首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. Ad5-specific neutralizing antibodies (NAbs) are thought to contribute substantially to anti-Ad5 immunity, but the potential importance of Ad5-specific T lymphocytes in this setting has not been fully characterized. Here we assess the relative contributions of Ad5-specific humoral and cellular immune responses in blunting the immunogenicity of a rAd5-Env vaccine in mice. Adoptive transfer of Ad5-specific NAbs resulted in a dramatic abrogation of Env-specific immune responses following immunization with rAd5-Env. Interestingly, adoptive transfer of Ad5-specific CD8(+) T lymphocytes also resulted in a significant and durable suppression of rAd5-Env immunogenicity. These data demonstrate that NAbs and CD8(+) T lymphocytes both contribute to immunity to Ad5. Novel adenovirus vectors that are currently being developed to circumvent the problem of preexisting anti-Ad5 immunity should therefore be designed to evade both humoral and cellular Ad5-specific immune responses.  相似文献   

2.
Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels.  相似文献   

3.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. A potential solution to this problem is to utilize rAd vaccine vectors derived from rare Ad serotypes such as Ad35 and Ad11. We have previously reported that rAd35 vectors were immunogenic in the presence of anti-Ad5 immunity, but the immunogenicity of heterologous rAd prime-boost regimens and the extent that cross-reactive anti-vector immunity may limit this approach have not been fully explored. Here we assess the immunogenicity of heterologous vaccine regimens involving rAd5, rAd35, and novel rAd11 vectors expressing simian immunodeficiency virus Gag in mice both with and without anti-Ad5 immunity. Heterologous rAd prime-boost regimens proved significantly more immunogenic than homologous regimens, as expected. Importantly, all regimens that included rAd5 were markedly suppressed by anti-Ad5 immunity. In contrast, rAd35-rAd11 and rAd11-rAd35 regimens elicited high-frequency immune responses both in the presence and in the absence of anti-Ad5 immunity, although we also detected clear cross-reactive Ad35/Ad11-specific humoral and cellular immune responses. Nevertheless, these data suggest the potential utility of heterologous rAd prime-boost vaccine regimens using vectors derived from rare human Ad serotypes.  相似文献   

4.
The high prevalence of pre-existing immunity to adenovirus serotype 5 (Ad5) in human populations may substantially limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for HIV-1 and other pathogens. A potential solution to this problem is to use vaccine vectors derived from adenovirus (Ad) serotypes that are rare in humans, such as Ad35. However, cross-reactive immune responses between heterologous Ad serotypes have been described and could prove a major limitation of this strategy. In particular, the extent of immunologic cross-reactivity between Ad5 and Ad35 has not previously been determined. In this study we investigate the impact of pre-existing anti-Ad5 immunity on the immunogenicity of candidate rAd5 and rAd35 vaccines expressing SIV Gag in mice. Anti-Ad5 immunity at levels typically found in humans dramatically blunted the immunogenicity of rAd5-Gag. In contrast, even high levels of anti-Ad5 immunity did not substantially suppress Gag-specific cellular immune responses elicited by rAd35-Gag. Low levels of cross-reactive Ad5/Ad35-specific CD4(+) T lymphocyte responses were observed, but were insufficient to suppress vaccine immunogenicity. These data demonstrate the potential utility of Ad35 as a candidate vaccine vector that is minimally suppressed by anti-Ad5 immunity. Moreover, these studies suggest that using Ad vectors derived from immunologically distinct serotypes may be an effective and general strategy to overcome the suppressive effects of pre-existing anti-Ad immunity.  相似文献   

5.
Fiber and penton base capsid proteins of adenovirus type 5 (Ad5) mediate a well-characterized two-step entry pathway in permissive tissue culture cell lines. Fiber binds with high affinity to the cell surface coxsackievirus-and-adenovirus receptor (CAR), and penton base facilitates viral internalization by binding alphav integrins through an RGD motif. In vivo, the entry pathway is complicated by interactions of capsid proteins with additional cell surface molecules and blood factors. When administered systemically in mice, adenovirus vectors (Adv) localize primarily to hepatic tissue, resulting in efficient gene transduction and potent activation of the host antiviral immune response. The goal of the present study was to detarget Adv uptake through fiber and penton base capsid protein manipulations and determine how detargeted vectors influence transduction efficiency, inflammatory activation, and activation of the adaptive arm of the immune system. By manipulating fiber and the penton base, we have generated highly detargeted vectors (up to 1,200-fold reduction in transgene expression in vivo) with reduced macrophage stimulatory activity in vitro and in vivo. In spite of the diminished transduction and macrophage activation, the detargeted vectors induce strong neutralizing immunity as well as efficient antitransgene antibody. Three of the modified vectors produce antitransgene humoral immunity at levels that exceed or are equal to that seen with an unmodified Ad5-based vector. The fiber-pseudotyped and penton base constructs with RGD deleted have attributes that could be important enhancements in a number of vaccine applications.  相似文献   

6.
Cellular immune responses, particularly those associated with CD3+CD8+ cytotoxic T lymphocytes (CTL), are critical factors in controlling viral infection. Nasopharyngeal carcinoma (NPC) is closely associated with persistent Epstein-Barr virus (EBV) infection. NPC vaccine studies have focused on enhancing specific antiviral CTL responses. In this study, three vaccines capable of expressing the EBV-latent membrane protein 2 (LMP2) (a DNA vector, an adeno-associated virus (AAV) vector, and a replication-defective adenovirus serotype 5 (Ad5) vector) were respectively used to immunize female Balb/c mice (4–6 weeks old) at weeks 0, 2 and 4, either alone or in combination. Our results suggest that combined immunization with DNA, AAV, and adenovirus vector vaccines induced specific cellular immunity more effectively than any of these vectors alone or a combination of two of the three, constituting a sound vaccine strategy for the prevention and treatment of NPC.  相似文献   

7.
The infection of epithelia] swine testicle and intestinal porcine epithelial (IPEC-1) cell lines by adenovirus type 5 (Ad5) has been studied in vitro by using an Ad5-luciferase recombinant containing the firefly luciferase gene as a reporter. Porcine cell lines supported Ad5 replication, showing virus titers, kinetics of virus production, and luciferase expression levels similar to those obtained in human 293 cells, which constitutively express the 5'-end 11% of the Ad5 genome. The tropism of Ad5-based vectors in swine and its ability to induce an efficient immune response against heterologous antigens expressed by foreign genes inserted in these vectors has been determined. Ad5 vectors replicate and express heterologous antigens in porcine lungs and mediastinal and mesenteric lymph nodes. Significant levels of heterologous antigen expression were also demonstrated in the small intestine (jejunum and ileum), but Ad5 replication in this organ was very poor, suggesting that Ad vectors undergo an abortive replication in the porcine small intestine. The tissues infected by Ad5 were dependent on the inoculation route. The oronasal route appeared to be best for inoculation of bronchus-associated lymphoid tissue infection, while the intraperitoneal route was best for gut-associated lymphoid tissue infection. Epithelial cells of bronchioles, macrophages, type II pneumocytes, and follicular dendritic cells were identified as targets for Ad5, while epithelial cells of the intestine were not infected by Ad5. Viruses with a deletion from 79.5 to 84.8 map units in the E3 region, with or without heterologous inserted genes, replicated to lower levels in porcine tissues than did wild-type Ad5. It was also shown that an Ad5 recombinant expressing the four antigenic sites (A, B, C, and D) of transmissible gastroenteritis coronavirus (TGEV) spike protein induced in swine immune responses which neutralized TGEV infectivity. In addition, porcine serum from Ad-TGEV-immune animals provide passive protection when mixed with fully virulent TGEV and orally administered to highly susceptible newborn piglets. These results taken together indicate that swine may be a good animal model for human Ad5 lung infection to aid in the evaluation of candidate adenovirus vaccines and that Ad5 may be suitable as a recombinant viral vaccine or for other applications in swine.  相似文献   

8.
Recombinant viruses are attractive candidates for the development of novel vaccines. A number of viruses have been engineered as vaccine vectors to express antigens from other pathogens or tumors. Inoculation of susceptible animals with this type of recombinant virus results in the induction of both humoral and cellular immune responses directed against the foreign antigens. A general problem to this approach is that existing immunity to the vector can diminish or completely abolish the efficacy of the viral vector. In this study, we investigated whether poliovirus recombinants are capable of inducing effective immunity to the foreign antigen in previously vaccinated animals. Antipoliovirus immunity was induced in susceptible mice by intraperitoneal immunization with live poliovirus. Immunized mice developed antibodies directed against capsid proteins that effectively neutralized poliovirus in vitro and protected animals from a lethal challenge with a high dose of pathogenic poliovirus. To test whether preexisting immunity reduces the efficacy of vaccination with recombinant poliovirus, immunized mice were inoculated with a recombinant poliovirus expressing the C-terminal half of chicken ovalbumin (Polio-Ova). Animals developed ovalbumin-specific antibodies and cytotoxic T lymphocytes (CTL). While the antibody titers observed in preimmune and naive mice were similar, the overall CTL response appeared to be reduced in preimmune mice. Importantly, vaccination with Polio-Ova was able to effectively protect preimmune mice against lethal challenge with a tumor expressing the antigen. Thus, preexisting immunity to poliovirus does not compromise seriously the efficacy of replication-competent poliovirus vaccine vectors. These results contrast with those observed for other viral vaccine vectors and suggest that preexisting immunity does not equally affect the vaccine potential of individual viral vectors.  相似文献   

9.
Heterologous "prime-boost" regimens that involve priming with plasmid DNA vaccines and boosting with recombinant viral vectors have been shown to elicit potent virus-specific cytotoxic T-lymphocyte responses. Increasing evidence, however, suggests that the utility of recombinant viral vectors in human populations will be significantly limited by preexisting antivector immunity. Here we demonstrate that the coadministration of plasmid chemokines and colony-stimulating factors with plasmid DNA vaccines markedly increases the immunogenicity of DNA prime-recombinant adenovirus serotype 5 (rAd5) boost and DNA prime-recombinant vaccinia virus (rVac) boost vaccine regimens in BALB/c mice. In mice with preexisting anti-Ad5 immunity, priming with the DNA vaccine alone followed by rAd5 boosting elicited only marginal immune responses. In contrast, cytokine-augmented DNA vaccine priming followed by rAd5 vector boosting was able to generate potent immune responses in mice with preexisting anti-Ad5 immunity. These data demonstrate that plasmid cytokines can markedly improve the immunogenicity of DNA prime-viral vector boost vaccine strategies and can partially compensate for antivector immunity.  相似文献   

10.
Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defective adenovirus serotype 5 (Ad5) vector, each expressing the same codon-optimized HIV-1 gag gene for immunogenicity in rhesus monkeys. The DNA vaccines were formulated with and without one of two chemical adjuvants (aluminum phosphate and CRL1005). The Ad5-gag vector was the most effective in eliciting anti-Gag CTL. The vaccine produced both CD4+ and CD8+ T-cell responses, with the latter consistently being the dominant component. To determine the effect of existing antiadenovirus immunity on Ad5-gag-induced immune responses, monkeys were exposed to adenovirus subtype 5 that did not encode antigen prior to immunization with Ad5-gag. The resulting anti-Gag T-cell responses were attenuated but not abolished. Regimens that involved priming with different DNA vaccine formulations followed by boosting with the adenovirus vector were also compared. Of the formulations tested, the DNA-CRL1005 vaccine primed T-cell responses most effectively and provided the best overall immune responses after boosting with Ad5-gag. These results are suggestive of an immunization strategy for humans that are centered on use of the adenovirus vector and in which existing adenovirus immunity may be overcome by combined immunization with adjuvanted DNA and adenovirus vector boosting.  相似文献   

11.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have been constructed from Ad subgroup B, including rAd11 and rAd35, as well as from Ad subgroup D, including rAd49. However, the optimal combination of vectors for heterologous rAd prime-boost vaccine regimens and the extent of cross-reactive vector-specific neutralizing antibodies (NAbs) remain poorly defined. We have shown previously that the closely related vectors rAd11 and rAd35 elicited low levels of cross-reactive NAbs. Here we show that these cross-reactive NAbs correlated with substantial sequence homology in the hexon hypervariable regions (HVRs) and suppressed the immunogenicity of heterologous rAd prime-boost regimens. In contrast, vectors with lower hexon HVR homology, such as rAd35 and rAd49, did not elicit detectable cross-reactive vector-specific NAbs. Consistent with these findings, rAd35-rAd49 vaccine regimens proved more immunogenic than both rAd35-rAd5 and rAd35-rAd11 regimens in mice with anti-Ad5 immunity. These data suggest that optimal heterologous rAd prime-boost regimens should include two vectors that are both rare in human populations to circumvent preexisting antivector immunity as well as sufficiently immunologically distinct to avoid cross-reactive antivector immunity.  相似文献   

12.
13.
Recombinant adenovirus serotype 5 (Ad5) vectors have been studied extensively in preclinical gene therapy models and in a range of clinical trials. However, innate immune responses to adenovirus vectors limit effectiveness of Ad5 based therapies. Moreover, extensive pre‐existing Ad5 immunity in human populations will likely limit the clinical utility of adenovirus vectors, unless methods to circumvent neutralizing antibodies that bind virus and block target cell transduction can be developed. Furthermore, memory T cell and humoral responses to Ad5 are associated with increased toxicity, raising safety concerns for therapeutic adenovirus vectors in immunized hosts. Most preclinical studies have been performed in naïve animals; although pre‐existing immunity is among the greatest hurdles for adenovirus therapies, it is also one of the most neglected experimentally. Here we summarize findings using adenovirus vectors in naïve animals, in Ad‐immunized animals and in clinical trials, and review strategies proposed to overcome innate immune responses and pre‐existing immunity. J. Cell. Biochem. 108: 778–790, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 1010 infectious particles per ml and can be directly administrated in vivo.  相似文献   

15.
Dendritic cells (DCs) are professional Ag-presenting cells that are being considered as potential immunotherapeutic agents to promote host immune responses against tumor Ags. In this study, recombinant adenovirus (Ad) vectors encoding melanoma-associated Ags were used to transduce murine DCs, which were then tested for their ability to activate CTL and induce protective immunity against B16 melanoma tumor cells. Immunization of C57BL/6 mice with DCs transduced with Ad vector encoding the hugp100 melanoma Ag (Ad2/hugp100) elicited the development of gp100-specific CTLs capable of lysing syngeneic fibroblasts transduced with Ad2/hugp100, as well as B16 cells expressing endogenous murine gp100. The induction of gp100-specific CTLs was associated with long term protection against lethal s.c. challenge with B16 cells. It was also possible to induce effective immunity against a murine melanoma self Ag, tyrosinase-related protein-2, using DCs transduced with Ad vector encoding the Ag. The level of antitumor protection achieved was dependent on the dose of DCs and required CD4+ T cell activity. Importantly, immunization with Ad vector-transduced DCs was not impaired in mice that had been preimmunized against Ad to mimic the immune status of the general human population. Finally, DC-based immunization also afforded partial protection against established B16 tumor cells, and the inhibition of tumor growth was improved by simultaneous immunization against two melanoma-associated Ags as opposed to either one alone. Taken together, these results support the concept of cancer immunotherapy using DCs transduced with Ad vectors encoding tumor-associated Ags.  相似文献   

16.
Oncolytic adenoviruses have emerged as a promising approach for the treatment of tumors resistant to other treatment modalities. However, preclinical safety studies are hampered by the lack of a permissive nonhuman host. Screening of a panel of primary cell cultures from seven different animal species revealed that porcine cells support productive replication of human adenovirus type 5 (Ad5) nearly as efficiently as human A549 cells, while release of infectious virus by cells from other animal species tested was diminished by several orders of magnitude. Restriction of productive Ad5 replication in rodent and rabbit cells seems to act primarily at a postentry step. Replication efficiency of adenoviral vectors harboring different E1 deletions or mutations in porcine cells was similar to that in A549 cells. Side-by-side comparison of the viral load kinetics in blood of swine and mice injected with Ad5 or a replication-deficient adenoviral vector failed to provide clear evidence for virus replication in mice. In contrast, evidence suggests that adenovirus replication occurs in swine, since adenoviral late gene expression produced a 13.5-fold increase in viral load in an individual swine from day 3 to day 7 and 100-fold increase in viral DNA levels in the Ad5-infected swine compared to the animal receiving a replication-deficient adenovirus. Lung histology of Ad5-infected swine revealed a severe interstitial pneumonia. Although the results in swine are based on a small number of animals and need to be confirmed, our data strongly suggest that infection of swine with human adenovirus or oncolytic adenoviral vectors is a more appropriate animal model to study adenoviral pathogenicity or pharmacodynamic and toxicity profiles of adenoviral vectors than infection of mice.  相似文献   

17.
Six female rhesus macaques were immunized orally and intranasally at 0 weeks and intratracheally at 12 weeks with an adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus SIVsm env recombinant and at 24 and 36 weeks with native SIVmac251 gp120 in Syntex adjuvant. Four macaques received the Ad5hr vector and adjuvant alone; two additional controls were naive. In vivo replication of the Ad5hr wild-type and recombinant vectors occurred with detection of Ad5 DNA in stool samples and/or nasal secretions in all macaques and increases in Ad5 neutralizing antibody in 9 of 10 macaques following Ad administrations. SIV-specific neutralizing antibodies appeared after the second recombinant immunization and rose to titers > 10,000 following the second subunit boost. Immunoglobulin G (IgG) and IgA antibodies able to bind gp120 developed in nasal and rectal secretions, and SIV-specific IgGs were also observed in vaginal secretions and saliva. T-cell proliferative responses to SIV gp140 and T-helper epitopes were sporadically detected in all immunized macaques. Following vaginal challenge with SIVmac251, transient or persistent infection resulted in both immunized and control monkeys. The mean viral burden in persistently infected immunized macaques was significantly decreased in the primary infection period compared to that of control macaques. These results establish in vivo use of the Ad5hr vector, which overcomes the host range restriction of human Ads for rhesus macaques, thereby providing a new model for evaluation of Ad-based vaccines. In addition, they show that a vaccine regimen using the Ad5hr-SIV env recombinant and gp120 subunit induces strong humoral, cellular, and mucosal immunity in rhesus macaques. The reduced viral burden achieved solely with an env-based vaccine supports further development of Ad-based vaccines comprising additional viral components for immune therapy and AIDS vaccine development.  相似文献   

18.
Recombinant adenoviral (rAd) vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5) vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs) was independent of the coxsackievirus and adenovirus receptor (CAR), its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.  相似文献   

19.
Preexisting immunity to adenovirus serotype 5 (Ad5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. A potential solution to this problem is to utilize rAd vectors derived from rare Ad serotypes, such as Ad35. However, rAd35 vectors have appeared less immunogenic than rAd5 vectors in preclinical studies to date. In this study, we explore the hypothesis that the differences in immunogenicity between rAd5 and rAd35 vectors may be due in part to differences between the fiber proteins of these viruses. We constructed capsid chimeric rAd35 vectors containing the Ad5 fiber knob (rAd35k5) and compared the immunogenicities of rAd5, rAd35k5, and rAd35 vectors expressing simian immunodeficiency virus Gag and HIV-1 Env in mice and rhesus monkeys. In vitro studies demonstrated that rAd35k5 vectors utilized the Ad5 receptor CAR rather than the Ad35 receptor CD46. In vivo studies showed that rAd35k5 vectors were more immunogenic than rAd35 vectors in both mice and rhesus monkeys. These data suggest that the Ad5 fiber knob contributes substantially to the immunogenicity of rAd vectors. Moreover, these studies demonstrate that capsid chimeric rAd vectors can be constructed to combine beneficial immunologic and serologic properties of different Ad serotypes.  相似文献   

20.
A novel plasmid-based adenovirus vector system that enables manufacturing of replication-incompetent (DeltaE1) adenovirus type 11 (Ad11)-based vectors is described. Ad11 vectors are produced on PER.C6/55K cells yielding high-titer vector batches after purification. Ad11 seroprevalence proves to be significantly lower than that of Ad5, and neutralizing antibody titers against Ad11 are low. Ad11 seroprevalence among human immunodeficiency virus-positive (HIV(+)) individuals is as low as that among HIV(-) individuals, independent of the level of immune suppression. The low level of coinciding seroprevalence between Ad11 and Ad35 in addition to a lack of correlation between high neutralizing antibody titers towards either adenovirus strongly suggest that the limited humoral cross-reactive immunity between these two highly related B viruses appears not to preclude the use of both vectors in the same individual. Ad11 transduces primary cells including smooth muscle cells, synoviocytes, and dendritic cells and cardiovascular tissues with higher efficiency than Ad5. Ad11 and Ad35 appear to have a similar tropism as judged by green fluorescent protein expression levels determined by using a panel of cancer cell lines. In addition, Ad5 preimmunization did not significantly affect Ad11-mediated transduction in C57BL/6 mice. We therefore conclude that the Ad11-based vector represents a novel and useful candidate gene transfer vehicle for vaccination and gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号