首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of PDK2 activity against protein kinase B gamma   总被引:3,自引:0,他引:3  
Hodgkinson CP  Sale EM  Sale GJ 《Biochemistry》2002,41(32):10351-10359
Protein kinase B (PKB), also known as Akt, is a serine/threonine protein kinase controlled by insulin, various growth factors, and phosphatidylinositol 3-kinase. Full activation of the PKB enzyme requires phosphorylation of a threonine in the activation loop and a serine in the C-terminal tail. PDK1 has clearly been shown to phosphorylate the threonine, but the mechanism leading to phosphorylation of the serine, the PDK2 site, is unclear. A yeast two-hybrid screen using full-length human PKBgamma identified protein kinase C (PKC) zeta, an atypical PKC, as an interactor with PKBgamma, an association requiring the pleckstrin homology domain of PKBgamma. Endogenous PKBgamma was shown to associate with endogenous PKCzeta both in cos-1 cells and in 3T3-L1 adipocytes, demonstrating a physiological interaction. Immunoprecipitates of PKCzeta, whether endogenous PKCzeta from insulin-stimulated 3T3-L1 adipocytes or overexpressed PKCzeta from cos-1 cells, phosphorylated S472 (the C-terminal serine phosphorylation site) of PKBgamma, in vitro. In vivo, overexpression of PKCzeta stimulated the phosphorylation of approximately 50% of the PKBgamma molecules, suggesting a physiologically meaningful effect. However, pure PKCzeta protein was incapable of phosphorylating S472 of PKBgamma. Antisense knockout studies and use of a PDK1 inhibitor showed that neither PKB autophosphorylation nor phosphorylation by PDK1 accounted for the S472 phosphorylation in PKCzeta immunoprecipitates. Staurosporine inhibited the PKCzeta activity but not the PDK2 activity in PKCzeta immunoprecipitates. Together these results indicate that an independent PDK2 activity exists that physically associates with PKCzeta and that PKCzeta, by binding PKBgamma, functions to deliver the PDK2 to a required location. PKCzeta thus functions as an adaptor, associating with a staurosporine-insensitive PDK2 enzyme that catalyzes the phosphorylation of S472 of PKBgamma. Because both PKCzeta and PKB have been proposed to be required for mediating a number of crucial insulin responses, formation of an active signaling complex containing PKCzeta, PKB, and PDK2 is an attractive mechanism for ensuring that all the critical sites on targets such as glycogen synthase kinase-3 are phosphorylated.  相似文献   

2.
We previously reported the phosphoinositide 3-kinase-dependent activation of the 5'-AMP-activated kinase (AMPK) by peroxynitrite (ONOO-) and hypoxia-reoxygenation in cultured endothelial cells. Here we show the molecular mechanism of activation of this pathway. Exposure of bovine aortic endothelial cells to ONOO- significantly increased the phosphorylation of both Thr172 of AMPK and Ser1179 of endothelial nitric-oxide synthase, a known downstream enzyme of AMPK. In addition, activation of AMPK by ONOO- was accompanied by increased phosphorylation of protein kinase Czeta (PKCzeta) (Thr410/403) and translocation of cytosolic PKCzeta into the membrane. Further, inhibition of PKCzeta abrogated ONOO- -induced AMPK-Thr172 phosphorylation as that of endothelial nitric-oxide synthase. Furthermore, overexpression of a constitutively active PKCzeta mutant enhanced the phosphorylation of AMPK-Thr172, suggesting that PKCzeta is upstream of AMPK activation. In contrast, ONOO- activated PKCzeta in LKB1-deficient HeLa-S3 but affected neither AMPK-Thr172 nor AMPK activity. These data suggest that LKB1 is required for PKCzeta-enhanced AMPK activation. In vitro, recombinant PKCzeta phosphorylated LKB1 at Ser428, resulting in phosphorylation of AMPK at Thr172. Further, direct mutation of Ser428 of LKB1 into alanine, like the kinase-inactive LKB1 mutant, abolished ONOO- -induced AMPK activation. In several cell types originating from human, rat, and mouse, inhibition of PKCzeta significantly attenuated the phosphorylation of both LKB1-Ser428 and AMPK-Thr172 that were enhanced by ONOO-. Taken together, we conclude that PKCzeta can regulate AMPK activity by increasing the Ser428 phosphorylation of LKB1, resulting in association of LKB1 with AMPK and consequent AMPK Thr172 phosphorylation by LKB1.  相似文献   

3.
Although mitogenic and differentiating factors often activate a number of common signaling pathways, the mechanisms leading to their distinct cellular outcomes have not been elucidated. In a previous report, we demonstrated that mitogen-activated protein (MAP) kinase (ERK) activation by the neurogenic agents fibroblast growth factor (FGF) and nerve growth factor is dependent on protein kinase Cdelta (PKCdelta), whereas MAP kinase activation in response to the mitogen epidermal growth factor (EGF) is independent of PKCdelta in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells. We now show that EGF activates MAP kinase through a PKCzeta-dependent pathway involving phosphatidylinositol 3-kinase and PDK1 in H19-7 cells. PKCzeta, like PKCdelta, acts upstream of MEK, and PKCzeta can potentiate Raf-1 activation by EGF. Inhibition of PKCzeta also blocks EGF-induced DNA synthesis as monitored by bromodeoxyuridine incorporation in H19-7 cells. Finally, in embryonic rat brain hippocampal cell cultures, inhibitors of PKCzeta or PKCdelta suppress MAP kinase activation by EGF or FGF, respectively, indicating that these factors activate distinct signaling pathways in primary as well as immortalized neural cells. Taken together, these results implicate different PKC isoforms as determinants of growth factor signaling specificity within the same cell. Furthermore, these data provide a mechanism whereby different growth factors can differentially activate a common signaling intermediate and thereby generate biological diversity.  相似文献   

4.
In primary cultured mouse epidermal cells, phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), induced changes in the phosphorylation levels of 10 proteins, termed KP-1 to 10, in two-dimensional PAGE. Seven of these proteins were phosphorylated and three were dephosphorylated. Similar changes were induced by other PKC activators, but not by inactive phorbol ester. Among these substrate proteins, phosphorylation of three proteins, i.e. KP-1 (pI 4.7/23,000 Mr), KP-2 (pI 4.7/20,700 Mr) and KP-10 (pI 4.7/25,000 Mr was markedly enhanced by PMA and inhibited by a potent PKC inhibitor staurosporine. In vitro phosphorylation studies and phosphoamino acid analysis, using these proteins as substrate and PKC preparations obtained from epidermal cell lysate, revealed that KP-1 and -2 were directly phosphorylated by Ca2+-, phospholipid-dependent protein kinase (conventional-type PKC; cPKC), but not by Ca2+-independent, phospholipid-dependent protein kinase (novel-type PKC; nPKC). On the other hand, KP-10 was mainly phosphorylated by nPKC in intact epidermal cells. These results indicate that cPKC and nPKC in epidermal cells have different substrate specificity for endogenous proteins and may induce different signal transduction.  相似文献   

5.
We previously described epidermal proteins with molecular weights of 40,000 (p40) and 34,000 (p34) as target proteins of protein kinase C in mouse skin carcinogenesis in vivo. In the present work, p40 was purified from mouse brain by the use of 32P-labeled p40 of BALB/MK-2 cells as a tracer. Following four lines of evidence indicate that p40 is creatine phosphokinase B. 1) The amino acid sequences of all peptide fragments of p40 from mouse brain were located in the primary structure of creatine phosphokinase B. 2) p40 of BALB/MK-2 cells was immunoprecipitated with goat antibody against human creatine phosphokinase B. 3) p40 of BALB/MK-2 cells was absorbed to and eluted from a creatine affinity column. 4) Purified creatine phosphokinase B was phosphorylated in vitro by purified protein kinase C, but not by cAMP-dependent kinase or casein kinase II.  相似文献   

6.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis during development and in disease. In pheochromocytoma (PC12) cells, VEGF expression is regulated by A(2A) adenosine receptor (A(2A)AR) activation. The present work examines the underlying signaling pathway. The adenylyl cyclase-protein kinase A cascade has no role in the down-regulation of VEGF mRNA induced by the A(2A)AR agonist, 2-[4-[(2-carboxyethyl)phenyl]ethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680). Conversely, 6-h exposure of cells to either phorbol 12-myristate 13-acetate (PMA) or protein kinase C (PKC) inhibitors mimicked the CGS21680-induced down-regulation. PMA activated PKCalpha, PKCepsilon, and PKCzeta, and CGS21680 activated PKCepsilon and PKCzeta as assessed by cellular translocation. By 6 h, PMA but not CGS21680 decreased PKCalpha and PKCepsilon expression. Neither compound affected PKCzeta levels. Following prolonged PMA treatment to down-regulate susceptible PKC isoforms, CGS21680 but not PMA inhibited the cobalt chloride induction of VEGF mRNA. The proteasome inhibitor, MG-132, abolished PMA- but not CGS21680-induced down-regulation of VEGF mRNA. Phorbol 12,13-diacetate reduced VEGF mRNA levels while down-regulating PKCepsilon but not PKCalpha expression. In cells expressing a dominant negative PKCzeta construct, CGS21680 was unable to reduce VEGF mRNA. Together, the findings suggest that phorbol ester-induced down-regulation of VEGF mRNA occurs as a result of a reduction of PKCepsilon activity, whereas that mediated by the A(2A)AR occurs following deactivation of PKCzeta.  相似文献   

7.
We have previously shown that interleukin 1 (IL-1)-receptor-generated ceramide induces growth arrest in smooth muscle pericytes by activating an upstream kinase in the stress-activated protein kinase (SAPK) cascade. We now report the mechanism by which ceramide activates the SAPK signaling pathway in human embryonic kidney cells (HEK-293). We demonstrate that ceramide activation of protein kinase C zeta (PKCzeta) mediates SAPK signal complex formation and subsequent growth suppression. Ceramide directly activates both immunoprecipitated and recombinant human PKCzeta in vitro. Additionally, ceramide activates SAPK activity, which is blocked with a dominant-negative mutant of PKCzeta. Co-immunoprecipitation studies reveal that ceramide induces the association of SAPK with PKCzeta, but not with PKCepsilon. In addition, ceramide treatment induces PKCzeta association with phosphorylated SEK and MEKK1, elements of the SAPK signaling complex. The biological role of ceramide to induce cell cycle arrest is mimicked by overexpression of a constitutively active PKCzeta. Together, these studies demonstrate that ceramide induces cell cycle arrest by enhancing the ability of PKCzeta to form a signaling complex with MEKK1, SEK, and SAPK.  相似文献   

8.
9.
Protein kinase B (PKB), also known as Akt or RAC-PK, is a serine/threonine kinase that can be activated by growth factors via phosphatidylinositol 3-kinase. In this article we show that PKCzeta but not PKCalpha and PKCdelta can co-immunoprecipitate PKB from CHO cell lysates. Association of PKB with PKCzeta was also found in COS-1 cells transiently expressing PKB and PKCzeta, and moreover we found that this association is mediated by the AH domain of PKB. Stimulation of COS-1 cells with platelet-derived growth factor (PDGF) resulted in a decrease in the PKB-PKCzeta interaction. The use of kinase-inactive mutants of both kinases revealed that dissociation of the complex depends upon PKB activity. Analysis of the activities of the interacting kinases showed that PDGF-induced activation of PKCzeta was not affected by co-expression of PKB. However, both PDGF- and p110-CAAX-induced activation of PKB were significantly abolished in cells co-expressing PKCzeta. In contrast, co-expression of a kinase-dead PKCzeta mutant showed an increased induction of PKB activity upon PDGF treatment. Downstream signaling of PKB, such as the inhibition of glycogen synthase kinase-3, was also reduced by co-expression of PKCzeta. A clear inhibitory effect of PKCzeta was found on the constitutively active double PKB mutant (T308D/S473D). In summary, our results demonstrate that PKB interacts with PKCzeta in vivo and that PKCzeta acts as a negative regulator of PKB.  相似文献   

10.
Soluble extracts prepared from quiescent Swiss mouse 3T3 cells that had been briefly exposed to various mitogens exhibited a 2- to 3-fold elevation in phosphorylating activities toward ribosomal protein S6 and a synthetic peptide, Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala (RRLSSLRA), patterned after a phosphorylation site sequence from S6. Optimal activation of the phosphorylating activity occurred within 15-20 min of exposure of the cells to platelet-derived growth factor (10 ng/ml), epidermal growth factor (100 nM), and insulin (100 nM), and 2-5 min after 12-O-tetradecanoylphorbol-13-acetate (TPA) (100 nM) treatment. Fractionation of the cytosolic extracts from mitogen- or TPA-treated cells on Sephacryl S-300, TSK-400, and DEAE-Sephacel columns gave results suggesting that a single stimulated kinase accounted for the enhanced S6 and RRLSSLRA phosphorylating activities. The mitogen-activated kinase had an apparent Mr of about 85,000 as determined with Sephacryl S-300, but eluted with an apparent Mr of 26,000 from a TSK-400 high pressure liquid chromatography column. The S6 kinase was also stimulated in cytosols from insulin-like growth factor 1- (100 nM), vasopressin- (250 nM), prostaglandin F2 alpha- (250 nM), and 10% fetal calf serum-treated cells but not from quiescent cells exposed to beta-transforming growth factor (2 ng/ml). TPA, vasopressin and prostaglandin F2 alpha appeared to stimulate this kinase via a protein kinase C-dependent mechanism, since the responses to these hormones, but not to platelet-derived growth factor, epidermal growth factor, and insulin, were lost in protein kinase C-depleted cells.  相似文献   

11.
We have recently identified a protein, consisting of seven WD repeats, presumably forming a beta-propeller, and a domain identified in Fab1p, YOTB, VAC1p, and EEA1 (FYVE) domain, ProF. The FYVE domain targets the protein to vesicular membranes, while the WD repeats allow binding of the activated kinases Akt and protein kinase (PK)Czeta. Here, we describe the vesicle-associated membrane protein 2 (VAMP2) as interaction partner of ProF. The interaction is demonstrated with overexpressed and endogenous proteins in mammalian cells. ProF and VAMP2 partially colocalize on vesicular structures with PKCzeta and the proteins form a ternary complex. VAMP2 can be phosphorylated by activated PKCzeta in vitro and the presence of ProF increases the PKCzeta-dependent phosphorylation of VAMP2 in vitro. ProF is an adaptor protein that brings together a kinase with its substrate. VAMP2 is known to regulate docking and fusion of vesicles and to play a role in targeting vesicles to the plasma membrane. The complex may be involved in vesicle cycling in various secretory pathways.  相似文献   

12.
Treatment of normal human fibroblasts with epidermal growth factor (EGF) results in the rapid (0.5 min) and simultaneous tyrosine phosphorylation of the EGF receptor (EGFr) and several other proteins. An exception to this tyrosine phosphorylation wave was a protein (42 kDa) that became phosphorylated on tyrosine only after a short lag time (5 min). We identified this p42 kDa substrate as the microtubule-associated protein (MAP) kinase using a monoclonal antibody to a peptide corresponding to the C-terminus of the predicted protein (Science 249, 64-67, 1990). EGF treatment of human fibroblasts at 37 degrees C for 5 min resulted in the tyrosine phosphorylation of 60-70% of MAP kinase as determined by the percent that was immunoprecipitated with antiphosphotyrosine antibodies. Like other tyrosine kinase growth factor receptors, the EGFr is activated and phosphorylated at 4 degrees C but is not internalized. Whereas most other substrates were readily tyrosine phosphorylated at 4 degrees C, MAP kinase was not. When cells were first stimulated with EGF at 4 degrees C and then warmed to 37 degrees C without EGF, tyrosine phosphorylation of MAP kinase was again observed. Treatment of cells with the protein kinase C activator phorbol myristate acetate (PMA) also resulted in the tyrosine phosphorylation of MAP kinase, and again only at 37 degrees C. Tryptic phosphopeptide maps demonstrated that EGF and PMA both induced the phosphorylation of the same peptide on tyrosine and threonine. This temperature and PMA sensitivity distinguishes MAP kinase from most other tyrosine kinase substrates in activated human fibroblasts.  相似文献   

13.
Protein kinase Czeta (PKCzeta) plays a critical role in cancer cell chemotaxis. Upon activation induced by epidermal growth factor (EGF) or chemoattractant SDF-1alpha, PKCzeta redistributes from cytosol to plasma membrane. Based on this property, we developed a rapid cell-based assay for inhibitors of ligand-induced PKCzeta activation. PKCzeta green fluorescent protein (GFP) was transfected into human breast cancer cells, MDA-MB-231, to establish a stable cell line, PKCzeta-GFP/MDA-MB-231. PKCzeta-GFP/MDA-MB-231 maintained phenotypes, such as chemotaxis, adhesion, and cell migration, similar to those of its parental cell line. Therefore it could be used as a representative cancer cell line. EGF induced translocation of PKCzeta-GFP to plasma membrane in a pattern similar to that of endogenous PKCzeta, indicative of activation of PKCzeta Translocation of PKCzeta-GFP could be easily and directly recorded by an inverted fluorescence microscope. Inhibitors of chemotaxis also impaired the translocation of PKCzeta-GFP, which further validated the biological relevance of our assay. Taken together, we have developed a simple, rapid, and reliable assay to detect the ligand-induced activation of PKCzeta in human cancer cells. This assay can be used in screening for inhibitors of PKCzeta activation, which is critically required for cancer cell chemotaxis.  相似文献   

14.
Okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A, and is a strong tumor promoter that is not an activator of protein kinase C. Treatment of quiescent cultures of rat fibroblastic 3Y1 cells with okadaic acid induced marked activation of a kinase activity that phosphorylated microtubule-associated protein (MAP) 2 and myelin basic protein, but not histone or casein, in vitro. This activated kinase eluted at approximately 0.15 M NaCl on a DEAE-cellulose column and its apparent molecular mass was determined to be approximately 40 kDa by gel filtration. Detection of the kinase activity in polyacrylamide gels containing substrate proteins after sodium dodecyl sulfate gel electrophoresis revealed that the okadaic-acid-activated kinase activity resided mainly in two closely related polypeptides with apparent molecular mass approximately 40 kDa. The characteristics of this kinase were indistinguishable from those of the mitogen-activated MAP kinase in the same cells. The okadaic-acid-activated MAP kinase was deactivated by protein phosphatase 2A treatment in vitro. These results suggest that MAP kinase is negatively regulated by protein phosphatases 1 and/or 2A in quiescent cells and therefore can be activated by inhibiting these protein phosphatases. Interestingly, the okadaic-acid-induced activation of MAP kinase was transient and epidermal-growth-factor-induced activation was also transient, even in the presence of okadaic acid. These data may imply that protein phosphatases 1 and 2A are not involved in the deactivation of MAP kinase in cells.  相似文献   

15.
We previously showed in rat renal glomerular mesangial cells, that arginine vasopressin (AVP)-stimulated cell proliferation was mediated by epidermal growth factor receptor (EGF-R) transactivation, and activation (phosphorylation) of ERK1/2 and p70S6 kinase (Ghosh et al. [2001]: Am J Physiol Renal Physiol 280:F972-F979]. In this paper, we extend these observations and show that different protein kinase C (PKC) isoforms play different roles in mediating AVP-stimulated ERK1/2 and p70S6 kinase phosphorylation and cell proliferation. AVP treatment for 0-60 min stimulated the serine/threonine phosphorylation of PKC isoforms alpha, delta, epsilon, and zeta. The activation of PKC was dependent on EGF-R and phosphatidylinositol 3-kinase (PI3K) activation. In addition, inhibition of conventional and novel PKC isoforms by chronic (24 h) exposure to phorbol 12-myristate 13-acetate (PMA) inhibited AVP-induced activation of ERK and p70S6 kinase as well as EGF-R phosphorylation. Rottlerin, a specific inhibitor of PKCdelta, inhibited both ERK and p70S6 kinase phosphorylation and cell proliferation. In contrast, a PKCepsilon translocation inhibitor decreased ERK1/2 activation without affecting p70S6 kinase or cell proliferation, while a dominant negative PKCzeta (K281W) cDNA delayed p70S6 kinase activation without affecting ERK1/2. On the other hand, G?6976, an inhibitor of conventional PKC isoforms, did not affect p70S6 kinase, but stimulated ERK1/2 phosphorylation without affecting cell proliferation. Our results indicate that PKCdelta plays an important role in AVP-stimulated ERK and p70S6 kinase activation and cell proliferation.  相似文献   

16.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

17.
An affinity column, prepared by immobilizing phosphatidylserine and cholesterol in polyacrylamide, was utilized in the purification of protein kinase C. Protein kinase activity and phorbol ester binding were monitored by assaying Ca2+ plus phosphatidylserine-dependent phosphorylation of histone H1 and [3H]phorbol dibutyrate binding, respectively. Both activities were present in a cytosolic extract of rabbit renal cortex, eluted together from a DEAE-cellulose column, bound to the affinity column in the presence of Ca2+, and eluted symmetrically upon application of EGTA. Recovery from the affinity column was high (30-50%) and resulted in as much as a 6000-7700-fold purification, depending on the region of the DEAE-cellulose peak that was applied. Following affinity column purification, protein kinase and phorbol ester binding activity eluted symmetrically upon gel filtration, with a molecular weight of approximately 80 kDa. A protein of the same size was present in silver-stained gels following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of affinity column purified samples from the DEAE-cellulose peak. From 2-4 other, smaller proteins were also present, their number and relative amounts depending on the region of the DEAE-cellulose peak used. These data indicate that Ca2+-dependent/binding to a polyacrylamide-immobilized phospholipid provides a useful technique for purification of protein kinase C as well as other, unidentified proteins exhibiting a Ca2+ plus phospholipid-dependent interaction.  相似文献   

18.
We examined the upstream kinases for mitogen-activated protein kinase (MAPK) activation during ischemic hypoxia and reoxygenation using H9c2 cells derived from rat cardiomyocytes. Protein kinase C (PKC)zeta, an atypical PKC isoform mainly expressed in rat heart, has been shown to act as an upstream kinase of MAPK during ischemic hypoxia and reoxygenation by analyses with PKC inhibitors, antisense DNA, a dominant negative kinase defective mutant, and constitutively active mutants of PKCzeta. Immunocytochemical observations show PKCzeta staining in the nucleus during ischemic hypoxia and reoxygenation when phosphorylated MAPK is also detected in the nucleus. This nuclear localization of PKCzeta is inhibited by treatment with wortmannin, a phosphoinositide 3-kinase inhibitor that also inhibits MAPK activation in a dose-dependent manner. This is supported by the inhibition of MAPK phosphorylation by another blocker of phosphoinositide 3-kinase, LY294002. An upstream kinase of MAPK, MEK1/2, is significantly phosphorylated 15 min after reoxygenation and observed mainly in the nucleus, whereas it is present in the cytoplasm in serum stimulation. The phosphorylation of MEK is blocked by PKC inhibitors and phosphoinositide 3-kinase inhibitors, as observed in the case of MAPK phosphorylation. These observations indicate that PKCzeta, which is activated by phosphoinositide 3-kinase, induces MAPK activation through MEK in the nucleus during reoxygenation after ischemic hypoxia.  相似文献   

19.
Abstract Aspirin has been shown to protect against glutamate neurotoxicity via the nuclear factor kappaB pathway. Some studies have implicated the atypical protein kinase C (PKC) zeta (zeta) isoform in cell protection, but the mechanism involved remains unclear. We show here that aspirin exerts at least some of its effects through PKCzeta, decreasing the NMDA-induced activation, cleavage and nuclear translocation of this molecule. Aspirin (acetylsalicylic acid) directly inhibited the protein kinase activity of PKCzeta, whereas salicylic acid did not. This direct effect of aspirin on purified human PKCzeta is consistent with PKCzeta inhibition preventing the NMDA-induced death of cortical neurones. Caspase-3 inhibition blocked the cleavage and nuclear translocation of PKCzeta, whereas caspase-1-inhibition did not. Thus, PKCzeta (protein kinase Mzeta) regulates nuclear events essential for the initiation of the apoptotic pathway. Aspirin protects cells against NMDA-induced apoptosis by means of a novel mechanism targeting PKCzeta, a key molecule in inflammatory responses and neurodegeneration.  相似文献   

20.
Atypical protein kinase Czeta suppresses migration of mouse melanoma cells.   总被引:2,自引:0,他引:2  
Mouse melanoma B16 F1 cells cultured in RPMI 1640 supplemented with the melanin precursors tyrosine and phenylalanine display increased melanin levels and elevated migration while down-regulating protein kinase C (PKC)zeta to low levels. Although control experiments rule out a direct role by melanin, PKCzeta down-regulation is shown to be a critical determinant of cell migration. Transfection of high-motility cells with either wild-type PKCzeta or its regulatory domain suppresses migration. Known to bind to the regulatory domain of PKCzeta, the proapoptotic protein prostate apoptosis response-4 (Par-4) coimmunoprecipitates with PKCzeta as a 47-kDa protein. Transfection of Par-4 (or its leucine zipper element) further suppresses migration of low-motility cells (which express high levels of PKCzeta), whereas high-motility cells (which express low levels of PKCzeta) are unaffected by Par-4 overexpression. It is proposed that in nonmetastatic cells, the PKCzeta Par-4 complex provides a brake on migration that is released by melanin precursors that initiate PKCzeta down-regulation. Elevation of PKCzeta in melanoma cells, or preventing its down-regulation through the dietary restriction of tyrosine and phenylalanine, may therefore control metastatic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号