首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four isolates of Gram-negative facultatively anaerobic bacteria, three of them producing NDM-1 carbapenemase, were isolated from hospitalized patients and outpatients attending two military hospitals in Rawalpindi, Pakistan, and studied for their taxonomic position. Initially the strains were phenotypically identified as Citrobacter species. Comparative analysis of 16S rRNA gene sequences then showed that the four strains shared >97%, but in no case >98.3%, 16S rRNA gene sequence similarities to members of the genera Citrobacter, Kluyvera, Pantoea, Enterobacter and Raoultella, but always formed a separate cluster in respective phylogenetic trees. Based on multilocus sequence analysis (MLSA) including partial recN, rpoA, thdF and rpoB gene sequence and respective amino acid sequence analysis it turned out that the strains also here always formed separate clusters. Based on further comparative analyses including DNA–DNA hybridizations, genomic fingerprint analysis using rep- and RAPD-PCRs and physiological tests, it is proposed to classify these four strains into the novel genus Pseudocitrobacter gen. nov. with a new species Pseudocitrobacter faecalis sp. nov. with strain 25 CITT (= CCM 8479T = LMG 27751T) and Pseudocitrobacter anthropi sp. nov. with strain C138T (= CCM 8478T = LMG 27750T), as the type strains, respectively.  相似文献   

2.
Microbial isolates are useful models for physiological and ecological studies and can also be used to reassemble genomes from metagenomic analyses. However, the phylogenetic diversity that can be found among cultured marine bacteria may vary significantly depending on the isolation. Therefore, this study describes a set of 136 bacterial isolates obtained by traditional isolation techniques from the Blanes Bay Microbial Observatory, of which seven strains have had the whole genome sequenced. The complete set was compared to a series of environmental sequences obtained by culture-independent techniques (60 DGGE sequences and 303 clone library sequences) previously obtained by molecular methods. In this way, each isolate was placed in both its “ecological” (time of year, nutrient limitation, chlorophyll and temperature values) context or setting, and its “phylogenetic” landscape (i.e. similar organisms that were found by culture-independent techniques, when they were relevant, and when they appeared). Nearly all isolates belonged to the Gammaproteobacteria, Alphaproteobacteria, or the Bacteroidetes (70, 40 and 20 isolates, respectively). Rarefaction analyses showed similar diversity patterns for sequences from isolates and molecular approaches, except for Alphaproteobacteria where cultivation retrieved a higher diversity per unit effort. Approximately 30% of the environmental clones and isolates formed microdiversity clusters constrained at 99% 16S rRNA gene sequence identity, but the pattern was different in Bacteroidetes (less microdiversity) than in the other main groups. Seventeen cases (12.5%) of nearly complete (98–100%) rRNA sequence identity between isolates and environmental sequences were found: nine in the Alphaproteobacteria, five in the Gammaproteobacteria, and three in the Bacteroidetes, indicating that cultivation could be used to obtain at least some organisms representative of the various taxa detected by molecular methods. Collectively, these results illustrated the largely unexplored potential of culturing on standard media for complementing the study of microbial diversity by culture-independent techniques and for obtaining phylogenetically distinct model organisms from natural seawater.  相似文献   

3.
We compared dideoxy sequencing of cloned chaperonin-60 universal target (cpn60 UT) amplicons to pyrosequencing of amplicons derived from vaginal microbial communities. In samples pooled from a number of individuals, the pyrosequencing method produced a data set that included virtually all of the sequences that were found within the clone library and revealed an additional level of taxonomic richness. However, the relative abundances of the sequences were different in the two datasets. These observations were expanded and confirmed by the analysis of paired clone library and pyrosequencing datasets from vaginal swabs taken from four individuals. Both for individuals with a normal vaginal microbiota and for those with bacterial vaginosis, the pyrosequencing method revealed a large number of low-abundance taxa that were missed by the clone library approach. In addition, we showed that the pyrosequencing method generates a reproducible profile of microbial community structure in replicate amplifications from the same community. We also compared the taxonomic composition of a vaginal microbial community determined by pyrosequencing of 16S rRNA amplicons to that obtained using cpn60 universal primers. We found that the profiles generated by the two molecular targets were highly similar, with slight differences in the proportional representation of the taxa detected. However, the number of operational taxonomic units was significantly higher in the cpn60 data set, suggesting that the protein-encoding gene provides improved species resolution over the 16S rRNA target. These observations demonstrate that pyrosequencing of cpn60 UT amplicons provides a robust, reliable method for deep sequencing of microbial communities.Scientific interest in human microbial communities is growing, and basic concepts about the “human microbiome” are evolving rapidly (3, 34). Molecular phylogenetic analysis of 16S rRNA-encoding DNA sequences has revealed a vast diversity of uncultured microbial symbionts that influence animal physiology in ways only beginning to be understood. In particular, microbial species inhabiting the human vagina are thought to play an important role in host health (10). A shift in the composition of the vaginal microbiota from “normal” (Lactobacillus dominated) to a state defined as bacterial vaginosis (BV; increased abundance of gram-negative organisms) is associated with a range of negative outcomes, including pelvic inflammatory disease, preterm births, and the acquisition of sexually transmitted diseases (21, 22, 37). This observation has led to an increased interest in determining the composition of the vaginal microbiota by culture-independent methods (8, 11, 17, 25, 30, 35, 36). However, established cloning and sequencing techniques remain time- and labor-intensive, severely limiting the reach of phylogenetic or functional surveys of microbial communities across body sites, individuals, geographic areas, and scales of time.The advent of next-generation ultra-high-throughput sequencing technologies, in particular, the GS FLX (454 Life Sciences, Branford, CT), has removed an important quantitative barrier in molecular analysis by increasing the number of reads from a gene or genome by orders of magnitude in a single run (20). Unfortunately, the short average length of pyrosequencing reads (∼200 bp compared to ∼700 bp using dideoxy sequencing) presents a new set of problems. The results of recent application of this technology to analysis of 16S rRNA gene sequences from microbes in vaginal samples have demonstrated that short reads are more likely to generate matches to multiple sequences in the rRNA sequence database and that taxonomic and phylogenetic resolution was limited due to strong similarities between 16S rRNA sequences from closely related species (32).An alternative molecular target for microbial identification and phylogenetic analysis is cpn60, a gene that encodes the 60-kDa chaperonin or heat shock protein (HSP60/GroEL) (13). The cpn60 gene is universal in eubacteria and eukaryotes and an extensive, curated reference database is available (13) (http://cpndb.cbr.nrc.ca). The cpn60 universal target (UT) offers key advantages, including short target length (549 to 567 bp), sufficient resolving power to distinguish closely related species and subspecies, and a relatively uniform distribution of variability across the entire length of the target (9, 12). The use of the cpn60 UT has been well established for phylogenetic analysis of complex samples (4, 14) and has recently been applied to vaginal microbial communities (11). In the present study, we examined the feasibility of pyrosequencing for determining the composition of the vaginal microbiota using the cpn60 UT. We compared the microbial community structure generated by pyrosequencing of cpn60 amplicons using the GS FLX with dideoxy sequencing based on clone libraries generated from the same samples. In addition, we evaluated the microbial community profiles generated by pyrosequencing of cpn60 UT amplicons and 16S rRNA amplicons from the same vaginal samples.  相似文献   

4.
(GTG)5-PCR fingerprinting and pheS sequence analysis of 18 Lactobacillus rossiae isolates, mainly originating from Belgian and Italian artisan sourdoughs, revealed intraspecies grouping as evidenced by the delineation of three and two subgroups, respectively. On the other hand, 16S rRNA and rpoA gene sequence analysis and DNA–DNA hybridizations supported the accommodation of all isolates in a single species. No correlation between genetic and phenotypic heterogeneity was observed. Collectively, these data do not warrant taxonomic division of L. rossiae. On the other hand, the considerable differences in intraspecies sequence variation of L. rossiae isolates displayed by the pheS (9.8%) and rpoA (1.1%) genes highlight that the discriminatory power of housekeeping genes as alternative genomic markers for the 16S rRNA gene in the identification of Lactobacillus species may significantly differ from gene to gene. In conclusion, this study has demonstrated that a polyphasic approach remains highly useful for identification of isolates belonging to genotypically heterogeneous species such as L. rossiae.  相似文献   

5.
6.
The genetic diversity of endophytic bacteria in banana ‘Prata Anã’ roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX). Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA) of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus) and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas.  相似文献   

7.
The partial 16S rRNA, rpoB, and cpn60 genes congruently allow this study to identify all the eight isolates as the species Campylobacter showae. To our knowledge, this is the first report to reveal the interspecies and intraspecies sequence variations present in the three genes of the C. showae isolates.  相似文献   

8.
9.
Tea production in North-East India hit a record loss due to the widespread severe outbreak of a mixed brood of three species of looper caterpillar pests of geometrid moths (Lepidoptera) in 2008-2010. In addition to Buzura suppressaria, two newly recorded geometrids, viz., Hyposidra infixaria and Hyposidra talaca have caused widespread severe damage in recent years. In the present study we report the nucleopolyhedroviruses (NPV) isolated from the tea looper caterpillar from North-East India. We identified and characterized the NPV by cloning and sequencing a partial segment of polyhedrin gene of virus infected larvae of B. suppressaria, H. talaca and H. infixaria. A comparison of deduced amino acids of polyhedrin gene among H. talaca, H. infixaria and B. suppressaria showed that same strain was found to infect all the three loopers in India, which show high sequence identity with B. suppressaria Chinese isolates. Based on the polyhedrin sequence homology, it is predicted that a variant of B. suppressaria Chinese isolate of NPV found to infect H. talaca, H. infixaria and B. suppressaria in India.  相似文献   

10.
The highly polymorphic 60 kDa glycoprotein (GP60) of Cryptosporidium is an important tool for investigating the epidemiology of this parasite. Characterization of the GP60 gene has only been performed for 3 of the 20 known Cryptosporidium species, and has already enabled sub-typing and source tracking of species with human significance. We have characterised a fourth species, Cryptosporidium fayeri, at the GP60 locus using isolates (n = 26) from different marsupial hosts to assess the diversity of GP60 within this species. The analysis demonstrated that C. fayeri isolates could be assigned to 6 subtypes which were associated with host species and locality. The intra-species diversity for the host-adapted C. fayeri was less than the diversity for human pathogenic species suggesting that the GP60 locus is under less selective pressure in these than host-adapted species.  相似文献   

11.
Increased abundance of Gardnerella vaginalis and sialidase activity in vaginal fluid is associated with bacterial vaginosis (BV), a common but poorly understood clinical entity associated with poor reproductive health outcomes. Since most women are colonized with G. vaginalis, its status as a normal member of the vaginal microbiota or pathogen causing BV remains controversial, and numerous classification schemes have been described. Since 2005, sequencing of the chaperonin-60 universal target (cpn60 UT) has distinguished four subgroups in isolate collections, clone libraries and deep sequencing datasets. To clarify potential clinical and diagnostic significance of cpn60 subgroups, we undertook phenotypic and molecular characterization of 112 G. vaginalis isolates from three continents. A total of 36 subgroup A, 33 B, 35 C and 8 D isolates were identified through phylogenetic analysis of cpn60 sequences as corresponding to four “clades” identified in a recently published study, based on sequencing 473 genes across 17 isolates. cpn60 subgroups were compared with other previously described molecular methods for classification of Gardnerella subgroups, including amplified ribosomal DNA restriction analysis (ARDRA) and real-time PCR assays designed to quantify subgroups in vaginal samples. Although two ARDRA patterns were observed in isolates, each was observed in three cpn60 subgroups (A/B/D and B/C/D). Real-time PCR assays corroborated cpn60 subgroups overall, but 13 isolates from subgroups A, B and D were negative in all assays. A putative sialidase gene was detected in all subgroup B, C and D isolates, but only in a single subgroup A isolate. In contrast, sialidase activity was observed in all subgroup B isolates, 3 (9%) subgroup C isolates and no subgroup A or D isolates. These observations suggest distinct roles for G. vaginalis subgroups in BV pathogenesis. We conclude that cpn60 UT sequencing is a robust approach for defining G. vaginalis subgroups within the vaginal microbiome.  相似文献   

12.
The bacterial endophytic community present in different Phaseolus vulgaris (bean) cultivars was analyzed by 16S ribosomal RNA gene sequences of cultured isolates derived from surface disinfected roots and immature seeds. Isolated endophytes from tissue-macerates belonged to over 50 species in 24 different genera and some isolates from Acinetobacter, Bacillus, Enterococcus, Nocardioides, Paracoccus, Phyllobacterium, and Sphingomonas seem to correspond to new lineages. Phytate solubilizing bacteria were identified among Acinetobacter, Bacillus and Streptomyces bean isolates, phytate is the most abundant reserve of phosphorus in bean and in other seeds. Endophytic rhizobia were not capable of forming nodules. A novel rhizobial species Rhizobium endophyticum was recognized on the basis of DNA–DNA hybridization, sequence of 16S rRNA, recA, rpoB, atpD, dnaK genes, plasmid profiles, and phenotypic characteristics. R. endophyticum is capable of solubilizing phytate, the type strain is CCGE2052 (ATCC BAA-2116; HAMBI 3153) that became fully symbiotic by acquiring the R. tropici CFN299 symbiotic plasmid.  相似文献   

13.
Co-chaperonin protein 10 (cpn10, GroES in Escherichia coli) is a ring-shaped heptameric protein that facilitates substrate folding when in complex with cpn60 (GroEL in E. coli). The cpn10 from the hyperthermophilic, ancient bacterium Aquifex aeolicus (Aacpn10) has a 25-residue C-terminal extension in each monomer not found in any other cpn10 protein. Earlier in vitro work has shown that this tail is not needed for heptamer assembly or protein function. Without the tail, however, the heptamers (Aacpn10del-25) readily aggregate into fibrillar stacked rings. To explain this phenomenon, we performed binding experiments with a peptide construct of the tail to establish its specificity for Aacpn10del-25 and used cryo-electron microscopy to determine the three-dimensional (3D) structure of the GroEL-Aacpn10-ADP complex at an 8-Å resolution. We found that the GroEL-Aacpn10 structure is similar to the GroEL-GroES structure at this resolution, suggesting that Aacpn10 has molecular interactions with cpn60 similar to other cpn10s. The cryo-electron microscopy density map does not directly reveal the density of the Aacpn10 25-residue tail. However, the 3D statistical variance coefficient map computed from multiple 3D reconstructions with randomly selected particle images suggests that the tail is located at the Aacpn10 monomer-monomer interface and extends toward the cis-ring apical domain of GroEL. The tail at this location does not block the formation of a functional co-chaperonin/chaperonin complex but limits self-aggregation into linear fibrils at high temperatures. In addition, the 3D variance coefficient map identifies several regions inside the GroEL-Aacpn10 complex that have flexible conformations. This observation is in full agreement with the structural properties of an effective chaperonin.  相似文献   

14.
Baculoviruses are members of a large, well-characterized family of dsDNA viruses that have been identified from insects of the orders Lepidoptera, Hymenoptera, and Diptera. Baculovirus genomes from different virus species generally exhibit a considerable degree of structural diversity. However, some sequenced baculovirus genomes from closely related viruses are structurally very similar and share overall nucleotide sequence identities in excess of 95%. This review focuses on the comparative analysis of partial and complete nucleotide sequences from two groups of closely related baculoviruses with broad host ranges: (a) group I multiple nucleopolyhedroviruses (MNPVs) from a cluster including Autographa californica (Ac)MNPV, Rachiplusia ou (Ro)MNPV, and Plutella xylostella (Plxy)MNPV; and (b) granuloviruses (GVs) from a cluster including Xestia c-nigrum (Xecn)GV and Helicoverpa armigera (Hear)GV. Even though the individual viruses in these clusters share high nucleotide sequence identities, a significant degree of genomic rearrangement (in the form of insertions, deletions, and homologous recombination resulting in allelic replacement) is evident from alignments of their genomes. These observations suggest an important role for recombination in the early evolution and biological characteristics of baculoviruses of these two groups.  相似文献   

15.
In this study, we have investigated the relationship between chaperonin/co-chaperonin binding, ATP hydrolysis, and protein refolding in heterologous chaperonin systems from bacteria, chloroplast, and mitochondria. We characterized two types of chloroplast cpn60 oligomers, ch-cpn60 composed of α and β subunits (α7β7 ch-cpn60) and one composed of all β subunits (β14 ch-cpn60). In terms of ATPase activity, the rate of ATP hydrolysis increased with protein concentration up to 60 μM, reflecting a concentration at which the oligomers are stable. At high concentrations of cpn60, all cpn10 homologs inhibited ATPase activity of α7β7 ch-cpn60. In contrast, ATPase of β14 ch-cpn60 was inhibited only by mitochondrial cpn10, supporting previous reports showing that β14 is functional only with mitochondrial cpn10 and not with other cpn10 homologs. Surprisingly, direct binding assays showed that both ch-cpn60 oligomer types bind to bacterial, mitochondrial, and chloroplast cpn10 homologs with an equal apparent affinity. Moreover, mitochondrial cpn60 binds chloroplast cpn20 with which it is not able to refold denatured proteins. Protein refolding experiments showed that in such instances, the bound protein is released in a conformation that is not able to refold. The presence of glycerol, or subsequent addition of mitochondrial cpn10, allows us to recover enzymatic activity of the substrate protein. Thus, in our systems, the formation of co-chaperonin/chaperonin complexes does not necessarily lead to protein folding. By using heterologous oligomer systems, we are able to separate the functions of binding and refolding in order to better understand the chaperonin mechanism.  相似文献   

16.
In 2010, cream-coloured, Gram-negative staining, facultatively anaerobic enterobacteria were isolated from a single black oak tree (Quercus kelloggii) exhibiting decline symptoms in southern California, USA. These 12 isolates were tentatively identified as Gibbsiella quercinecans based on partial gyrB sequencing. Closer examination of the strains using multilocus sequence analysis, based on partial sequences of gyrB, rpoB, infB and atpD genes, and almost complete 16S rRNA gene sequencing suggested that the isolates belong to a novel taxon within the genus Gibbsiella with G. quercinecans as their closest phylogenetic relative. DNA–DNA relatedness studies confirmed that the strains belong to a single taxon in Gibbsiella, which can be differentiated from other members of the genus by several phenotypic traits. Therefore, the name Gibbsiella greigii sp. nov. is proposed for this novel species isolated from symptomatic Q. kelloggii in the USA with FRB 224T (=LMG 27716T = NCPPB 4583T) as the type strain.  相似文献   

17.
Taxonomic characterization was performed on the putative N2-fixing microbiota associated with the coral species Mussismilia hispida, and with its sympatric species Palythoa caribaeorum, P. variabilis, and Zoanthus solanderi, off the coast of São Sebastião (São Paulo State, Brazil). The 95 isolates belonged to the Gammaproteobacteria according to the 16S rDNA gene sequences. In order to identify the isolates unambiguously, pyrH gene sequencing was carried out. The majority of the isolates (n=76) fell within the Vibrio core group, with the highest gene sequence similarity being towards Vibrio harveyi and Vibrio alginolyticus. Nineteen representative isolates belonging to V. harveyi (n=7), V. alginolyticus (n=8), V. campbellii (n=3), and V. parahaemolyticus (n=1) were capable of growing six successive times in nitrogen-free medium and some of them showed strong nitrogenase activity by means of the acetylene reduction assay (ARA). It was concluded that nitrogen fixation is a common phenotypic trait among Vibrio species of the core group. The fact that different Vibrio species can fix N2 might explain why they are so abundant in the mucus of different coral species.  相似文献   

18.
Microbial classification is based largely on the 16S rRNA (rrs) gene sequence, which is conserved throughout the prokaryotic domain. The Ribosomal Database Project (RDP) has become a reference point for almost all practical purposes. The use of this gene is limited by the fact that it can be used to identify only to the extent to what has been known and is available in the RDP. In order to identify an organism whose rrs is not present in the RDP database, we need to generate novel markers to place the unknown on the evolutionary map. Here, sequenced genomes of 27 Clostridium strains belonging to 9 species have been used to identify two sets of genes: (1) common to most of the species, and (2) unique to a species. Combinations of genes (recN, dnaJ, secA, mutS, and/or grpE) and their unique restriction endonuclease digestion (AluI, BfaI and/or Tru9I) patterns have been established to rapidly identify Clostridium species. This strategy for identifying novel markers can be extended to all other organisms and diagnostic applications.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0535-7) contains supplementary material, which is available to authorized users.  相似文献   

19.
Management and control of cryptosporidiosis in human requires knowledge of Cryptosporidium species contributing to human disease. Markers that are able to provide information below the species level have become important tools for source tracking. Using the hypervariable surface antigen, glycoprotein 60 (GP60), C. hominis (n = 37) and C. parvum (n = 32) isolates from cryptosporidiosis cases in New South Wales, Australia, were characterised. Extensive variation was observed within this locus and the isolates could be divided into 8 families and 24 different subtypes. The subtypes identified have global distributions and indicate that anthroponotic and zoonotic transmission routes contribute to sporadic human cryptosporidiosis in NSW.  相似文献   

20.
Fifty-eight typical EAEC isolates from children with diarrhoea were examined for HEp-2 cell adherence assay, presence of dispersin (aap), yersiniabactin (irp2), plasmid encoded toxins (pet), Shigella enterotoxin1 (set1A) and cryptic open reading frame (shf) putative virulence genes by polymerase chain reaction as well as for biofilm production. All the isolates showed aggregative adherence pattern on HEp-2 cells. All but five isolates (91.3 %) carried aap gene. While irp2, pet, set1A and shf genes were detected in 68.9, 5.1, 39.6, and 60.3 % isolates, respectively. Thirty-three (64.7 %) isolates out of 51 tested were found to produce biofilm which was found to be significantly associated only with set1A virulence gene (P = 0.025). Highest amount of biofilm was produced by a strain that possessed all the genes studied. Out of 14 isolates in which the most frequent gene combination (aap, irp2 and shf) was observed, only six produced biofilm. It is concluded that there is significant heterogeneity in putative virulence genes of EAEC isolates from diarrhoeic children and biofilm formation is associated with multiple genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号