首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
British amyloid (ABri) peptide is precipitated as amyloid fibrils in pathological lesions which are characteristic of familial British dementia. Unlike for other amyloidogenic peptides which have been implicated in neurodegenerative disease, for example, Abeta in Alzheimer's disease and alpha synuclein in Parkinson's disease, nothing is yet known as to whether metals mediate the formation of ABri amyloid fibrils. We show herein that a concentration of ABri, which had not previously been shown to spontaneously form amyloid, formed fibrils when incubated for 12 months at 37 degrees C. The additional presence of Al(III), in particular, or Fe(III) increased significantly both the number and the size of the fibrillar amyloid deposits which were very similar in appearance to amyloid described in hippocampal plaques in familial British dementia. Co-incubation of ABri with either Zn(II) or Cu(II) precipitated the peptide but did not result in the formation of amyloid fibrils.  相似文献   

2.
Thorn DC  Ecroyd H  Sunde M  Poon S  Carver JA 《Biochemistry》2008,47(12):3926-3936
The calcified proteinaceous deposits, or corpora amylacea, of bovine mammary tissue often comprise a network of amyloid fibrils, the origins of which have not been fully elucidated. Here, we demonstrate by transmission electron microscopy, dye binding assays, and X-ray fiber diffraction that bovine milk alpha s2-casein, a protein synthesized and secreted by mammary epithelial cells, readily forms fibrils in vitro. As a component of whole alpha s-casein, alpha s2-casein was separated from alpha s1-casein under nonreducing conditions via cation-exchange chromatography. Upon incubation at neutral pH and 37 degrees C, the spherical particles typical of alpha s2-casein rapidly converted to twisted, ribbon-like fibrils approximately 12 nm in diameter, which occasionally formed loop structures. Despite their irregular morphology, these fibrils possessed a beta-sheet core structure and the ability to bind amyloidophilic dyes such as thioflavin T. Fibril formation was optimal at pH 6.5-6.7 and was promoted by higher incubation temperatures. Interestingly, the protein appeared to be less prone to fibril formation upon disulfide bond reduction with dithiothreitol. Thus, alpha s2-casein is particularly susceptible to fibril formation under physiological conditions. However, our findings indicate that alpha s2-casein fibril formation is potently inhibited by its natural counterpart, alpha s1-casein, while is only partially inhibited by beta-casein. These findings highlight the inherent propensity of casein proteins to form amyloid fibrils and the importance of casein-casein interactions in preventing such fibril formation in vivo.  相似文献   

3.
The aggregation of beta(2)-microglobulin (beta(2)m) into amyloid fibrils occurs in the condition known as dialysis-related amyloidosis (DRA). The protein has a beta-sandwich fold typical of the immunoglobulin family, which is stabilized by a highly conserved disulphide bond linking Cys25 and Cys80. Oxidized beta(2)m forms amyloid fibrils rapidly in vitro at acidic pH and high ionic strength. Here we investigate the role of the single disulphide bond of beta(2)m in amyloidosis in vitro. We show that reduction of the disulphide bond destabilizes the native protein such that non-native molecules are populated at neutral pH. These species are prone to oligomerization but do not form amyloid fibrils when incubated for up to 8 mo at pH 7.0 in 0.4 M NaCl. Over the pH range 4.0-1.5 in the presence of 0.4 M NaCl, however, amyloid fibrils of reduced beta(2)m are formed. These fibrils are approximately 10 nm wide, but are shorter and assemble more rapidly than those produced from the oxidized protein. These data show that population of non-native conformers of beta(2)m at neutral pH by reduction of its single disulphide bond is not sufficient for amyloid formation. Instead, association of one or more specific partially unfolded molecules formed at acid pH are necessary for the formation of beta(2)m amyloid in vitro. Further experiments will now be needed to determine the role of different oligomeric species of beta(2)m in the toxicity of the protein in vivo.  相似文献   

4.
The yeast Saccharomyces cerevisiae contains in its proteome at least three prion proteins. These proteins (Ure2p, Sup35p, and Rnq1p) share a set of remarkable properties. In vivo, they form aggregates that self-perpetuate their aggregation. This aggregation is controlled by Hsp104, which plays a major role in the growth and severing of these prions. In vitro, these prion proteins form amyloid fibrils spontaneously. The introduction of such fibrils made from Ure2p or Sup35p into yeast cells leads to the prion phenotypes [URE3] and [PSI], respectively. Previous studies on evolutionary biology of yeast prions have clearly established that [URE3] is not well conserved in the hemiascomycetous yeasts and particularly in S. paradoxus. Here we demonstrated that the S. paradoxus Ure2p is able to form infectious amyloid. These fibrils are more resistant than S. cerevisiae Ure2p fibrils to shear force. The observation, in vivo, of a distinct aggregation pattern for GFP fusions confirms the higher propensity of SpUre2p to form fibrillar structures. Our in vitro and in vivo analysis of aggregation propensity of the S. paradoxus Ure2p provides an explanation for its loss of infective properties and suggests that this protein belongs to the non-prion amyloid world.  相似文献   

5.
Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.  相似文献   

6.
Amyloid immunotherapy has led to the rise of antibodies, which target amyloid fibrils or structural precursors of fibrils, based on their specific conformational properties. Recently, we reported the biotechnological generation of the B10 antibody fragment, which provides conformation-specific binding to amyloid fibrils. B10 strongly interacts with fibrils from Alzheimer's β amyloid (Aβ) peptide, while disaggregated Aβ peptide or Aβ oligomers are not explicitly recognized. B10 also enables poly-amyloid-specific binding and recognizes amyloid fibrils derived from different types of amyloidosis or different polypeptide chains. Based on our current data, however, we find that B10 does not recognize all tested amyloid fibrils and amyloid tissue deposits. It also does not specifically interact with intrinsically unfolded polypeptide chains or globular proteins even if the latter encompass high β-sheet content or β-solenoid domains. By contrast, B10 binds amyloid fibrils from d-amino acid or l-amino acid peptides and non-proteinaceous biopolymers with highly regular and anionic surface properties, such as heparin and DNA. These data establish that B10 binding does not depend on an amyloid-specific or protein-specific backbone structure. Instead, it involves the recognition of a highly regular and anionic surface pattern. This specificity mechanism is conserved in nature and occurs also within a group of natural amyloid receptors from the innate immune system, the pattern recognition receptors. Our data illuminate the structural diversity of naturally occurring amyloid scaffolds and enable the discrimination of distinct fibril populations in vitro and within diseased tissues.  相似文献   

7.
In this immunohistopathological study alpha 1-antichymotrypsin, which is barely demonstrable in the normal brain, was found in amyloid fibrils, endothelial cells and the cytoplasm of astroglial cells in brains from patients with Alzheimer's disease. Amyloid precursors stained with methenamine silver were arrayed mainly along the membranes, and amyloid fibrils, which stained densely with anti-alpha 1-antichymotrypsin, were in direct contact with the fibrous structures connecting with the membranes of vascular feet or astrocytic processes. From the above findings, alpha 1-antichymotrypsin seems to play a role in the production of amyloid fibrils in Alzheimer's disease.  相似文献   

8.
The SH3 domain of the p85alpha subunit of phosphatidylinositol 3 kinase has been found to form amyloid fibrils in vitro under acidic conditions. PI3-SH3 is peculiar due to a large insertion of 15 amino acid residues in the n-Src loop when compared with more canonical members of the family. Spectrin-SH3 (SPC-SH3) with a shorter loop does not form fibrils under any of our conditions tested. Thus, it could be that the longer loop could play a role in amyloid formation. To investigate this we have engineered two chimeras containing the common core of the PI3-SH3 and SPC-SH3 with an exchanged n-Src loop. Thermodynamic and kinetic analyses show that the two chimeras are less stable than the parent proteins, but useful for our comparative purposes they have similar stability. Neither stability, nor folding rates, or pH transition can be invoked as being responsible for the amyloid formation in the PI3-SH3 domain. Substitution of the long n-Src loop in PI3-SH3 by that of SPC-SH3 does not prevent fibril formation. The SPC-SH3 with the PI3-SH3 n-Src loop is in an A-state at low pH and forms beta-sheet amorphous aggregates, but not amyloid fibrils. Thus, we conclude that, for a protein to form ordered fibrils, a delicate balance between solubility of non-native states to allow efficient nucleation and the formation of amorphous aggregates, must be achieved. It is the amino acid residue sequence of the protein and probably its parts that play a determinant role in shifting this balance in one direction or the other.  相似文献   

9.
Wild-type human lysozyme and its two stable amyloidogenic variants have been found to form partially folded states at low pH. These states are characterized by extensive disruption of tertiary interactions and partial loss of secondary structure. Incubation of the proteins at pH 2.0 and 37 degrees C (Ile56Thr and Asp67His variants) or 57 degrees C (wild-type) results in the formation of large numbers of fibrils over several days of incubation. Smaller numbers of fibrils could be observed under other conditions, including neutral pH. These fibrils were analyzed by electron microscopy, Congo red birefringence, thioflavine-T binding, and X-ray fiber diffraction, which unequivocally show their amyloid character. These data demonstrate that amyloidogenicity is an intrinsic property of human lysozyme and does not require the presence of specific mutations in its primary structure. The amyloid fibril formation is greatly facilitated, however, by the introduction of "seeds" of preformed fibrils to the solutions of the variant proteins, suggesting that seeding effects could be important in the development of systemic amyloidosis. Fibril formation by wild-type human lysozyme is greatly accelerated by fibrils of the variant proteins and vice versa, showing that seeding is not specific to a given protein. The fact that wild-type lysozyme has not been found in ex vivo deposits from patients suffering from this disease is likely to be related to the much lower population of incompletely folded states for the wild-type protein compared to its amyloidogenic variants under physiological conditions. These results support the concept that the ability to form amyloid is a generic property of proteins, but one that is mitigated against in a normally functioning organism.  相似文献   

10.
The presence of beta-sheets in the core of amyloid fibrils raised questions as to whether or not beta-sheet-containing proteins, such as transthyretin, are predisposed to form such fibrils. However, we show here that the molecular structure of amyloid fibrils differs more generally from the beta-sheets in native proteins. This difference is evident from the amide I region of the infrared spectrum and relates to the distribution of the phi/psi dihedral angles within the Ramachandran plot, the average number of strands per sheet, and possibly, the beta-sheet twist. These data imply that amyloid fibril formation from native beta-sheet proteins can involve a substantial structural reorganization.  相似文献   

11.

Background

Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD), amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils.

Results

We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC) specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type II diabetes, demonstrating its generic specificity for amyloid fibrils.

Conclusion

Since the fibril specific antibodies are conformation dependent, sequence-independent, and recognize epitopes that are distinct from those present in prefibrillar oligomers, they may have broad utility for detecting and characterizing the accumulation of amyloid fibrils and fibrillar type oligomers in degenerative diseases.  相似文献   

12.
Cerebral amyloid angiopathy is caused by deposition of the amyloid β-peptide which consists of mainly 39–40 residues to the cortical and leptomeningeal vessel walls. There are no definite in vitro systems to support the hypothesis that the vascular basement membrane may act as a scaffold of amyloid β-peptide carried by perivascular drainage flow and accelerate its amyloid fibril formation in vivo. We previously reported the critical roles of interfaces and agitation on the nucleation of amyloid fibrils at low concentrations of amyloid β-peptide monomers. Here, we reproduced the perivascular drainage flow in vitro by using N-hydroxysuccinimide-Sepharose 4 Fast flow beads as an inert stirrer in air-free wells rotated at 1 rpm. We then reproduced the basement membranes in the media of cerebral arteries in vitro by conjugating Matrigel and other proteins on the surface of Sepharose beads. These beads were incubated with 5 μM amyloid β(1–40) at 37 °C without air, where amyloid β(1–40) alone does not form amyloid fibrils. Using the initiation time of fibril growth kinetics (i.e., the lag time of fibril growth during which nuclei, on-pathway oligomers and protofibrils are successively formed) as a parameter of the efficiency of biological molecules to induce amyloid fibril formation, we found that basement membrane components including Matrigel, laminin, fibronectin, collagen type IV and fibrinogen accelerate the initiation of amyloid β-peptide fibril growth in vitro. These data support the essential role of vascular basement membranes in the development of cerebral amyloid angiopathy.  相似文献   

13.
Nilsson MR  Dobson CM 《Biochemistry》2003,42(2):375-382
Lactoferrin has previously been identified in amyloid deposits in the cornea, seminal vesicles, and brain. We report in this paper a highly amyloidogenic region of lactoferrin (sequence of NAGDVAFV). This region was initially identified by sequence comparison with medin, a 5.5 kDa amyloidogenic fragment derived from lactadherin. Subsequent characterization revealed that this peptide forms amyloid fibrils at pH 7.4 when incubated at 37 degrees C. Furthermore, although full-length lactoferrin does not by itself form amyloid fibrils, the protein does bind to the peptide fibrils as revealed by an increase in thioflavin T fluorescence and the presence of enlarged fibrils by transmission electron microscopy and polarized light microscopy. The binding of lactoferrin is a selective interaction with the NAGDVAFV fibrils. Lactoferrin does not bind to insulin or lysozyme fibrils, and the NAGDVAFV fibrils do not bind to soluble insulin or lysozyme. The lactoferrin appears to coat the peptide fibril surface to form mixed peptide/protein fibrils, but again there is no evidence for the formation of lactoferrin-only fibrils. This interaction, therefore, seems to involve selective binding rather than conventional seeding of fibril formation. We suggest that such a process could be generally important in the formation of amyloid fibrils in vivo since the identification of both full-length protein and protein fragments is common in ex vivo amyloid deposits.  相似文献   

14.
In beta(2)-microglobulin-related (Abeta2M) amyloidosis, partial unfolding of beta(2)-microglobulin (beta2-m) is believed to be prerequisite to its assembly into Abeta2M amyloid fibrils in vivo. Although low pH or 2,2,2-trifluoroethanol at a low concentration has been reported to induce partial unfolding of beta2-m and subsequent amyloid fibril formation in vitro, factors that induce them under near physiological conditions have not been determined. Using fluorescence spectroscopy with thioflavin T, circular dichroism spectroscopy, and electron microscopy, we here show that at low concentrations, sodium dodecyl sulfate (SDS) converts natively folded beta2-m monomers into partially folded, alpha-helix-containing conformers. Surprisingly, this results in the extension of Abeta2M amyloid fibrils at neutral pH, which could be explained basically by a first-order kinetic model. At low concentrations, SDS also stabilized the fibrils at neutral pH. These SDS effects were concentration-dependent and maximal at approximately 0.5 mM, around the critical micelle concentration of SDS (0.67 mM). As the concentration of SDS was increased above 1 mM, the alpha-helix content of beta2-m rose to approximately 10%, while the beta-sheet content decreased to approximately 20%, a change paralleled by a complete cessation of fibril extension and the destabilization of the fibrils. Detergents of other classes had no significant effect on the extension of fibrils. These findings are consistent with the hypothesis that in vivo, specific factors (e.g., phospholipids) that affect the conformation and stability of beta2-m and amyloid fibrils will have significant effects on the kinetics of Abeta2M fibril formation.  相似文献   

15.
We report here that a native folded holo-myoglobin, when incubated with a synthetic amyloidogenic peptide in aqueous solutions, forms fibrils. These fibrils took a cross-beta form (inter-strand spacing: 4.65 A and inter-sheet spacing: 10.65 A) and bound the amyloidophilic dye Congo red as did the authentic amyloid fibrils. In contrast such fibril formation of myoglobin did not occur in the absence of the peptide. These results suggest the possibility that inter-molecular interaction of native protein with the amyloidogenic peptide trigger the amyloid formation even for the non-pathogenic native protein like myoglobin, which itself exists as a globular form, under certain conditions.  相似文献   

16.
Beta2-microglobulin (beta2-m), a major component of dialysis-related amyloid fibrils, has an intrachain disulfide bond buried inside the native structure. We examined the conformation of beta2-m amyloid fibrils by analyzing the reactivity of the disulfide bond to a reducing reagent, dithiothreitol. Although the disulfide bond in the native structure was highly protected from reduction, the disulfide bonds in the amyloid fibrils prepared at pH 2.5 were progressively reduced at pH 8.5 by 50 mm dithiothreitol. Because beta2-m amyloid fibrils prepared under acidic conditions have been known to depolymerize at a neutral pH, we examined the relation between depolymerization and reduction of the disulfide bond. The results indicate that the disulfide bonds in the amyloid fibrils were protected from reduction, and the reduction occurred during depolymerization. On the other hand, the disulfide bonds of immature filaments, the thin and flexible filaments prepared under conditions of high salt at pH 2.5, were reduced at pH 8.5 more readily than those of amyloid fibrils, suggesting that the disulfide bonds are exposed to the solvent. Taken together, the disulfide bond once exposed to the solvent upon acid denaturation may be progressively buried in the interior of the amyloid fibrils during its formation.  相似文献   

17.
Amyloids are highly ordered, rigid beta-sheet-rich structures that appear to have minimal dynamic flexibility in individual polypeptide chains. Here, we demonstrate that substantial conformational rearrangements occur within mature amyloid fibrils produced from full-length mammalian prion protein. The rearrangement results in a substantial extension of a proteinase K-resistant core and is accompanied by an increase in the beta-sheet-rich conformation. The conformational rearrangement was induced in the presence of low concentrations of Triton X-100 either by brief exposure to 80 degrees C or, with less efficacy, by prolonged incubation at 37 degrees C at pH 7.5 and is referred to here as "annealing." Upon annealing, amyloid fibrils acquired a proteinase K-resistant core identical to that found in bovine spongiform encephalopathy-specific scrapie-associated prion protein. Annealing was also observed when amyloid fibrils were exposed to high temperatures in the absence of detergent but in the presence of brain homogenate. These findings suggest that the amyloid fibrils exist in two conformationally distinct states that are separated by a high energy barrier and that yet unknown cellular cofactors may facilitate transition of the fibrils into thermodynamically more stable state. Our studies provide new insight into the complex behavior of prion polymerization and highlight the annealing process, a previously unknown step in the evolution of amyloid structures.  相似文献   

18.
The formation of polypeptide aggregates, including amyloid fibrils and prions, is a biochemical process of considerable interest in the context of its association with ageing and neurodegeneration. Aggregation occurs typically with a lag phase and a growth phase that reflect an underlying nucleation-polymerisation mechanism. While the propensity of nucleation can be estimated from the lag time t(l), the efficiency of growth is represented by the growth rate k(g). Here, I have analysed the absolute k(g) and t(l) values from a total of 298 samples prepared from insulin, glucagon and different sequence variants of the Alzheimer's Abeta(1-40) peptide. Although these samples differ in the conditions of aggregation, systematic comparison reveals an overall similarity in the plot of k(g)versus t(l). The plot fits readily with the simple equation k(g)=alpha/t(l) and by using a proportionality factor alpha of 4.5. In contrast to the individual values of k(g) and t(l) that depend substantially on sequential and environmental parameters, alpha seems much less affected by such factors. These data suggest mechanistic similarities in the nucleation behaviour of different amyloid-like fibrils and aggregates.  相似文献   

19.
Review: history of the amyloid fibril   总被引:10,自引:0,他引:10  
Rudolph Virchow, in 1854, introduced and popularized the term amyloid to denote a macroscopic tissue abnormality that exhibited a positive iodine staining reaction. Subsequent light microscopic studies with polarizing optics demonstrated the inherent birefringence of amyloid deposits, a property that increased intensely after staining with Congo red dye. In 1959, electron microscopic examination of ultrathin sections of amyloidotic tissues revealed the presence of fibrils, indeterminate in length and, invariably, 80 to 100 A in width. Using the criteria of Congophilia and fibrillar morphology, 20 or more biochemically distinct forms of amyloid have been identified throughout the animal kingdom; each is specifically associated with a unique clinical syndrome. Fibrils, also 80 to 100 A in width, have been isolated from tissue homogenates using differential sedimentation or solubility. X-ray diffraction analysis revealed the fibrils to be ordered in the beta pleated sheet conformation, with the direction of the polypeptide backbone perpendicular to the fibril axis (cross beta structure). Because of the similar dimensions and tinctorial properties of the fibrils extracted from amyloid-laden tissues and amyloid fibrils in tissue sections, they have been assumed to be identical. However, the spatial relationship of proteoglycans and amyloid P component (AP), common to all forms of amyloid, to the putative protein only fibrils in tissues, has been unclear. Recently, it has been suggested that, in situ, amyloid fibrils are composed of proteoglycans and AP as well as amyloid proteins and thus resemble connective tissue microfibrils. Chemical and physical definition of the fibrils in tissues will be needed to relate the in vitro properties of amyloid protein fibrils to the pathogenesis of amyloid fibril formation in vivo.  相似文献   

20.
A growing body of evidence indicates that small, soluble oligomeric species generated from a variety of proteins and peptides rather than mature amyloid fibrils are inherently highly cytotoxic. Here, we show for the first time that mature amyloid fibrils produced from full-length recombinant mammalian prion protein (rPrP) were highly toxic to cultured cells and primary hippocampal and cerebella neurons. Fibrils induced apoptotic cell death in a time- and dose-dependent manner. The toxic effect of fibrils was comparable with that exhibited by soluble small beta-oligomers generated from the same protein. Fibrils prepared from insulin were not toxic, suggesting that the toxic effect was not solely due to the highly polymeric nature of the fibrillar form. The cell death caused by rPrP fibrils or beta-oligomers was substantially reduced when expression of endogenous PrP(C) was down-regulated by small interfering RNAs. In opposition to the beta-oligomer and amyloid fibrils of rPrP, the monomeric alpha-helical form of rPrP stimulated neurite out-growth and survival of neurons. These studies illustrated that both soluble beta-oligomer and amyloid fibrils of the prion protein are intrinsically toxic and confirmed that endogenously expressed PrP(C) is required for mediating the toxicity of abnormally folded external PrP aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号