首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is a highly inducible protein whose expression involves a complex and variable array of regulatory mechanisms. We investigated the influence of the 5'-untranslated region (5'UTR) of the rat ODC mRNA on translation of the mRNA in a cell-free system and in cultured mammalian cells. ODC mRNA containing the full-length 5'UTR was translated in reticulocyte lysates at approximately 5% of the rate of mRNA containing no ODC 5' leader sequences. The complete 5'UTR inhibited expression of a heterologous gene product, human growth hormone, to the same extent in cultured mammalian cells. Furthermore, the 5'-most 130 bases of the rat ODC 5'UTR, a conserved G/C-rich region predicted to form a stable stem-loop structure (delta G = -68 kcal/mol), repressed translation to the same extent as the entire 5'UTR, both in the lysates and in intact cells. The 3'-most 160 bases of the 5'UTR, containing a small upstream open reading frame, decreased expression by 50-65% both in vitro and in intact cells, compared with controls lacking any ODC 5'UTR sequences. Mutation of the initiation codon AUG beginning this upstream open reading frame to GCG restored expression to rates equivalent to those seen in constructions containing no ODC 5'UTR sequences. We conclude that the rat ODC mRNA 5'UTR can inhibit translation of ODC mRNA both in vitro and in vivo, and that the predicted stem-loop structure at the 5' end of the 5'UTR is both necessary and sufficient for this inhibition.  相似文献   

3.
4.
5.
The amyloid precursor protein (APP) has been associated with Alzheimer's disease (AD) because APP is processed into the beta-peptide that accumulates in amyloid plaques, and APP gene mutations can cause early onset AD. Inflammation is also associated with AD as exemplified by increased expression of interleukin-1 (IL-1) in microglia in affected areas of the AD brain. Here we demonstrate that IL-1alpha and IL-1beta increase APP synthesis by up to 6-fold in primary human astrocytes and by 15-fold in human astrocytoma cells without changing the steady-state levels of APP mRNA. A 90-nucleotide sequence in the APP gene 5'-untranslated region (5'-UTR) conferred translational regulation by IL-1alpha and IL-1beta to a chloramphenicol acetyltransferase (CAT) reporter gene. Steady-state levels of transfected APP(5'-UTR)/CAT mRNAs were unchanged, whereas both base-line and IL-1-dependent CAT protein synthesis were increased. This APP mRNA translational enhancer maps from +55 to +144 nucleotides from the 5'-cap site and is homologous to related translational control elements in the 5'-UTR of the light and and heavy ferritin genes. Enhanced translation of APP mRNA provides a mechanism by which IL-1 influences the pathogenesis of AD.  相似文献   

6.
The 5′-untranslated region (5′-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5′-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5′-UTRs with high translation efficiency using a ribosome display technique. A 5′-UTR random library, comprised of 5′-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5′-UTR with high translation efficiency was obtained from random 5′-UTR library.  相似文献   

7.
8.
An RNA gel retardation assay was used to identify one or more cellular protein(s) (ornithine decarboxylase mRNA 5'-UTR binding protein (ODCBP)) that bind specifically to a conserved region of the 5'-untranslated region (5'-UTR) of rat ornithine decarboxylase (ODC) mRNA. Ultraviolet light cross-linking demonstrated that this protein has an apparent Mr = 58,000 in mammalian cells. Treatment with the oxidizing agent diamide prevented binding of the ODCBP to ODC mRNA; addition of beta-mercaptoethanol reversed this inhibition and permitted mRNA.ODCBP complex formation. Cytoplasmic extracts from a variety of animal cells and tissues demonstrated similar binding activities; however, there was marked tissue-specific expression of the protein in the rat, with brain, heart, lung, and testis containing large amounts, and kidney, spleen, and skeletal muscle expressing negligible amounts. Binding was completely prevented by several mutations within a highly conserved heptanucleotide region (CCAU/ACUC) that was within 61 bases of the initiation codon in ODC mRNAs from mammals, Xenopus, and Caenorhabditis elegans; mutations 5' and 3' of the conserved heptanucleotide domain had no effect on binding activity. Binding was not affected by manipulation of cellular polyamine levels or by treatment of cells with agents that stimulate ODC biosynthesis. Thus, we have identified a widely distributed cellular protein that binds to a conserved domain within the 5'-UTR of ODC mRNA from many animal species; functional consequences of this binding remain to be determined.  相似文献   

9.
10.
11.
12.
13.
Heat shock in Drosophila results in repression of most normal (non-heat shock) mRNA translation and the preferential translation of the heat shock mRNAs. The sequence elements that confer preferential translation have been localized to the 5'-untranslated region (5'-UTR) for Hsp22 and Hsp70 mRNAs (in Drosophila). Hsp90 mRNA is unique among the heat shock mRNAs in having extensive secondary structure in its 5'-UTR and being abundantly represented in the non-heat shocked cell. In this study, we show that Hsp90 mRNA translation is inefficient at normal growth temperature, and substantially activated by heat shock. Its preferential translation is not based on an IRES-mediated translation pathway, because overexpression of eIF4E-BP inhibits its translation (and the translation of Hsp70 mRNA). The ability of Hsp90 mRNA to be preferentially translated is conferred by its 5'-UTR, but, in contrast to Hsp22 and -70, is primarily influenced by nucleotides close to the AUG initiation codon. We present a model to account for Hsp90 mRNA translation, incorporating results indicating that heat shock inhibits eIF4F activity, and that Hsp90 mRNA translation is sensitive to eIF4F inactivation.  相似文献   

14.
15.
D Crawford  K Hagerty  B Beutler 《Gene》1989,85(2):525-531
We report the sequence of the cDNAs representing five independent splice forms of human placental RNase inhibitor (RI) mRNA. RI mRNAs differ principally in the 5'-untranslated region, which may include or lack a 68-nucleotide (nt) exon inserted at a splice site located only 20 nt upstream from the initiator AUG. At least three other exons may also abut the same splice site. This unusual and variable feature of the mRNA would suggest that secondary structure in the region of the start codon may differ among RI messages. A single copy of the RI gene exists in the human genome.  相似文献   

16.
mRNA silencing and storage play an important role in gene expression under diverse circumstances, such as throughout early metazoan development and in response to many types of environmental stress. Here we demonstrate that the major mRNA-associated protein YB-1, also termed p50, is a potent cap-dependent mRNA stabilizer. YB-1 addition or overexpression dramatically increases mRNA stability in vitro and in vivo, whereas YB-1 depletion results in accelerated mRNA decay. The cold shock domain of YB-1 is responsible for the mRNA stabilizing activity, and a blocked mRNA 5' end is required for YB-1-mediated stabilization. Significantly, exogenously added YB-1 destabilizes the interaction of the cap binding protein, eIF4E, with the mRNA cap structure. Conversely, sequestration of eIF4E from the cap increases the association of endogenous YB-1 with mRNA at or near the cap, and significantly enhances mRNA stability. These data support a model whereby down-regulation of eIF4E activity or increasing the YB-1 mRNA binding activity or concentration in cells activates a general default pathway for mRNA stabilization.  相似文献   

17.
18.
19.
20.
The Wee1 protein tyrosine kinase is a key regulator of cell cycle progression. Wee1 activity is necessary for the control of the first embryonic cell cycle following the fertilization of meiotically mature Xenopus oocytes. Wee1 mRNA is present in immature oocytes, but Wee1 protein does not accumulate in immature oocytes or during the early stages of progesterone-stimulated maturation. This delay in Wee1 translation is critical since premature Wee1 protein accumulation has been shown to inhibit oocyte maturation. In this study we provide evidence that Wee1 protein accumulation is regulated at the level of mRNA translation. This translational control is directed by sequences within the Wee1 mRNA 3'-untranslated region (3' UTR). Specifically, cytoplasmic polyadenylation element (CPE) sequences within the Wee1 3' UTR are necessary for full translational repression in immature oocytes. Our data further indicate that while CPE-independent mechanisms may regulate the levels of Wee1 protein accumulation during progesterone-stimulated oocyte maturation, the timing of Wee1 mRNA translational induction is directed through a CPE-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号