首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Pamvotis is a moderately sized (22 km2) shallow (z avg=4 m) lake with a polymictic stratification regime located in northwest Greece. The lake has undergone cultural eutrophication over the past 40 years and is currently eutrophic (annual averages of FRP=0.07 mg P l-1, TP=0.11 mg P l-1, NH4 +=0.25 mg N l-1, NO3 =0.56 mg N l-1). FRP and NH4 + levels are correlated to external loading from streams during the winter and spring, and to internal loading during multi-day periods of summer stratification. Algal blooms occurred in summer (July–August green algae, August–September blue-green algae), autumn (October blue-green algae and diatoms), and winter (February diatoms), but not in the spring (March–June). The phytoplankton underwent brief periods of N- and P-limitation, though persistent low transparency (secchi depth of 60–80 cm) also suggests periods of light limitation. Rotifers counts were highest from mid-summer to early autumn whereas copepods were high in the spring and cladocerans were low in the summer. Removal of industrial and sewage point sources a decade ago resulted in a decrease in FRP. A phosphorus mass balance identified further reductions in external loading from the predominately agricultural catchment will decrease FRP levels further. The commercial fishery and lake hatchery also provides opportunities to control algal biomass through biomanipulation measures.  相似文献   

2.
This study has two main objectives, the first being the determination of net phytoplankton primary production to explain the phytoplankton’s function in a wetland carbon cycle, while the second objective is to relate this function with the phytoplankton assemblage composition. The annual variation in the phytoplankton production was monitored monthly for more than a year (2007–2008) in the semiarid eutrophic, hydrologically-perturbed “Tablas de Daimiel” National Park wetland. The phytoplankton fraction considered in this study comprised all organisms between the size 3 and 100 μm. The total biomass of phytoplankton was obtained by counting algae and calculating their volume, while net primary production and respiration were quantified by in situ incubations with the Winkler method. The respiration ranged from undetectable to 0.07 mgO2 l−1 h−1; net photosynthesis reached 0.20 mgO2 l−1 h−1. Net primary production was maximum at the end of the warm period (October 2007), and other peaks occurred at the start of summer (July 2007) or spring (March 2008). When maximum production took place, phytoplankton was mainly composed of small fast-growing chlorophytes (Tetraselmis cf. fontiana or Chlamydomonas sp.), in addition to some of the large, S-strategist algae (Peridinium umbonatum, Microcystis flos-aquae, Euglena sp.). The phytoplankton metabolism in “Tablas de Daimiel” was autotrophic as a whole due to changing contributions of algal groups. Only chlorophyte biomass was statistically related to net primary production. The conclusion reached is that this shallow eutrophic semiarid wetland possessed an annual net autotrophic production of phytoplankton fraction resulting from the small, fast-growing algae enhanced by hydrological perturbations that interrupted the autogenic course of S strategists.  相似文献   

3.
This study was conducted to analyse vertical dynamics of phytoplankton distribution in Shira Lake during the summer stratification regime. From late June to September phytoplankton in Shira Lake were stratified with the maximum in the lower part of the thermocline, at a depth of 8–12 m, with a chlorophyll concentration up to 23 g and biomass up to 5 mg l–1. Maxima of chlorophyll and biomass of cyanobacteria and green algae were in different layers. From June to September a major part of chlorophyll a was in green algae, while under ice – in cyanobacteria. The variable fluorescence proves high photosynthetic activity of algae in the depth assemblage. Epifluorescent analysis disclosed that additional light-harvesting pigments were better developed in cells from the depth maximum. The maximum of gross primary production calculated from fluorescence corresponded to the depth maximum of phytoplankton. Primary production over a season was 2.7 gO2 m–2. Formation mechanisms of the depth maximum of phytoplankton are discussed in this paper.  相似文献   

4.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

5.
Studies were carried out in Lake Mutek (Mazurian Lakeland) on the effect of artificial aeration and destratification upon quantitative changes in the phytoplankton. These studies were carried out from 1977 until 1983. Two different methods of aeration were used. Low intensity mixing resulted initially in a two-fold, and later on in a four-fold increase of the phytoplankton biomass. Increase of phytoplankton biomass during lake aeration was due to the development of Ceratium hirudinella. Use of a highly effective air-compressor caused an inhibition of algal development, so that biomass dropped to levels noted in the control year. It was found that the effect of aeration depended on the ratio between lake area and effectiveness of the aerator. Only intensive mixing of the water masses resulted in an inhibition of the development of algae. The effect of artificial destratification was also reflected in changes of the species structure, seasonal succession of the algae, and physiological state of the phytoplankton. Artificial circulation stimulated development of algae characterized by relatively high specific weight, i.e. most of all of Pyrrophyta, Bacillariophyceae and some species of Chlorophyta. Various aspects were discussed of the use of direct aeration as a technical method of lake restoration.  相似文献   

6.
This study relates to the ecology of Dictyosphaerium pulchellum Wood in Delamere Lake in Cheshire, UK. Dictyosphaerium pulchellum is a cosmopolitan, green colonial phytoplankton species that occasionally forms dense, monospecific populations in lakes. Delamere Lake is a small, shallow, acid lake (mean pH, 4.5) with very high phytoplankton biomass (annual mean chlorophyll a, 290 μg l−1) and devoid of any significant cladoceran population, the efficient grazers of phytoplankton. A predominantly unicellular form of D. pulchellum was the dominant species in Lake Delamere, and it comprised on average ca. 80% (maximum >99%) of the lake phytoplankton biovolume. Laboratory and lake experiments were conducted on this species showed that its pH tolerance varied between 2.4 and 10.7, and its optimum tolerance range between 3.3 and 8.5 depending on other environmental variables. Low pH was not responsible for the unicellular habit of this alga, but a very high nutrient regime could be an important factor. Bioassays revealed that in Delamere Lake this species was limited by nitrogen, but nitrogen did not hamper high growth in the lake. Dictyosphaerium pulchellum can persist at low light levels, tolerate CO2-deficiency and can grow in polyhumic water with water colour around 300 mg Pt l−1, but probably not in darker waters. The dominance of D. pulchellum in Delamere Lake is apparently due to a combination of several factors: its ability to tolerate both low pH and high turbidity, exploit high nutrient conditions, absence of effective grazing pressure by zooplankton and being a superior competitor.  相似文献   

7.
The purpose of this study was to verify the longitudinal distribution of phytoplankton biomass in two subtropical Brazilian reservoirs in the State of Paraná and investigate intervening factors on changes in phytoplankton biomass according to functional groups. In the Capivari and Segredo reservoirs, samples were obtained every 3 months during 2002, along a longitudinal axis (fluvial, transition, and lacustrine zones) at different depths. One hundred and eighteen taxa were identified, with Chlorophyceae as the most specious group. During the study period, both reservoirs had mostly low biomass values (less than 1 mm3 l−1). The short retention time of these reservoirs constituted the principal limiting factor to phytoplankton development. Biomass values above 1 mm3 l−1 were observed in the Capivari fluvial zone in March and in the Segredo lacustrine zone in December, with dominance by Microcystis aeruginosa Kütz (LM) and Anabaena circinalis Rab. (H1), respectively. Vertical and horizontal gradients of analyzed abiotic variables and phytoplankton biomass were observed. Considering the phytoplankton biomass values, both reservoirs were oligotrophic for the duration of the study. The Canonical Correspondence Analysis (CCA) evidenced temporal and spatial gradients of phytoplankton biomass; nevertheless, it did not follow the classic model proposed for deep reservoirs, since higher biomass was registered in the lacustrine zone during some months and in fluvial zones during other months. Distinct functional groups of phytoplankton characterized both studied reservoirs. Capivari Reservoir was best characterized by LM and Y groups, indicative of its greater water column stability and higher phosphorus concentration, whereas Segredo Reservoir was principally characterized by the MP functional group, indicative of its greater mixing zone extension and higher nitrate concentration. The obtained results also evidenced the influence of morphometric conditions and watershed purposes as important structuring factors of phytoplankton biomass in these reservoirs. Handling editor: L. Naselli-Flores  相似文献   

8.
三峡水库神农溪2014年春季浮游藻类演替成因分析   总被引:1,自引:0,他引:1  
摘要:【目的】研究三峡水库神农溪库湾春季水华期间浮游藻类演替及其成因分析。【方法】2014年3–5月在神农溪库湾布置了6个断面(SN01–SN06),在神农溪汇入长江干流河口附近水域设置1个断面CJBD,对浮游藻类、相关环境因子及水动力因子进行了同步监测,据此分析了水体层化结构及水动力特性。【结果】神农溪在监测时段内共检测到浮游藻类6门38种(属);库湾浮游藻类生物量时间上差异显著(ANOVA,P<0.05)。春季浮游藻类群落结构具有明显的演替规律,3月份暴发大面积的硅藻水华(藻密度>100×105 cells/L),小环藻(Cyclotella spp.)为优势藻种;4月在SN02–SN06暴发以小球藻(Chlorella spp.)为主要优势种、衣藻(Chlamydomonas spp.)为次优势种的绿藻水华(藻密度>100×105 cells/L),5月份受水位大幅消落影响,浮游藻类生物量降低且无明显优势藻种。【结论】在具备充足的营养盐的水体中,水体层化结构与水动力特性对浮游藻类演替影响重大。三峡水库水位处于快速消落阶段时,流速成为抑制神农溪库湾藻类生长的主要因素。  相似文献   

9.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

10.
Comparative studies on the limnology, species diversity and standing stock biomass of phytoplankton and zooplankton in five freshwater lakes, Naivasha and Oloidien, Ruiru, Masinga and Nairobi reservoirs, were undertaken. Phytoplankton chlorophyll a, dissolved oxygen and temperature were also measured. Thermocyclops oblongatus (Copepoda) was dominant in all the lakes. Ceriodaphnia cornuta and Diaphanosoma excisum (Cladocera) dominated in lakes Naivasha and Oloiden, whereas in Ruiru, Masinga and Nairobi reservoirs, Brachionus angularis and Hexarthra mira (Rotifera) were the dominant zooplankters. Phytoplankton biomass as chlorophyll a was lowest in Ruiru dam 5.64 ± 4.0 µg l-1 and highest in the eutrophic Nairobi dam 71.5 ± 12.02 µg l-1. The endorheic lakes Naivasha and Oloidien showed medium values of 24.5 ± 4.0 µg l-1.  相似文献   

11.
Nixdorf  Brigitte 《Hydrobiologia》1994,(1):173-186
The polymictic properties of Lake Müggelsee, a eutrophic shallow lake in Berlin, are described by the water column stability (N 2) and gradients in saturation of oxygen at the deepest site of the lake (7.5 m). Mixing and stratification changed irregularly up to 7 times during the vegetation season (April to September), as was indicated by all of the stratification parameters. Thermally stable conditions generally lasted 1–2 weeks. A maximum of 5 weeks stratification was observed in 1982.In order to investigate the response of algal development, the internal rates of change of the dominant algal species in the lake during the vegetation period were estimated from weekly measurements of phytoplankton biomass from 1980 to 1990. The necessity taking a mixed sample in a shallow lake is discussed. The polymictic properties favoured the development of specific blue-green algal species; there dominance was also favoured by the trophic conditions. Among the dominant blue-greens the growth of Limnothrix redekei was independent of polymixis whereas stratification supported the starting conditions for the summer blue-greens Aphanizomenon flos-aquae and Planktothrix agardhii. After these algae reached a distinct level of biomass, they grew under mixing as well as under stratified conditions.For the development of solitary centric diatoms during summer regulation by growth restriction through nutrient limitation, esp. dissolved silicon was more important. However, Melosira sp. developed well under stratified conditions but collapsed due to increased sinking losses when the water column became too stable.An attempt is made to apply Reynolds' possibility matrix of the most likely phytoplankton assemblages as a function of nutrients and mixing in the shallow Lake Müggelsee.  相似文献   

12.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

13.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

14.
Previous investigations on Sicilian man made lakes suggested that physical factors, along with the specific morphology and hydrology of the water body, are important in selecting phytoplankton species. In particular, the variations of the z mix/z eu ratio due to the operational procedure to which reservoirs are generally subject were recognised as a trigger allowing the assemblage shift. To investigate if these variations may be considered analogous to those occurring in natural lakes as trophic state and phytoplankton biomass increase, causing a transparency decrease and a contraction of the euphotic depth, phytoplankton were collected in two natural water bodies, one mesotrophic (Lake Biviere di Cesarò) the other eutrophic (Lake Soprano), and compared with those collected in two reservoirs with analogous trophic characteristics (Lake Rosamarina, mesotrophic and Lake Arancio, eutrophic). Particular attention was paid to the dynamics of two key groups: Cyanophytes and chlorophytes. In all four water bodies, transparency mainly depended on chlorophyll level. Annual average value of phytoplankton biomass in the mesotrophic environments was below 2.0 mg l–1, whereas in the eutrophic systems it was well above 10 mg l–1. All water bodies showed the presence of cyanophytes (e.g. Anabaena spp., Anabaenopsis spp., Microcystis spp., Planktothrix spp.) and chlorophytes (e.g. Chlamydomonas spp., Botryococcus spp., Oocystis spp., Scenedesmus spp., Pediastrum spp.), but their relative proportions and body size dimensions were different. In particular, small colonial chlorophytes and large-colony forming cyanophytes were most common in the most eutrophic water bodies, whereas larger colonies of green algae in those with a lower trophic state. The results showed that, under the same climatic conditions, autogenic (increase of biomass, decrease in light penetration and euphotic depth) and allogenic (use of the stored waters, anticipated breaking of the thermocline, increase of the mixing depth) processes may shift the structure of phytoplankton assemblage in the same direction even though the quantity of biomass remains linked to nutrient availability.  相似文献   

15.
The increase in human development in the downstream portion of the Pyramid Lake drainage basin has resulted in increased nutrient loading to the lake. Since this is a deep, terminal lake, concern over nutrient build up and change in trophic status exists. On the basis of lake chemistry which shows consistently high concentrations of total reactive-P (mean = 55 µg P l–1) relative to dissolved inorganic-N (DIN) (mean = 15 µg N 1–1), it has been hypothesized that Pyramid is N-limited. However, no systematic study of nutrient limitation had been undertaken. Nutrient enrichment bioassays conducted throughout an entire year clearly showed that additions of DIN resulted in a 350–600% stimulation of chlorophyll production. Phosphate, when added singly or in combination with DIN, had no effect. This positive response to N-addition was significant at all times of the year except, (1) immediately after complete lake mixing in February when a large pool of hypolimnetic nitrate was injected into the euphotic zone, and (2) during a fall bloom of the nitrogen fixing species Nodularia spumigena. The positive response to N-addition in the bioassay experiments was strong between March and November. However, the seston exhibited only a gradual depletion of nitrogen relative to carbon over this same period. PN:PC ratios suggested no N-deficiency in phytoplankton biomass in February, March and April, moderate N-deficiency in May, June and July and, severe N-deficiency from August until winter turnover. The appearance of nitrogen fixing blue-green algae in September supports the hypothesis of N-limitation in the summer-autumn. In evaluating the nutrient status of a lake, the concepts of nutrient stimulation versus nutrient deficiency versus nutrient limitation must clearly be defined.This paper is dedicated to G. Evelyn Hutchinson who first visited Pyramid Lake in 1933.  相似文献   

16.
Phytoplankton ecology of the Lake of Menteith,Scotland   总被引:1,自引:1,他引:0  
The results discussed in this paper represent the first seasonal ecological study carried out on the phytoplankton of the Lake of Menteith. All measured nutrients reached maximum levels during the winter, with silicate showing particularly high concentrations (up to 85 µg at Si l–1). During the summer period phosphate, nitrate and silicate showed almost complete exhaustion in surface waters. The lake water was consistently alkaline, never falling below pH 7, while the alkalinity ranged from 20 to 24 mg CaCO3 l–1. Generally, the nutrient status of the main inflow had a rapid effect on the water quality of the lake.The region of the lake under investigation showed no thermal stratification at any period of the year, although continuous thermal gradients were recorded in the winter. The continual circulation of the water mass probably prevented oxygen saturation from falling below 77% even following a large phytoplankton bloom and subsequent decomposition.From an examination of net phytoplankton samples the Lake of Menteith could be described as blue-green or blue-green/diatom in nature. From the quantitative study, large pulses of Melosira, Asterionella and Fragilaria were recorded in the spring. The disappearance of the species appears to be related to silicate limitation. The summer growth of Asterionella may have been promoted by a nitrogen source other than nitrate and nitrite, both of which were reduced to critical levels. This alternative source of combined nitrogen may have been contributed by nitrogen-fixing algae in the lake. Three species of Anabaena were recorded, all of which produced large populations during the year.Department of Botany, The University of GlasgowPresent Address: Department of Biology, College of Science, University of Sulaimaniyah, Sulaimaniyah, Iraq  相似文献   

17.
Nutrient-phytoplankton relationships in a tropical meromictic soda lake   总被引:1,自引:1,他引:0  
Seasonal variation through one year in total nitrogen (TN), total phosphorus (TP), phytoplankton biomass, phytoplankton species composition and other environmental factors were examined in Lake Sonachi, a tropical meromictic soda lake. Mean concentrations of TN and TP were 11 000 µg N l-1 and 100 µg P l-1, respectively. Maximum concentrations of TN and TP occurred in the monimolimnion. Phytoplankton biomass ranged from 350 to 1260 mg m-3. Synechococcus bacillaris, a small coccoid cyanophyte, dominated the phytoplankton. The mean chlorophyll a concentration of 37 mg · m-3 was a modest value when compared with those of other tropical soda lakes. High TN:TP ratios indicated phosphorus limitation in the lake.  相似文献   

18.
Phytoplankton dynamics in a deep, tropical, hyposaline lake   总被引:3,自引:3,他引:0  
The annual variation of the phytoplankton assemblage of deep (64.6 m), hyposaline (8.5 g l–1) Lake Alchichica, central Mexico (19 ° N, 97° W), was analyzed in relation to thermal regime, and nutrients concentrations. Lake Alchichica is warm monomictic with a 3-month circulation period during the dry, cold season. During the stratified period in the warm, wet season, the hypolimnion became anoxic. N–NH3 ranged between non detectable (n.d.) and 0.98 mg l–1, N–NO2 between n.d. and 0.007 mg l–1, N–NO3 from 0.1 to 1.0 mg l–1 and P–PO4 from n.d. to 0.54 mg l–1. Highest nutrient concentrations were found in the circulation period. Chlorophyll a varied from <1 to 19.8 g l–1 but most values were <5 g l–1. The euphotic zone (>1% PAR) usually comprised the top 15–20 m. Nineteen algae species were identified, most of them are typical inhabitants of salt lakes. Diatoms showed the highest species number (10) but the small chlorophyte Monoraphidium minutum, the single-cell cyanobacteria, Synechocystis aquatilis, and the colonial chlorophyte, Oocystis parva, were the numerical dominant species over the annual cycle. Chlorophytes, small cyanobacteria and diatoms dominated in the circulation period producing a bloom comparable to the spring bloom in temperate lakes. At the end of the circulation and at the beginning of stratification periods, the presence of a bloom of the nitrogen-fixing cyanobacteria, N. spumigena, indicated nitrogen-deficit conditions. The well-stratified season was characterized by low epilimnetic nutrients levels and the dominance of small single-cell cyanobacteria and colonial chlorophytes. Phytoplankton dynamics in tropical Lake Alchichica is similar to the pattern observed in some deep, hyposaline, North American temperate lakes.  相似文献   

19.
The seasonal variation and the vertical distribution of the phytoplanktonic population of the lagoon of Cullera, an elongated coastal lagoon with estuarine circulation of water, has been studied in three sampling stations: mouth, centre and source. Seasonal variation is determined by a marine-freshwater interaction. In winter, the sea influence is important, a marine water wedge of anoxic water arrives at the sampling station located at the source and marine and brackish water species dominate the phytoplankton. Also marine species of zooplankton and fish enter the system, which may then be considered as exploited by the sea. In spring the marine wedge retreats from the source but remains in the centre and mouth, salinity diminishes, vertical mixing persists and phytoplankton is dominated by Cyclotella species. From late spring to autumn the freshwater influence prevails and a sharp stratification of the water is produced in the stations at the mouth and the centre, by means of a steep halocline coincident with an oxycline. The phytoplankton in this period follows a typical succession like those described in freshwater eutrophic lakes. Vertical distribution of phytoplankton is determined by the presence of the oxycline, originated by the marine water wedge, whose depth varies seasonally but which is always present in the mouth and centre of the lagoon; only few species of algae can be found below its level.  相似文献   

20.
Demeke Admassu 《Hydrobiologia》1996,337(1-3):77-83
The breeding season of Oreochromis niloticus in Lake Awassa was studied from fish caught monthly from December 1987 to November 1988 in relation to a number of environmental factors. Fish at various stages of gonad development and spawning were caught in almost all months, but breeding fish were more frequent twice a year: main peak occurred during January–March and a secondary one occurred during July–September. Gonadosomatic index (GSI) values peaked twice in the study year, a major peak being during January–March and a less pronounced one during July–September. Thus, it was concluded that O. niloticus in Lake Awassa breeds intensively in the former and less intensively during the latter period, and that some breeding occurs at any time of the year. Intensive breeding activity during January–March appeared associated with increase in solar radiation and sunshine hours d–1 whereas that during July–September appeared associated with heavy rainfall. However, intensive breeding in both periods coincided with increase in phytoplankton biomass. Previously, phytoplankton biomass in this lake is shown to increase following increase in nutrients due to mixing- and rainfall-associated changes in the hydrography and hydrology of the lake. Thus, although further studies are required, increase in phytoplankton may be one of the environmental cues to stimulate spawning in O. niloticus in Lake Awassa whereas other factors such as sunshine and rainfall may have indirect roles through their effects on the hydrology and hydrography of the lake ultimately resulting in changes in phytoplankton biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号