首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy allocation arguments suggest a possible tradeoff between timing and magnitude of reproduction: plants that postpone reproduction may accumulate greater resources and consequently produce more offspring. However, early reproduction may be favored when adult mortality is high. Tradeoffs among life-history characters may be a consequence of constraints imposed by genetic and environmental covariation among traits. In this paper we examine the genetic basis of the relationship between timing and magnitude of reproduction in an annual plant, Brassica campestris, by selecting to change flowering date and plant size in each of four directions (early and large, late and large, early and small, or late and small). There is a strong positive relationship between flowering date and flowering height. The response to selection was greatest along the axis of positive genetic covariation. Populations may evolve to become early flowering and small or late flowering and tall, but there is little response for the alternative combinations of characters. In this instance, the constraints imposed by quantitative genetics are in striking accord with predictions that might be made on physiological, energetic, or ecological grounds.  相似文献   

2.
Dactylorhiza sambucina is a European terrestrial orchid that lacks a pollinator reward. Throughout most of its range, populations contain yellow- and purple-flowering individuals, but in western Germany, monomorphic yellow populations predominate. As elsewhere, bumblebee queens are the most important pollinators in these populations, and mean fruit set over two years was 19%, well within the range reported from dimorphic populations. Multivariate analyses of plant and population traits, including plant height, leaf number, flower number and density on the spikes, flowering population density, and nearest neighbor distance, showed that only individual plant height and population density had a unique positive effect on pollen export; female function was unrelated to height or population density. The positive effects of dense spacing of flowering conspecifics and tall size appear due to greater visual attractiveness. Good visual exposure may also explain that flowers higher up on the spikes, in spite of opening late in the season, had higher male reproductive success than early flowers.  相似文献   

3.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   

4.
The effect of tall fescue turf on growth, flowering, nodulation, and nitrogen fixing potential of Lupinus albifrons Benth. was examined for greenhouse and field grown plants. No allelopathic effect was observed for lupine plants treated with tall fescue leachates. The nitrogen-fixing potential measured by nodule dry weight and acetylene reduction rates was not significantly affected by tall fescue turf.Both the greenhouse and field studies showed that the growth, sexual reproductive allocation and number of inflorescences were significantly reduced when lupine plants were grown with tall fescue. The root-length densities of tall fescue turf and lupine monoculture were measured. The tall fescue turf had 20 times higher root-length density (20 cm cm-3 soil) than the lupine plant monoculture. This suggests that intense competition at the root zone may be a dominant factor which limits the growth of the lupine plants.The flowering characters of the lupine plants were improved by phosphorus fertilization. Transplanting of older lupine plants into the turf substantially alleviated the tall fescue turf competitive effect.  相似文献   

5.
The inheritance of flowering time was studied in a cross between an early flowering weedy species,Amaranthus retroftexus L., and a late flowering related crop species,A. cruentus L. Segregation ratios were scored in four successive backcrosses of the hybrid to the crop species (BC1 to BC4) and in backcross-derived generations (BC2F2, BC2F3) grown under 8-hr and 16-hr photoperiods and 30/20°C day/night temperatures in growth chambers, and under field and greenhouse environments during summer months at Davis. One major gene for earliness (Ea), dominant over late flowering, was identified conclusively under the 8-hr regime and in some genetic backgrounds under field conditions. Based on segregation patterns within individual progenies and the observed transgressive segregation, a model of three genes seemed to explain all of the ratios consistently. Evidence of segregation distortion at theEa locus, resulting in the deficiency of early individuals, and some role of epistatic interactions among the three postulated major genes requires further testing based on more isogenic and specific progeny materials. Flowering time was closely associated with plant form, inflorescence development, and numerous other traits which differentiate the crop and weed species. This association provides interesting insights into evolutionary changes under domestication and dispersal from lower to higher latitudes.  相似文献   

6.
Abstract. The biodiversity of species‐rich semi‐natural meadows is declining across Europe due to ceased management. In this study we aimed to find out how successfully the local species richness of an overgrown semi‐natural mesic meadow could be restored by sheep grazing after a long period of abandonment. The cover of vascular plant species in grazed plots and ungrazed exclosures was studied for five years and the responses of different functional plant groups were followed (herbs vs grasses, tall vs short species, species differing in flowering time, species representing different Grime's CSR strategies and species indicative of rich vs poor soil). Grazing increased species number by nearly 30%. On grazed plots the litter cover practically disappeared, favouring small herbs such as Rhinanthus minor, Ranunculus acris, Trifolium pratense and the grass Agrostis capillaris. Grazing decreased the cover of the late flowering tall herb Epilobium angustifolium but had no effect on the abundance of the early flowering tall herbs Anthriscus sylvestris or Geranium sylvaticum. We suggest that to succeed in restoration it is useful to determine the responses of different functional plant groups to grazing. Grassland managers need this information to optimize the methods and timing of management used in restoration. Additional management practices, such as mowing, may be needed in mesic meadows to decrease the dominance of tall species. The availability of propagules seemed to restrict further increase of species richness in our study area.  相似文献   

7.
Summary Over 300 landraces of pearl millet were collected in Burkina Faso and grown at the Coastal Plain Experiment Station in Tifton/GA. At Tifton, these landraces are predominantly tall and late-maturing. The photoperiod requirements of these landraces hinder evaluation of their performance in the field and their use in breeding programs. A conversion program has been initiated to transfer genes for dwarf stature and early flowering into the tall, late-maturing landraces. The inbred Tift 85DB is being used as a donor of genes for the dwarf and early characteristics, and was crossed to nine randomly selected landraces from Burkina Faso. The parents, F1, F2, and backcrosses to each parent were grown in the field and evaluated for plant height at anthesis and time in days from planting to anthesis. In general, plant height of F1s was taller than the tallest parent, and in all crosses the maturity of F1s was intermediate between the parents. Numbers of loci conferring height varied among crosses, ranging from 0 to 9.6, and averaged 1.6. Estimated numbers of loci conferring maturity ranged from 0 to 12.8 and averaged 3.4. Broad-sense heritability estimates for height and maturity averaged 60.2 and 65.7%, respectively. Corresponding narrow-sense estimates averaged 23.8 and 48.2%. Joint scaling tests revealed that additive-genetic effects were highly significant for both traits, but dominance and epistatic-genetic effects contributed to the inheritance of each trait in some crosses. The low gene numbers, high heritability estimates, and preponderance of additive-genetic effects suggest that selection for these traits should be effective.  相似文献   

8.
Near-isogenic lines (NILs) are ideal materials for precise estimation of quantitative trait loci (QTL) effects and map-based gene isolation. With the completion of the rice genome sequence, QTL isolation based on NILs is becoming a routine. In this study, a trait-performance derived NIL strategy was adopted to develop NILs. Two plants were identified within one inbred line of recombinant inbred lines (RILs, F7 generation), exhibiting a significant difference in panicle size. By marker screening of the whole genome the genetic background of the two plants was estimated to be 98.7% identical. These two plants were selected as parents to produce a near-isogenic F2 (NIL-F2) population, consisting of 125 individuals, in which spikelets per panicle (SPP), grains per panicle (GPP), heading date (HD) and plant height (PH) were recorded. These four traits expressed discontinuous or bimodal distribution in the NIL-F2 population and followed the expected segregation ratios for a single Mendelian factor by progeny tests. A partial dominant QTL for the four traits was mapped to the same interval flanked by RM310 and RM126 on chromosome 8. The QTL region explained 83.0, 80.2, 94.9 and 93.8% of trait variation of SPP, GPP, HD and PH in the progenies, respectively. Progeny tests also confirmed co-segregation of QTL for the four traits, tall plants consistently flowering late and carrying large panicles. Different NILs development strategies are discussed.  相似文献   

9.
Dwarfing and sensitivity to the duration of a single inductive dark period for flowering ofPharbitis nil in F2 progeny of a cross between the tall strain Tendan, and the dwarf, Kidachi appear to be controlled by the alleles at two independent loci. Progeny of a similar cross between the tall strain Violet and the dwarf Kidachi at F2 and F3 also showed single locus segregation for tall: dwarf plants. In this cross, differences in photoperiodic response could be identified in F3 families but they were not simply inherited. There was some evidence of difficulties with classification of the F2 plants, but also, the flowering of the F1 between the two less sensitive strains Tendan and Violet indicated complex inheritance of their photoperiodic response. Complementary dominant alleles at three independent loci may be necessary for flowering in even shorter dark periods with the sensitive strain Kidachi. The dwarf strain Kidachi has a reduced gibberellin (GA) content (Barendse and Lang 1972), it flowers in a short dark period without terminal flowering, and it responds positively to GA application both for flowering and growth. However, since control of dwarfing and photoperiodic sensitivity can be separated genetically, there is no strick link between the gibberellin responsiveness of Kidachi for its growth and flowering. Despite the complexity of flowering genetics in Violet×Kidachi, a short-dark-period-sensitive, terminal flowering and tall F7 line was obtained in a pedigree previously held heterozygous for the dwarf: tall character but not selected for flowering time. Thus, flowering in a short dark period can also be obtained in the presence of the non-dwarfing allele from strain Violet, again demonstrating genetic independence.  相似文献   

10.
Saline hydroponic studies of cytogenetic stocks of wheat have shown that near isogenic lines carrying contrasting alleles Vrn (vernalisation requirement) or Ppd (photoperiod requirement) genes accumulate less sodium when the dominant allele is present. These dominant alleles also confer early flowering. The genetic control of response to salt stress is discussed with respect to Vrn and Ppd genes. The data suggest that both these genes have pleiotropic effects on sodium accumulation. Salt treatment did not appear to switch on any genes which control sodium accumulation and it is concluded that the intrinsic genetic make-up of the plant determines fitness under salt stress conditions.  相似文献   

11.
Grasslands in North America are increasingly threatened by land conversion and ecological degradation, prompting restoration efforts to increase native plant species diversity and improve wildlife habitat. A major challenge is the removal and management of nonnative invasive species such as tall fescue (Schedonorus arundinaceus), which has a symbiotic association with a fungal endophyte (Epichloë coenophiala) that modifies its ecological interactions. Using transplanted clumps of the cultivar Kentucky‐31, we tested the effects of endophyte infection on tall fescue's survival and performance (tiller production, flowering, and basal area) for 5 years in a central Kentucky reconstructed prairie. We predicted that endophyte infected (E+) clumps would have increased performance compared to endophyte‐free (E?) clumps. Overall, E+ clumps had greater survival, tiller production, flowering tiller production, and basal area, but not reproductive effort (proportion of tillers flowering) as compared to E? clumps. However, survival and trends in tiller number and basal area over the 5‐year period suggested experimental tall fescue populations were in decline in the reconstructed prairie, although the E? population declined more rapidly. Our study provides evidence that endophyte infection improved tall fescue's growth and survival in a postreconstruction plant community, at least in the early years following reconstruction, and may increase the invasive potential of this nonnative species in prairie restorations.  相似文献   

12.
Three naturally occurring late flowering, vernalization responsive ecotypes ofArabidopsis thaliana, Pitztal, Innsbruck and Kiruna-2, were each crossed with the early flowering ecotypes of Landsbergerecta, Columbia and Niederzenz. Analysis of the subsequent generations suggested that late flowering in Kiruna-2 is recessive and mainly determined by a single, late flowering gene. This late flowering gene is not, however, the same as that in any of the late flowering mutants generated in the Landsbergerecta background. Both Pitztal and Innsbruck appear to contain the same dominant gene which confers late flowering to these ecotypes. The early flowering parents Niederzenz and Landsberg both contain genes which modify the phenotype of this dominant late flowering locus, causing F1 plants to flower either earlier (Landsberg) or later (Niederzenz) than the late parent. Mapping of the dominant late flowering locus from Pitztal demonstrated that late flowering co-segregated with an RFLP marker from one end of chromosome 4. This is a similar position to that ofFLA, the gene responsible for late flowering of theArabidopsis ecotypes Sf-2 and Le-O.  相似文献   

13.
辣椒株高遗传分析   总被引:4,自引:3,他引:4  
以辣椒矮秆自交系B9431(P1)和高秆自交系‘吉林长椒’(P2)为双亲,构建P1、F1、P1、B1、B2和F2 6个家系世代群体,应用植物数量性状主基因+多基因混合遗传模型对该6个世代群体株高进行多世代联合分析,结果显示:株高遗传符合1对主基因+多基因遗传模型,高秆对矮秆表现为不完全显性,F1代株高的势能比值为0.39,显性程度为0.91。B1、B2和F2群体主基因遗传率分别为20.35%、17.20%和35.29%,多基因遗传率分别为5.08%、19.75%和0;主基因效应表现为负向加性效应,其值为-6.43,显性效应为0;多基因加性效应值和显性效应值分别为-8.89和9.77。研究还表明,主基因与多基因间的基因效应存在一定差异,主基因加性效应值相当于多基因加性效应值的72.33%,主基因无显性效应,显性效应是由多基因控制遗传。  相似文献   

14.
Prolonged low temperature phases and short-term cold spells often occur in spring during the crucial stages of early maize (Zea mays L.) development. The effect of low temperature-induced growth retardation at the seedling stage on final yield is poorly studied. Therefore, the aim was to identify genomic regions associated with morpho-physiological traits at flowering and harvest stage and their relationship to previously identified quantitative trait loci (QTLs) for photosynthesis and morpho-physiological traits from the same plants at seedling stage. Flowering time, plant height and shoot biomass components at harvest were measured in a dent mapping population for cold tolerance studies, which was sown in the Swiss Midlands in early and late spring in two consecutive years. Early-sown plants exhibited chilling stress during seedling stage, whereas late-sown plants grew under favorable conditions. Significant QTLs, which were stable across environments, were found for plant height and for the time of flowering. The QTLs for flowering were frequently co-localized with QTLs for plant height or ear dry weight. The comparison with QTLs detected at seedling stage revealed only few common QTLs. A pleiotropic effect was found on chromosome 3 which revealed that a good photosynthetic performance of the seedling under warm conditions had a beneficial effect on plant height and partially on biomass at harvest. However, a high chilling tolerance of the seedling seemingly had an insignificant or small negative effect on the yield.  相似文献   

15.
Flowering time and plant height are key agronomic traits that directly affect soybean (Glycine max) yield. APETALA1 (AP1) functions as a class A gene in the ABCE model for floral organ development, helping to specify carpel, stamen, petal, and sepal identities. There are four AP1 homologs in soybean, all of which are mainly expressed in the shoot apex. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR) – CRISPR‐associated protein 9 technology to generate a homozygous quadruple mutant, gmap1, with loss‐of‐function mutations in all four GmAP1 genes. Under short‐day (SD) conditions, the gmap1 quadruple mutant exhibited delayed flowering, changes in flower morphology, and increased node number and internode length, resulting in plants that were taller than the wild type. Conversely, overexpression of GmAP1a resulted in early flowering and reduced plant height compared to the wild type under SD conditions. The gmap1 mutant and the overexpression lines also exhibited altered expression of several genes related to flowering and gibberellic acid metabolism, thereby providing insight into the role of GmAP1 in the regulatory networks controlling flowering time and plant height in soybean. Increased node number is the trait with the most promise for enhancing soybean pod number and grain yield. Therefore, the mutant alleles of the four AP1 homologs described here will be invaluable for molecular breeding of improved soybean yield.  相似文献   

16.
Plant height and maturity are two critical traits in sorghum breeding. To develop molecular tools and to identify genes underlying the traits for molecular breeding, we developed 14,739 SNP markers used to genotype the complete sorghum [Sorghum bicolor (L.) Moench] mini core collection. The collection was evaluated in four rainy and three post-rainy season environments for plant height and maturity. Association analysis identified six marker loci linked to height and ten to maturity in at least two environments with at least two SNPs in each locus. Of these, 14 were in close proximity to previously mapped height/maturity QTL in sorghum. Candidate genes for maturity or plant height close to the marker loci include a sugar transporter (SbSUC9), an auxin response factor (SbARF3), an FLC and FT regulator (SbMED12), and a photoperiod response gene (SbPPR1) for maturity and peroxidase 53, and an auxin transporter (SbLAX4) for plant height. Linkage disequilibrium analysis showed that SbPPR1 and SbARF3 were in regions with reduced sequence variation among early-maturing accessions, suggestive of past purifying selection. We also found a linkage disequilibrium block that existed only among the accessions with short plant height in rainy season environments. The block contains a gene homologous to the Arabidopsis flowering time gene, LUMINIDEPENDENS (LD). Functional LD promotes early maturity while mutation delays maturity, affecting plant height. Previous studies also found reduced sequence variations within this gene. These newly-mapped SNP markers will facilitate further efforts to identify plant height or maturity genes in sorghum.  相似文献   

17.
The effects in growth room experiments of three levels of 2-chloroethyltrimethylammonium chloride (chloromequat chloride; CCC) at two nitrogen levels were studied on a tall rice variety and a mutant dwarf derivative. CCC was found to reduce plant height in both varieties, to increase tiller number and spikelet number on the main panicle or in total but to delay flowering. Chemical dwarfing cannot be regarded as an alternative to genetic dwarfing since mutants may be shorter than chemically treated tall genotypes and may themselves respond favourably to further treatment.  相似文献   

18.
Summary Flowering time, plant height and flower size in Petunia hybrida Hort. (multiflora type) have been genetically analysed by means of a 5 × 5 diallel cross. The results indicated that: (1) the three characters are controlled by additive-dominance polygenic systems. The contribution of the additive gene actions to the genetic variance of flowering time was relatively higher than that of dominance. The reverse situation was found for plant height and flower size. (2) Dominance is ambi-directional for the three characters. Ratios of average dominance were in the range of partial for flowering-time, complete for plant height and overdominance for flower size. (3) Number of genes (or gene groups) controlling the characters are about 3, 3 and 5 for flowering time, plant height and flower size: respectively, (4) Heritability estimates are 0.84, 0.88 and 0.89 in the broad-sense and 0.40, 0.49 and 0.37 in the narrow-sense, for flowering time, plant height and flower size; respectively. (5) Heterosis as percent increase of the mean F1-hybrid above the higher parent, or decrease below the lower parent, was observed for flowering time (+ 9.7% to +13.3%), for plant height (–13.6% to –20.3%) and for flower size (+2.5% to +16.0%).  相似文献   

19.
Semi-dwarfing genes have been widely used in spring barley (Hordeum vulgare L.) breeding programs in many parts of the world, but the success in developing barley cultivars with semi-dwarfing genes has been limited in North America. Exploiting new semi-dwarfing genes may help in solving this dilemma. A recombinant inbred line population was developed by crossing ZAU 7, a semi-dwarf cultivar from China, to ND16092, a tall breeding line from North Dakota. To identify quantitative trait loci (QTL) controlling plant height, a linkage map comprised of 111 molecular markers was constructed. Simple interval mapping was performed for each of the eight environments. A consistent QTL for plant height was found on chromosome 7HL. This QTL is not associated with maturity and rachis internode length. We suggest the provisional name Qph-7H for this QTL. Qph-7H from ZAU 7 reduced plant height to about 3/4 of normal; thus, Qph-7H is considered a semi-dwarfing gene. Other QTLs for plant height were found, but their expression was variable across the eight environments tested.  相似文献   

20.
Pollen-limited plants are confronted with a difficult tradeoff because they must present showy floral displays to attract pollinators and yet must also minimize their apparency to herbivores. In these systems, traits that increase pollinator visitation may also increase herbivore oviposition and overall plant resistance may therefore be constrained to evolve largely as a correlated response to selection on plant apparency or vigor. We used a family-structured quantitative genetic experiment to evaluate the importance of ungulate browsing, flowering date and plant height (traits that are related to overall vigor), and variation in a putative phytochemical defense (cucurbitacin production) on patterns of seed fly attack in a scarlet gilia population. We found significant genetic variation in the amount of insect damage plants experience in the field, providing evidence that resistance may evolve. In addition, we found that browsing reduced seed fly attack and that oviposition is strongly related to plant size and flowering date; large, early flowering plants experience high attack. In addition, we found that high cucurbitacin production was correlated with low seed fly damage, although this effect was relatively weak.We found directional selection on final plant height and flowering date; tall, early flowering plants had the highest reproductive success. In addition, we found negative directional selection on cucurbitacin production, which may indicate a high cost of cucurbitacin or other functions of this phytochemical. Although seed fly herbivory arguably decreases plant fitness, we found an unexpected positive relationship between damage and fitness. A negative relationship between fitness and damage may be masked in this system through strong positive indirect correlations between patterns of damage and levels of pollinator visitation. Finally, we found significant genetic variation in flowering date, plant height, and cucurbitacin production. Resistance to seed flies may evolve in this population, but largely as a non-adaptive correlated response to selection on overall plant vigor. Phytochemicals may play a more important role in defense in years with high seed fly attack, or when pollen-limitation is less severe.Co-ordinating editor: J. Tuomi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号