首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classical mitogen-activated protein (MAP) kinases are activated by dual phosphorylation of the Thr-Xxx-Tyr motif in their activation loop, which is catalyzed by members of the MAP kinase kinase family. The atypical MAP kinases extracellular signal-regulated kinase 3 (ERK3) and ERK4 contain a single phospho-acceptor site in this segment and are not substrates of MAP kinase kinases. Previous studies have shown that ERK3 and ERK4 are phosphorylated on activation loop residue Ser-189/Ser-186, resulting in their catalytic activation. However, the identity of the protein kinase mediating this regulatory event has remained elusive. We have used an unbiased biochemical purification approach to isolate the kinase activity responsible for ERK3 Ser-189 phosphorylation. Here, we report the identification of group I p21-activated kinases (PAKs) as ERK3/ERK4 activation loop kinases. We show that group I PAKs phosphorylate ERK3 and ERK4 on Ser-189 and Ser-186, respectively, both in vitro and in vivo, and that expression of activated Rac1 augments this response. Reciprocally, silencing of PAK1/2/3 expression by RNA interference (RNAi) completely abolishes Rac1-induced Ser-189 phosphorylation of ERK3. Importantly, we demonstrate that PAK-mediated phosphorylation of ERK3/ERK4 results in their enzymatic activation and in downstream activation of MAP kinase-activated protein kinase 5 (MK5) in vivo. Our results reveal that group I PAKs act as upstream activators of ERK3 and ERK4 and unravel a novel PAK-ERK3/ERK4-MK5 signaling pathway.  相似文献   

2.
The MAP kinase cascade. Discovery of a new signal transduction pathway   总被引:7,自引:0,他引:7  
Using biochemical techniques similar to those used by Krebs and Fischer in elucidating the cAMP kinase cascade, a protein kinase cascade has been found that represents a new pathway for signal transduction. This pathway is activated in almost all cells that have been examined by many different growth and differentiations factors suggesting control of different cell responses. At this writing, four tiers of growth factor regulated kinases, each tier represented by more than one enzyme, have been reconstitutedin vitro to form the MAP kinase cascade. Preliminary findings suggesting multiple feedback or feedforward regulation of several components in the cascade predict higher complexity than a simple linear pathway.  相似文献   

3.
The melanocortin 4 receptor (MC4-R) is a Gs-coupled receptor known to increase cAMP production following agonist stimulation. We demonstrate that the mitogen-activated protein kinases p42 (ERK2) and p44 (ERK1) are also activated by MC4-R following treatment with the MC4-R agonist NDP--MSH in stably transfected CHO-K1 cells. This time- and dose-dependent response is abolished by the MC4-R antagonist SHU-9119. p42/p44 MAPK activation is blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 but not by the protein kinase A (PKA) inhibitor Rp-cAMPS, indicating that that signal activating the p42/p44 MAPK pathway is conveyed through inositol triphosphate.  相似文献   

4.
ABSTRACT: Perturbed action of signal transduction pathways, including the mitogen-activated protein (MAP) kinase pathways, is one of the hallmarks of many cancers. While the implication of the typical MAP kinase pathways ERK1/2-MEK1/2, p38MAPK and JNK is well established, recent findings illustrate that the atypical MAP kinase ERK3/4-MK5 may also be involved in tumorigenic processes. Remarkably, the ERK3/4-MK5 pathway seems to possess anti-oncogenic as well as pro-oncogenic properties in cell culture and aninal models. This review summarizes the mutations in the genes encoding ERK3, ERK4 and MK5 that have been detected in different cancers, reports aberrant expression levels of these proteins in human tumours, and discusses the mechanisms by which this pathway can induce senescence, stimulate angiogenesis and invasiveness.  相似文献   

5.
6.
7.
Osteosarcoma (OS) is a sarcoma with high rates of pulmonary metastases and mortality. The mechanisms underlying tumour generation and development in OS are not well-understood. Haematopoietic cell kinase (HCK), a vital member of the Src family of kinase proteins, plays crucial roles in cancer progression and may act as an anticancer target; however, the mechanism by which HCK enhances OS development remains unexplored. Therefore, we investigated the role of HCK in OS development in vitro and in vivo. Downregulation of HCK attenuated OS cell proliferation, migration and invasion and increased OS cell apoptosis, whereas overexpression of HCK enhanced these processes. Mechanistically, HCK expression enhanced OS tumorigenesis via the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway; HCK upregulation increased the phosphorylation of MEK and ERK and promoted epithelial-mesenchymal transition, with a reduction in E-cadherin in vitro. Furthermore, HCK downregulation decreased the tumour volume and weight in mice transplanted with OS cells. In conclusion, HCK plays a crucial role in OS tumorigenesis, progression and metastasis via the MEK/ERK pathway, suggesting that HCK is a potential target for developing treatments for OS.  相似文献   

8.
ERK3 and ERK4 are atypical MAPKs in which the canonical TXY motif within the activation loop of the classical MAPKs is replaced by SEG. Both ERK3 and ERK4 bind, translocate, and activate the MAPK-activated protein kinase (MK) 5. The classical MAPKs ERK1/2 and p38 interact with downstream MKs (RSK1–3 and MK2–3, respectively) through conserved clusters of acidic amino acids, which constitute the common docking (CD) domain. In contrast to the classical MAPKs, the interaction between ERK3/4 and MK5 is strictly dependent on phosphorylation of the SEG motif of these kinases. Here we report that the conserved CD domain is dispensable for the interaction of ERK3 and ERK4 with MK5. Using peptide overlay assays, we have defined a novel MK5 interaction motif (FRIEDE) within both ERK4 and ERK3 that is essential for binding to the C-terminal region of MK5. This motif is located within the L16 extension lying C-terminal to the CD domain in ERK3 and ERK4 and a single isoleucine to lysine substitution in FRIEDE totally abrogates binding, activation, and translocation of MK5 by both ERK3 and ERK4. These findings are the first to demonstrate binding of a physiological substrate via this region of the L16 loop in a MAPK. Furthermore, the link between activation loop phosphorylation and accessibility of the FRIEDE interaction motif suggests a switch mechanism for these atypical MAPKs in which the phosphorylation status of the activation loop regulates the ability of both ERK3 and ERK4 to bind to a downstream effector.Mitogen-activated protein kinase (MAPK)2 phosphorylation cascades play important roles in the regulation of diverse cellular functions such as cell proliferation, differentiation, migration, and apoptosis (1, 2). A characteristic and conserved feature of this family of signaling pathways is their organization into modules comprising a sequential three-tiered kinase cascade. This contains a MAPK kinase kinase, a MEK, and the MAPK itself. Four such MAPK signaling modules have been described in mammals: ERK1 and ERK2, the c-Jun N-terminal kinases 1–3, the p38 kinases (p38α/β/γ/δ), and ERK5 (37). The MAPK kinase kinases phosphorylate and activate the MEKs, which in turn activate the MAPKs by dual phosphorylation on both the threonine and the tyrosine residue of a highly conserved TXY motif in the kinase activation loop. MAPKs are Ser/Thr kinases, which phosphorylate a wide range of substrates with the minimal consensus sequence (S/T)P (2).ERK4 and its close relative ERK3 are regarded as atypical members of the MAPK family. In contrast to the classical MAPKs, ERK3 and ERK4 harbor an SEG motif in the activation loop and thus lack a second phosphoacceptor site. In addition, protein kinases all possess a conserved APE motif located just C-terminal to the phosphoacceptor sites within subdomain VIII, in which the conserved glutamate is important for maintaining the stability of the kinase domain. In both ERK3 and ERK4, this motif is substituted by SPR, and ERK3 and ERK4 are the only two protein kinases in the human genome with an arginine residue in this position (8). Although they display significant sequence homology (44% identity) with ERK1 and ERK2 within their kinase domains, both ERK3 and ERK4 have unique C-terminal extensions, which account for the large differences in size observed between ERK1/2 (∼360 amino acids) and ERK3/ERK4 (721/587 amino acids). Whereas classical MAPKs have been highly conserved throughout evolution, with examples found in both unicellular and multicellular organisms, ERK3 and ERK4 are only present in vertebrates. Finally, in contrast to many of the classical MAPKs, the regulation, substrate specificity, and physiological functions of ERK3 and ERK4 are poorly understood. Although ERK3 and ERK4 are very similar to each other, there are significant differences between them. For instance, whereas ERK4, like most classical MAPKs, is a stable protein, ERK3 is highly unstable and subject to rapid proteosomal degradation. Thus, ERK3 activity may be regulated at the level of cellular abundance, and taken together these features indicate that ERK3 and ERK4 may perform specialized functions and enjoy different modes of regulation when compared with classical MAPKs (911).Despite the striking differences between ERK3 and ERK4 and the classical MAPKs, they do share one property with the ERK1/2, p38, and ERK5, namely the ability to interact with a group of downstream Ser/Thr protein kinases, termed MAPK-activated protein kinases (MAPKAPKs or MKs) (12, 13). In the case of ERK3 and ERK4, both proteins interact with, translocate, and activate the MK5 protein kinase. Several studies have drawn attention to the role of specific docking interactions that contribute to both substrate selectivity and regulation in MAPK pathways (1417). These interactions involve docking domains, which specifically recognize small peptide docking motifs (D motifs) located on functional MAPK partner proteins including downstream substrates, scaffold proteins, as well as positive and negative regulators. The docking domains, although located within the kinase domains, are distinct from the active site. Similarly the D motifs, which these docking domains recognize, are also distinct from the phosphoacceptor sites within protein substrates (18). There are several classes of D motifs. The motifs found in MAPKAP kinases including MK5 have the consensus sequence LX1–2(K/R)2–5 where X is any amino acid (12). The corresponding docking domains within the MAPKs have also been characterized (16, 19, 20). The common docking (CD) domain is a cluster of negatively charged amino acids located in the L16 extension directly C-terminal to the kinase domain in the MAPK primary structure. A second domain termed ED (Glu-Asp) also contributes to binding specificity. This latter site is located near the CD domain in the MAPK tertiary structure. Whereas the CD domain is considered commonly important for all docking interactions, the ED site is thought to be important for the determination of specificity (16). Other residues and regions distinct from the ED and CD domains have also been shown to be important for docking.(2125).This work has so far been largely confined to analysis of the classical MAPKs, and much less is known about the nature of substrate or regulatory docking interactions for the atypical MAPKs. We and others (9, 11, 26) have recently reported that the region encompassing residues 326–340 within both ERK3 and ERK4 is required for their ability to interact with and activate MK5. Furthermore, a truncated mutant of MK5, which lacks the 50 C-terminal residues (MK5 1–423), was unable to bind to ERK4 despite the fact that it retains its D domain. Finally, in contrast to conventional MAPKs, the interaction between ERK3 and ERK4 and MK5 requires activation loop phosphorylation of ERK3 and ERK4 (27, 28). Taken together these observations suggest that the mechanism by which the atypical MAPKs recognize and bind to at least one important class of effector kinases may be distinct to that found in the classical MAPKs such as ERK1/2 and p38.Here we demonstrate that two separate C-terminal regions, encompassing residues 383–393 and 460–465, respectively, are necessary for MK5 to interact with both ERK3 and ERK4. These regions are distinct from the D motif previously identified within MK5, suggesting that binding to ERK3 and ERK4 may be mediated by a different mechanism to that seen in the classical MAPKs. In support of this, the conserved CD domains within ERK3 and ERK4 are shown to be completely dispensable for MK5 interaction. Using peptide overlay assays, we have defined a minimal MK5 interaction motif FRIEDE in ERK4. Furthermore, we demonstrate that a single point mutation (ERK3 I334K or ERK4 I330K) within this FRIEDE motif is sufficient to disrupt the binding of both ERK3 and ERK4 to MK5 and consequently their ability to both translocate and activate MK5. The FRIEDE motif is located within the L16 extension C-terminal to the CD domain in both ERK3 and ERK4. Interestingly, molecular modeling of the corresponding region in ERK2 suggests that it undergoes a significant conformational change as a result of activation loop phosphorylation, making this part of the L16 extension more accessible (29). We propose that the FRIEDE motif represents a novel MAPK interaction motif, the function of which is linked to activation loop phosphorylation and MAPK activation.  相似文献   

9.
Mitogen-activated protein (MAP) kinases are typical examples of protein kinases whose enzymatic activity is mainly controlled by activation loop phosphorylation. The classical MAP kinases ERK1/ERK2, JNK, p38 and ERK5 all contain the conserved Thr-Xxx-Tyr motif in their activation loop that is dually phosphorylated by members of the MAP kinase kinases family. Much less is known about the regulation of the atypical MAP kinases ERK3 and ERK4. These kinases display structural features that distinguish them from other MAP kinases, notably the presence of a single phospho-acceptor site (Ser-Glu-Gly) in the activation loop. Here, we show that ERK3 and ERK4 are phosphorylated in their activation loop in vivo. This phosphorylation is exerted, at least in part, in trans by an upstream cellular kinase. Contrary to classical MAP kinases, activation loop phosphorylation of ERK3 and ERK4 is detected in resting cells and is not further stimulated by strong mitogenic or stress stimuli. However, phosphorylation can be modulated indirectly by interaction with the substrate MAP kinase-activated protein kinase 5 (MK5). Importantly, we found that activation loop phosphorylation of ERK3 and ERK4 stimulates their intrinsic catalytic activity and is required for the formation of stable active complexes with MK5 and, consequently, for efficient cytoplasmic redistribution of ERK3/ERK4-MK5 complexes. Our results demonstrate the importance of activation loop phosphorylation in the regulation of ERK3/ERK4 function and highlight differences in the regulation of atypical MAP kinases as compared to classical family members.  相似文献   

10.
11.
Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway   总被引:24,自引:0,他引:24  
Mody N  Leitch J  Armstrong C  Dixon J  Cohen P 《FEBS letters》2001,502(1-2):21-24
Antibodies that recognise the active phosphorylated forms of mitogen-activated protein kinase (MAPK) kinase 5 (MKK5) and extracellular signal-regulated kinase 5 (ERK5) in untransfected cells have been exploited to show that the epidermal growth factor (EGF)-induced activation of MKK5 and ERK5 occurs subsequent to the activation of ERK1 and ERK2 in HeLa cells. The drugs U0126 and PD184352, which prevent the activation of MKK1 (and hence the activation of ERK1/ERK2), also prevent the activation of MKK5, although higher concentrations are required. Our studies define physiological targets of the MKK5/ERK5 pathway as proteins whose phosphorylation is largely prevented by 10 microM PD184352, but unaffected by 2 microM PD184352. Surprisingly, 2 microM PD184352 prolongs the activation of MKK5 and ERK5 induced by EGF or H(2)O(2), indicating negative control of the MKK5/ERK5 pathway by the classical MAPK cascade. Our results also indicate that ERK5 is not a significant activator of MAPK-activated protein kinase-1/RSK in HeLa cells.  相似文献   

12.
Activation and signaling of the p38 MAP kinase pathway   总被引:104,自引:0,他引:104  
Zarubin T  Han J 《Cell research》2005,15(1):11-18
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.  相似文献   

13.
Both estrogen and leptin play an important role in the regulation of physiological processes of endochondral bone formation in linear growth. Estrogen receptors (ERα and ERβ) are known as members of the superfamily of nuclear steroid hormone receptors and are detected in all zones of growth plate chondrocytes. They can be regulated in a ligand-independent manner. Whether leptin regulates ERs in the growth plate is still not clear. To explore this issue, chondrogenic ATDC5 cells were used in the present study. Messenger RNA and protein analyses were performed by quantitative PCR and Western blotting. We found that both ERα and ERβ were dynamically expressed during the ATDC5 cell differentiation for 21 days. Leptin (50 ng/ml) significantly upregulated ERα and ERβ mRNA and protein levels 48 h after leptin stimulation (P<0.05) at day 14. The up-regulation of ERα and ERβ mRNA by leptin was shown in a dose-dependent manner, but the most effective dose of leptin was different (100 and 1,000 ng/ml, respectively). Furthermore, we confirmed that leptin augmented the phosphorylation of ERK1/2 in a time-dependent manner. A maximum eightfold change was observed at 15 min. Finally, a specific ERK1/2 inhibitor, UO126, blocked leptin-induced ERs regulation in ATDC5 cells, indicating that ERK1/2 mediates, partly, the effects of leptin on ERs. These data demonstrate, for the first time, that leptin regulates the expression of ERs in growth plate chondrocytes via ERK signaling pathway, thereby suggesting a crosstalk between leptin and estrogen receptors in the regulation of bone formation.  相似文献   

14.
Activation of glycogen synthase kinase 3beta (Gsk3beta) has been shown to be a key component in signaling pathways that underlie neurodegeneration and neurodegenerative disease. Conversely, inactivation of Gsk3beta by phosphoinositide 3-kinase (PI3K)/Akt is an important neuroprotective mechanism. Previous studies have shown that agonist activation of group I metabotropic glutamate receptors (mGluRs) can increase neuronal survival and prevent apoptosis. However, little is known about the signaling pathways that couple mGluR5 to neuroprotection. In this report, we investigated whether activation of the PI3K/Akt/Gsk3beta pathway, which has been shown to have an important neuroprotective mechanism, is required for mGluR5 activation mediated neuroprotection against beta-amyloid. We found that brief incubations of mouse hippocampal slices with (R,S)-3,5-dihydroxyphenylglycine (DHPG) resulted in increased phosphorylation of Akt and Gsk3beta. The PI3K inhibitors, LY294002 and wortmannin, blocked the DHPG-induced increased phosphorylation of Akt and Gsk3beta. Similar results were observed in rat primary hippocampal cultures. Finally, we found that the PI3K inhibitor LY294002 can block (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) mediated neuroprotection against beta-amyloid. Thus, these findings suggest that mGluR5 can modulate the PI3K/Akt/Gsk3beta pathway in the hippocampus, and that modulation of this signaling pathway can reverse beta-amyloid-induced neuronal toxicity.  相似文献   

15.
ERK3 is an atypical Mitogen-activated protein kinase (MAPK6). Despite the fact that the Erk3 gene was originally identified in 1991, its function is still unknown. MK5 (MAP kinase- activated protein kinase 5) also called PRAK is the only known substrate for ERK3. Recently, it was found that group I p21 protein activated kinases (PAKs) are critical effectors of ERK3. PAKs link Rho family of GTPases to actin cytoskeletal dynamics and are known to be involved in the regulation of cell adhesion and migration. In this study we demonstrate that ERK3 protein levels are elevated as MDA-MB-231 breast cancer cells adhere to collagen I which is concomitant with changes in cellular morphology where cells become less well spread following nascent adhesion formation. During this early cellular adhesion event we observe that the cells retain protrusive activity while reducing overall cellular area. Interestingly exogenous expression of ERK3 delivers a comparable reduction in cell spread area, while depletion of ERK3 expression increases cell spread area. Importantly, we have detected a novel specific endogenous ERK3 localization at the cell periphery. Furthermore we find that ERK3 overexpressing cells exhibit a rounded morphology and increased cell migration speed. Surprisingly, exogenous expression of a kinase inactive mutant of ERK3 phenocopies ERK3 overexpression, suggesting a novel kinase independent function for ERK3. Taken together our data suggest that as cells initiate adhesion to matrix increasing levels of ERK3 at the cell periphery are required to orchestrate cell morphology changes which can then drive migratory behavior.  相似文献   

16.
17.
Cell cycle arrest is essential for initiation of muscle differentiation in myoblasts. Given the previously described essential role for p38 MAPK in myogenesis, we undertook the present study to investigate the role of p38 MAPK in the cell cycle arrest that initiates muscle differentiation. p38 MAPK activity increased during, and was required for, muscle differentiation. Inhibition of p38 MAPK stimulated Raf and ERK activities, and induced cell proliferation in differentiation medium. The concomitant inhibition of p38 MAPK and ERK, however, failed to induce differentiation or proliferation. In conclusion, inhibition of the Raf/ERK pathway and the consequent cell cycle arrest is one of the major functions of p38 MAPK during muscle differentiation.  相似文献   

18.
Sphingosine kinase phosphorylates sphingosine to generate sphingosine 1-phosphate, a phospholipid that has been implicated in signaling by a number of transmembrane receptors and was recently shown to act as a ligand for a specific class of G protein-coupled receptors. Here we show that the G protein-coupled bradykinin B2 receptor activates sphingosine kinase leading to a time- and dose-dependent elevation of cellular sphingosine 1-phosphate levels that was blocked by the sphingosine kinase inhibitor dihydrosphingosine. Furthermore, increasing doses of this inhibitor partially affected the bradykinin-mediated ERK/MAP kinase activation and fully blocked the protein kinase C-independent component of the signaling pathway from the B2 receptor to the ERK/MAP kinase cascade. Overexpression of sphingosine kinase did not additionally increase the bradykinin-induced ERK/MAP kinase activity, indicating a permissive rather than activating role of sphingosine 1-phosphate in B2 receptor-mediated mitogenic signaling.  相似文献   

19.
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.  相似文献   

20.
The development of new analytical methods, aimed at profiling G protein-coupled receptor (GPCR) ligands, regardless of the G protein-coupling pattern of their respective receptor, remains a key goal in drug discovery. Considerable evidence has recently revived the central role that could be played by extracellular-signal-regulated kinase (ERK), the cornerstone protein kinase of the first tyrosine kinase receptor-mediated pathway identified, in response to the activation of various types of GPCRs. Here we reveal a conceptual study in which the potential of ERK phosphorylation is evaluated as a generic readout in response to three different receptors activating three main classes of G proteins: Gαs, Gαi and Gα q. GPCR-mediated ERK phosphorylation was compared with different readouts such as GTPγ S, CAMP, or Ca2 +. We propose the measurement of GPCR-activated ERK phosphorylation as an alternative assay to better understand the molecular pharmacology of ligands of promiscuous GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号