility or fertility of flowers on a sector of a plant reflects the mt population of that sector, and such sectors will give rise to stably fertile or sterile progeny. These experiments suggest that maternal inheritance of mitochondria in higher plants is due to genes active in both the pollen parent and the egg parent.  相似文献   

20.
We report a novel cytoplasmic male sterility (CMS) system in Brassica juncea (oilseed mustard) which could be used for production of hybrid seed in the crop. A male sterile plant identified in a microspore derived doubled haploid population of re-synthesized B. napus line ISN 706 was found to be a CMS as the trait was inherited from the female parent. This CMS, designated ‘126-1’, was subsequently transferred to ten different B. juncea varieties and lines through inter-specific crosses followed by recurrent backcrossing. The F1s of inter-specific crosses were invariably partially fertile, but irrespective of the variety/line used, the recipient lines became progressively male sterile over five to seven generations and could be maintained by crossing the male sterile lines with their normal counterparts. The male sterile lines were found to be stable for the trait under both long and short day conditions. CMS lines when crossed with lines other than the respective maintainer line were restored for fertility, implying that any variety could act as a restorer for ‘126-1’ cytoplasm in B. juncea. These unique features in maintenance and restoration of CMS lines coupled with near normal floral morphology of the CMS lines have allowed the use of ‘126-1’ cytoplasm for hybrid seed production. The uniqueness of ‘126-1’ has been further established by Southern hybridization with mitochondrial DNA probes and by a histological study of the development of male sterile anthers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号