首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unsolved problem of cryopreservation of the yolk-rich teleost embryos may be related, in part, to their sensitivity to chilling and cryoprotective agents. The aim of this study was to gain data on the sensitivity of carp embryos to low temperatures at different developmental stages and on the possible protective and toxic effects of cryoprotectants. A total of 86,400 morulae, half-epiboly and heartbeat-stage embryos was selected and then placed in water or in 1 M methanol, dimethyl sulfoxide (Me2SO), glycerol or 0.1 M sucrose solution at 0, 4 or 24 degrees C for 5 min or 1 h. Following these treatments, the embryos were held in a 24 degrees C water bath until the evaluation of hatching rates. In every developmental stage a significant decrease of hatching rates following exposure to 4 or 0 degree C was detected. Sensitivity to chilling changed significantly with development (heartbeat < morula < half-epiboly). Half-epiboly stage embryos were less sensitive to a short period of exposure to cryoprotectants than morula and heartbeat stages. A 1-h exposure to cryoprotectants revealed a stage dependent sensitivity. Toxicity increased in the order of methanol < Me2SO < glycerol in morula and half-epiboly stages, and methanol < glycerol < Me2SO in the heartbeat stage. The results show morulae are partially protected against chilling in Me2SO and sucrose, half-epiboly in Me2SO, sucrose and methanol, and heartbeat-stage in methanol and glycerol. The results further suggest that carp embryos are sensitive to chilling and that toxicity and protective effects against chilling of cryoprotectants are stage-dependent. The finding on the low chilling sensitivity of heartbeat-stage embryos and the protective effect of certain cryoprotectants may be useful in designing cryopreservation protocols.  相似文献   

2.
Zhang T  Liu XH  Rawson DM 《Theriogenology》2003,59(7):1545-1556
Stage-dependent chilling sensitivity has been reported for many species of fish embryos. Most of these studies reveal that developmental stages beyond 50% epiboly are less sensitive to chilling, but the chilling sensitivity accelerates rapidly at subzero temperatures. In this study, the effects of methanol and developmental arrest on chilling injury were studied using zebrafish (Danio rerio) embryos at 64-cell, 50% epiboly, 6-somite, prim-6 and long-bud stages. Embryos were exposed to methanol or anoxic conditions before they were cooled to 0 or -5 degrees C with slow (1 degrees C/min), medium (30 degrees C/min) or fast ( approximately 300 degrees C/min) cooling rates and were held at these temperatures for different time periods. Embryo survival was evaluated in terms of the percentage of treated embryos with normal developmental appearance after 3-day culture. Experiments on the effect of methanol on chilling sensitivity of the embryos showed that the addition of methanol to embryo medium increased embryo survival significantly at all developmental stages and under all cooling conditions. Higher concentration of methanol treatment generally improved embryo survival when embryos were cooled at a fast cooling rate of 300 degrees C/min. Experiments on the effect of developmental arrest on chilling sensitivity of embryos showed that embryos at 50% epiboly and prim-6 stages underwent developmental arrest almost immediately after 15 min oxygen deprivation. After 4h in anoxia, the survival rates of the embryos were not significantly different from their respective aerobic controls. Anoxia and developmental arrest had no effect on the chilling sensitivity of zebrafish embryos.  相似文献   

3.
As an essential step toward cryopreservation of fish embryos, we examined the chilling sensitivity of medaka (Oryzias latipes) embryos at various developmental stages. Embryos at the 2-4 cell, 8-16 cell, morula, blastula, and early gastrula stages were suspended in Hanks solution. They were chilled to various temperatures (usually 0 degrees C), kept for various periods (usually 20 min), then cultured for up to 14 d to determine survival (assessed by the ability to hatch). Embryos at the 2-4 cell stage were the most sensitive to chilling to 0 degrees C, but sensitivity decreased as development proceeded. The survival rate of 2-4 cell embryos was affected after 2 min of chilling at 0 degrees C; although the rate decreased gradually as the duration of chilling increased, 38% of them still survived after 40 min of chilling. Embryos at the 2-4 cell stage were sensitive to chilling at 0 or -5 degrees C, but much less sensitive at 5 or 10 degrees C. The survival rate of 2-4 cell embryos subjected to repeated rapid cooling and warming was similar to that of those kept chilled. When early gastrula embryos were preserved at 0 or 5 degrees C, the hatching rate did not decrease after 12 and 24h of chilling, respectively, but then decreased gradually as storage was prolonged; however, 3-10% of the embryos hatched even after storage for 10 d. In conclusion, although later-stage medaka embryos would be suitable for cryopreservation (from the perspective of chilling sensitivity), chilling injury may not be serious in earlier stage embryos.  相似文献   

4.
Numerous genetically engineered rat strains have been produced via genome editing. Although freezing of embryos is helpful for the production and storage of these valuable strains, the tolerance to freezing of embryos varies at each developmental stage of the embryo. This study examined the tolerance to freezing of rat embryos at various developmental stages, particularly at the pronuclear stage. Embryos that had developed to the pronuclear, 2-cell, and morula stages were frozen via vitrification using ethylene glycol- and propylene glycol-based solutions. More than 90% of the embryos at all developmental stages survived after warming. The developmental rates to offspring of thawed embryos at the pronuclear, 2-cell, and morula stages were 19%, 41%, and 52%, respectively. Pronuclear stage embryos between the early and late developmental stages were then vitrified. The developmental rates to offspring of the thawed pronuclear stage embryos collected at 24, 28, and 31 h after the induction of ovulation were 17%, 21%, and 23%, respectively. These results indicated that the tolerance to vitrification of rat embryos increased with the development of embryos. The establishment of vitrification method of rat embryos at various developmental stages is helpful for improving the production and storage of valuable rat strains used for biomedical science.  相似文献   

5.
Liu XH  Zhang T  Rawson DM 《Theriogenology》2001,55(8):1719-1731
High chilling sensitivity is one of the main obstacles to successful cryopreservation of zebrafish embryos. So far the nature of the chilling injury in fish embryos has not been clear. The aim of this study is to investigate the effect of cooling rate and partial removal of yolk on chilling injury in zebrafish embryos. Zebrafish embryos at 64-cell, 50%-epiboly, 6-somite and prim-6 stages were cooled to either 0 degrees C or -5 degrees C at three different cooling rates: slow (0.3 degrees C/min or 1 degree C/min), moderate (30 degrees C/min), and rapid (approximately 300 degrees C/min). After chilling, embryos were warmed in a 26 degrees C water bath, followed by 3-day culturing in EM at 26 +/- 1 degrees C for survival assessment. When embryos were cooled to 0 degrees C for up to 30 min, 64-cell embryos had higher survival after rapid cooling than when they were cooled at a slower rate. When 64-cell embryos were held at -5 degrees C for 1 min, their survival decreased greatly after both slow and rapid cooling. The effect of cooling rate on the survival of 50%-epiboly and 6-somite embryos was not significant after 1 h exposure at 0 degrees C and 1 min exposure at -5 degrees C. However, rapid cooling resulted in significantly lower embryo survival than a cooling rate of 30 degrees C/min or 1 degree C/min after 1 h exposure to 0 degrees C for prim-6 stage or 1 h exposure to -5 degrees C for all stages. Chilling injury in 64-cell embryos appears to be a consequence of exposure time at low temperatures rather than a consequence of rapid cooling. Results also indicate that chilling injury in later stage embryos (50%-epiboly, 6-somite and prim-6) is a consequence of the combination of rapid cooling and exposure time at low temperatures. Dechorionated prim-6 embryos were punctured and about half of yolk was removed. After 24 h culture at 26 +/- 1 degrees C after removal of yolk, the yolk-reduced embryos showed higher embryo survival than did control embryos after rapid cooling to -5 degrees C for 10 to 60 min. Results suggest that cold shock injury after rapid cooling can be mitigated after partial removal of yolk at the prim-6 stage. These findings help us to understand the nature of chilling sensitivity of fish embryos and to develop protocols for their cryopreservation.  相似文献   

6.
Gwo JC  Lin CH 《Theriogenology》1998,49(7):1289-1299
To improve availability of penaeid seedstock during periods of high demand, experiments were conducted to determine the feasibility of stockpiling embryos by freezing them. Embryos were screened for developmental stage; cryoprotectants, chilling effects, and freezing regimens were likewise evaluated. Juvenile forms (embryos, nauplii and zoea) of Penaeus japonicus were exposed to various cryoprotectants, including dimethyl sulfoxide, glycerol, methanol, ethylene glycerol and polyethylene glycol 300 under ambient temperature (25 degrees C). Following this bioassay, maximum safe concentrations of each cryoprotectant were tested on the juveniles under chilling to 0 degree C and with 42 freezing regimens. Methanol was found to be relatively nontoxic. Early developmental stages were the most sensitive to chilling. Initial attempts to freeze P. japonicus juveniles were reported. The survival rate of nauplii and zoea treated with 10% methanol in natural sea water (35 ppt salinity) and frozen to -15 degrees C was 85%, and some nauplii and zoea survived freezing to -25 and -196 degrees C. However, no treatment yielded normal nauplii or zoea after freezing.  相似文献   

7.
Summary Objectives were to characterize developmental changes in response to heat shock in the preimplantation mouse embryo and to evaluate whether ability to synthesize glutathione is important for thermal resistance in mouse embryos. Heat shock (41° C for 1 or 2 h) was most effective at disrupting development to the blastocyst stage when applied to embryos at the 2-cell stage that were delayed in development. Effects of heat shock on ability of embryos to undergo hatching were similar for 2-cell, 4-cell, and morula stage embryos. The phenomenon of induced thermotolerance, for which exposure to a mild heat shock increases resistance to a more severe heat shock, depended upon stage of development and whether embryos developed in vitro or in vivo. In particular, induced thermotolerance was observed for morulae derived from development in vivo but not for 2-cell embryos or morulae that developed in culture. Administration of buthionine sulfoximine to inhibit glutathione synthesis did not increase thermal sensitivity of 2-cell embryos or morulae but did reduce subsequent development of 2-cell embryos at both 37° and 41° C. In summary, changes in the ability of 2-cell through morula stages to continue to develop following a single heat shock were generally minimal. However, 2-cell embryos delayed in development had reduced thermal resistance, and therefore, maternal heat stress may be more likely to cause mortality of embryos that are already compromised in development. There were also developmental changes in the capacity of embryos to undergo induced thermotolerance. Glutathione synthesis was important for development of embryos but inhibition of glutathione synthesis did not make embryos more susceptible to heat shock.  相似文献   

8.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

9.
Chen SL  Tian YS 《Theriogenology》2005,63(4):1207-1219
Conventional cryopreservation of complex teleost embryos has been unsuccessful, possibly because their large size (1-7 mm diameter), multi-compartmental structure and low water permeability lead to intracellular ice formation and chilling injury. To overcome these obstacles, we have developed a vitrification procedure for cryopreservation of flounder (Paralichthys olivaceus) embryos. In initial toxicity tests, propylene glycol (PG) and methanol (MeOH) were less toxic to embryos than dimethylformamide (DMF) or dimethyl sulfoxide (Me2SO), whereas ethylene glycol (EG) and glycerol (Gly) were toxic to all tested embryos. Embryos between four-somite and tail bud stages were more tolerant to vitrifying solutions than embryos in other developmental stages. Four vitrifying solutions (FVS1-FVS4) were prepared by combining a basic saline solution (BS2) and cryoprotectants PG and MeOH in different proportions (FVS1: 67, 20 and 13%; FVS2: 60, 24 and 16%; FVS3: 55, 27 and 18%; FVS4: 50, 30 and 20% of BS2, PG and MeOH, respectively). Their impact on flounder embryos was then compared. FVS1 produced the highest survival rate; whereas deformation rate was highest for FVS4. Five-step equilibration of embryos in FVS2 resulted in higher survival rates than equilibration in 4, 3, 2 or 1 steps. Flounder embryos varying from the 14-somite to the pre-hatching stage were cryopreserved in the four vitrifying solutions in liquid nitrogen for 1-7 h. From eight experiments, 20 viable thawed embryos were recovered from 292 cryopreserved embryos. Fourteen larvae with normal morphology hatched successfully from the 20 surviving frozen-thawed embryos from five experiments. Embryos at the tail bud stage exhibited greater tolerance to vitrification than embryos at other stages. These results establish that cryopreservation of flounder embryos by vitrification is possible. The technology has many potential applications in teleost germplasm resource conservation.  相似文献   

10.
Microinjection has proven useful for introduction of low-permeability cryoprotective agents (CPAs) into fish eggs or embryos for cryopreservation. In this work, we examined the suitable conditions for single or combined microinjection into the perivitelline space (PS) and the yolk mass (YM) of embryos of the Japanese whiting, an alternative marine fish model for embryo cryopreservation studies. The parameters examined were injection volume, CPA type and concentration, vehicle (diluent), and suitable developmental stage. Somites and tail elongation embryos tolerated single or combined injection with 2.1 and 15.6 nl in the PS and YM, respectively, whereas earlier embryonic stages tolerated only up to 8.2 nl in the YM. The injected solutions diffused rapidly throughout the PS and YM and remained contained within each compartment unless in the case of structural damage caused by injection of larger volumes. Yamamoto solution was marginally better as a vehicle for microinjection of CPAs than fish Ringer and phosphate buffer saline whereas ¼ artificial sea water was clearly unsuitable. Ethylene glycol was well tolerated by embryos in all developmental stages whereas 1, 2-propylene glycol was suitable only for early embryonic stages. Overall, microinjection was efficient in delivering high loads of CPAs inside whiting embryos more swiftly than previously obtained for this species by immersion-based impregnation protocols. Embryos microinjected with CPAs showed a decrease in embryo nucleation temperature and an increase in chilling tolerance. CPA-microinjected embryos will provide valuable materials to optimize the remaining parameters that are critical for successful cryopreservation such as cooling and warming strategies.  相似文献   

11.
Early embryos are not as passive as previously thought. In the bovine, embryos as early as the 2-cell stage can respond to environmental insults at both the cellular and molecular level by altering expression of specific genes and synthesis of proteins. Moreover, sex related differences exist in how early embryos respond to otherwise hostile environments. As aggressive as early embryos may be to tolerate environment insults, the majority will fail to continue in development. Reduced developmental potential of embryos exposed to elevated temperatures is likely due to direct effects on the early embryo. However, as embryos proceed in development they acquire the ability to better withstand environmental insults. Developmental acquisition of tolerance to environmental stress may be contingent upon acquisition of protective biochemical mechanisms or simply due to increased cell numbers. Correlative evidence has suggested a potential role of heat shock protein 70 and glutathione for protection of embryos in face of elevated temperature. Of these two possibilities, HSP70 appears least likely to play a significant role in developmental acquisition of thermotolerance. Bovine embryos as early as the 2-cell stage, are able to mount a heat shock response; a developmental stage that is most sensitive to elevated temperatures. A more likely candidate for conferring increased resistance of early embryos to elevated temperature is glutathione.  相似文献   

12.
Preimplantation embryos exposed to elevated temperatures have reduced developmental competence. The involvement of reactive oxygen species in these effects has been controversial. Here we tested hypotheses that (1) heat shock effects on development and apoptosis would be greater when embryos were cultured in a high oxygen environment (air; oxygen concentration = approximately 20.95%, v/v) than in a low oxygen environment (5% oxygen) and (2) that these effects would be reversed by addition of the antioxidant dithiothreitol (DTT). Heat shock of 41 degrees C for 9 hr reduced development of two-cell embryos and Day 5 embryos to the blastocyst stage embryos when in high oxygen. There was no effect of heat shock on development when embryos were in low oxygen. Furthermore, induction of TUNEL-positive cells in Day 5 embryos by heat shock only occurred when embryos were in high oxygen. Addition of DTT to two-cell embryos either did not reduce effects of a heat shock of 41 degrees C for 15 hr on development or caused slight protection only. In contrast, treatment of Day 5 embryos with DTT reduced effects of heat shock on development and apoptosis. In summary, oxygen tension was shown to be a major determinant of the effects of heat shock on development and apoptosis in preimplantation bovine embryos. Protective effects of the antioxidant DTT were stage specific and more pronounced at later stages of development.  相似文献   

13.
Drosophila melanogaster embryos reared at 22 degrees C were subjected to a mild heat shock (40 min at 37 degrees C) at various ages in order to determine whether there are changes in the heat shock response during embryogenesis. The effects of the heat shock were measured by assaying (1), subsequent developmental abnormalities (2), developmental time (3), hatchability, and (4), the ability to synthesize the heat shock proteins as assayed by 35S-methionine pulse labeling followed by protein separations using both one-and two-dimensional polyacrylamide gel electrophoresis. Our data show that, first, proteins with molecular weights similar to those of six of the seven major heat shock proteins are normally found in the embryo at control temperatures (22 degrees C); second, that the pregastrula embryo (stages 2-6) is not capable of displaying any aspect of the heat shock response upon treatment, although it may possess all of the so-called heat shock proteins; third, that the complete heat shock response is acquired very rapidly by early gastrula embryos; and fourth, that the heat shock treatment brings about developmental delays and/or abnormalities, depending on the developmental stage of the embryo at the time of the treatment. These developmental abnormalities appear to stem from the failure of early embryos to completely inhibit their synthesis of non-heat-shock proteins. In the light of these findings, it becomes important not to base conclusions about the putative presence of a heat shock response in a particular tissue or developmental stage solely on the presence or absence of the heat shock proteins.  相似文献   

14.
热激对水稻幼苗耐冷性及热激蛋白合成的诱导   总被引:16,自引:1,他引:16  
萌发的水稻种子经42℃热激处理后其幼苗的耐冷性明显增强,膜伤害程度降低,脯氨酸含量增加,超氧物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性和抗氧化物质抗坏血酸含量增加,而膜脂过氧化的关键酶脂氧合酶(LOX)活性及其产物丙二醛(MDA)含量下降.并且热激诱导萌发的水稻胚合成78、70、64、60、46、38、24、17、16kD的热激蛋白(HSP),其中属于HSP70的内质网结合蛋白(BiP)的合成与水稻幼苗耐寒性的提高有关.  相似文献   

15.
Desiccation tolerance in embryonic stages of the tardigrade   总被引:1,自引:0,他引:1  
Desiccation tolerance commonly found among tardigrades allows them to cope with temporal variation of available water. Although the long-term survival of adults has been demonstrated in several species, desiccation tolerance of eggs and embryos is less well studied, however it is an important aspect from an ecological and evolutionary point of view. For the first time we evaluated the desiccation tolerance and subsequent hatching success of five different developmental stages of the tardigrade species Milnesium tardigradum , when rehydrated following drying at eight different humidity levels (10, 20, 31, 40, 54, 59, 72, 81%). Humidity level and developmental stage are significant factors in determining successful hatch rates. The results showed that the less developed stages were quite sensitive to desiccation. Low humidity levels during the first 3 days of development lead to a decrease in hatch rates following rehydration. Later developmental stages showed higher hatch rates than embryos dried at earlier stages. However, fast drying at low humidity levels resulted in delayed development and lower hatch rates following rehydration. In general, further developed embryos exhibit a better survival capacity compared with younger stages.  相似文献   

16.
Although sensitive to various disrupters, pre-implantation embryos possess some cellular cytoprotective mechanisms that allow continued survival in the face of a deleterious environment. For stresses such as heat shock, embryonic resistance increases as development proceeds. Present objectives were to determine whether (1) arsenic compromises development of pre-implantation bovine embryos, (2) developmental changes in embryonic resistance to arsenic mimic those seen for resistance to heat shock, and (3) developmental patterns in induction of apoptosis by arsenic are correlated with similar changes in resistance of embryos to inhibitory effects of arsenic on development. Bovine embryos produced by in vitro fertilization were exposed at the two-cell stage or at day 5 after insemination (embryos > or = 16-cells in number) to either sodium arsenite (0, 1, 5, or 10 microM) or heat shock (exposure to 41 degrees C for 0, 3, 4.5, 6, or 9 hr). Arsenic induced apoptosis and increased group 2 caspase activity for embryos at the > or = 16-cell stage, but not for embryos at the two-cell stage. In contrast to these developmental changes in apoptosis responses, exposure to arsenic reduced cell number 24 hr after exposure for both two-cell embryos and embryos > or = 16-cells. Similarly, the percentage of embryos that developed to the blastocyst stage at day 8 after fertilization was reduced by arsenic exposure at both stages of development. Heat shock, conversely, reduced development to the blastocyst stage when applied at the two-cell stage, but not when applied to embryos > or = 16-cells at day 5 after insemination. In conclusion, arsenic can compromise development of bovine pre-implantation embryos, the temporal window of sensitivity of embryos to arsenic is wider than for heat shock, and cellular cytoprotective responses that embryos acquire for thermal resistance are not sufficient to cause increased embryonic resistance to arsenic exposure. It is likely that despite common cellular pathologies caused by arsenic and heat shock, arsenic acts to reduce development in part through biochemical pathways not activated by heat shock. Moreover, the embryo does not acquire significant resistance to these perturbations within the time frame in development examined.  相似文献   

17.
To date, all attempts at fish embryo cryopreservation have failed. One of the main reasons for this to occur is the high chilling sensitivity reported in fish embryos thus emphasizing the need for further testing of different methods and alternative cryoprotective agents (CPAs) in order to improve our chances to succeed in this purpose. In this work we have used the antifreeze protein type I (AFP I) as a natural CPA. This protein is naturally expressed in sub-arctic fish species, and inhibits the growth of ice crystals as well as recrystallization during thawing. Embryos from Sparus aurata were microinjected with AFP I at different developmental stages, 2 cells and blastula, into the blastomere-yolk interface and into the yolk sac, respectively. Control, punctured and microinjected embryos were subjected to chilling at two different temperatures, 0 degrees C (1h) and -10 degrees C (15min) when embryos reached 5-somite stage. Embryos were subjected to -10 degrees C chilling in a 3M DMSO extender to avoid ice crystal formation in the external solution. Survival after chilling was established as the percentage of embryos that hatch. To study the AFP I distribution in the microinjected embryos, a confocal microscopy study was done. Results demonstrate that AFP I can significantly improve chilling resistance at 0 degrees C, particularly in 2-cell microinjected embryos, displaying nearly 100% hatching rates. This fact is in agreement with the confocal microscopy observations which confirmed the presence of the AFP protein in embryonic cells. These results support the hypothesis that AFP protect cellular structures by stabilizing cellular membranes.  相似文献   

18.
The cryopreservation of fish embryos is a challenge because of their structure, with multiple compartments and permeability barriers, and their high chilling sensitivity. Vitrification at advanced developmental stages is considered to be the more promising option. Nevertheless, all reported attempts have failed. Previous studies demonstrated a better ability for freezing in species that naturally express antifreeze proteins (AFPs). These proteins have been delivered into other fish embryos using time-consuming techniques like microinjection. In the present study, the introduction of FITC labelled AFPs was assayed in zebrafish embryos at early developmental stages (from 2-cell to high blastula stage), before the formation of the yolk syncytial layer, by an easy and non-invasive method and evaluated by fluorescence and confocal microscopy. Incubation with AFPs at 128-cell or high blastula stage provides incorporation of the protein in 50–90% of embryos without affecting hatching. Incubation in media containing protein is a simple, harmless and effective method which makes it possible to treat several embryos at the same time. AFPs remain located in derivatives from marginal blastomeres: the yolk syncytial layer, the most cryosensitive and impermeable barrier, and different digestive organs. Our findings demonstrate that delivery of AFP type I and AFP type III into zebrafish embryos by incubation in media containing protein is a simple and harmless method that may improve cryoprotection of the cellular compartment.  相似文献   

19.
20.
The developmental rate under low temperatures and cold tolerance were investigated in embryos of the blowfly Lucilia sericata. The larvae of this species are now widely used in maggot debridement therapy. Embryonic development was dependent on temperature, with a lower developmental threshold of 9.0 °C. The duration of the egg stage at a rearing temperature of 25 °C was 14 h, and a low temperature of 12.5 °C successfully prolonged this period to 66 h. Embryonic stages differed markedly in their cold tolerance; young embryos were less tolerant to cold than old ones. Late embryonic stages are suitable for cold storage at 5 °C and the storage for 72 h did not decrease the hatching rate by more than 50%. In the mass‐rearing process required for maggot debridement therapy, either of these two simple protocols would be beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号